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Abstract. We describe, and make publicly available, two problem in-
stance generators for a multiobjective version of the well-known quadratic
assignment problem (QAP). The generators allow a number of instance
parameters to be set, including those controlling epistasis and inter-
objective correlations. Based on these generators, several initial test
suites are provided and described. For each test instance we measure
some global properties and, for the smallest ones, make some initial ob-
servations of the Pareto optimal sets/fronts. Our purpose in providing
these tools is to facilitate the ongoing study of problem structure in
multiobjective (combinatorial) optimization, and its effects on search
landscape and algorithm performance.
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1 Introduction

Configuring a search metaheuristic to work effectively on a specific problem
class or instance depends upon being able to relate measurable properties of the
problem to performance predictions of the metaheuristic and its configuration.
In single objective optimization, some fairly general, measurable properties of
problems and/or search ‘landscapes’, have already been proposed and analysed
in the literature (e.g. see [15]), and progress towards a science of heuristic search
is under way [7]. In multiobjective optimization (MOQ), however, problem and
landscape structures have additional degrees of freedom, necessitating the con-
sideration of other unique factors. For example, in MOO, fitness landscapes have
multiple ‘vertical’” dimensions and the desired optima form a Pareto front (PF)
that can vary in dimension, cardinality, extent, connectedness, and convexity.
Consequently, search algorithms operating on these landscapes have more po-
tential modes of operation: when trying to obtain the PF, many search paths are
possible but some will be far more efficient than others. It is therefore, perhaps,
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even more important to understand how to configure MOO metaheuristics than
in the case of single objective optimization.

To facilitate empirical studies of problems/landscapes and their relationships
to algorithm/configuration performance, test suites and problem generators are
useful tools. Arguably, generators are better (particularly those with many con-
trollable parameters) because they enable the effects of different properties to
be investigated in isolation or in groups, whereas test suites (alone) can often
be too limited in the instances, which can lead to a false impression of progress
while, in fact, important problem properties remain uncharted.

In the field of evolutionary multiobjective optimization (EMOO), some good
generators and test suites already exist. The frameworks proposed by Deb et
al. [4-6] have been widely appreciated, although the test suite proposed in [21]
had some drawbacks that have, arguably, somewhat constrained progress. The
knapsack problems, originally used in [22] have also become a popular choice
for benchmarking algorithms. Once again, there are advantages and difficulties
with the popularity of this suite, however. It is advantageous for researchers
to have a common standard of comparison and it is encouraging to see mul-
tiobjective combinatorial optimization (MOCOQ) problems being tackled in the
EMOQO literature, but the knapsack problems are limited for two main reasons:
1. a generator is not publicly available and the instances provided do not have
many varying parameters, and 2. because, being a constrained problem, heuristic
repair or other mechanisms must be introduced, affecting the landscape ‘seen’
by a metaheuristic, and clouding the important issue of measuring algorithm
performance. Other MOCO problems exist in the literature, including our own
mc-MST problems [12], but few have become useful benchmarks for investigating
general problem characteristics.

Much more extensive study of problems and algorithm performance has been
carried out in relation to single objective combinatorial problems. After the trav-
eling salesman problem, perhaps the most studied of all is the quadratic assign-
ment problem (QAP). QAP is both practically important and very difficult,
making it particularly relevant for approximate search. In a recent paper [11]
we proposed a multiobjective version of the QAP, where m > 2 distinct QAPs
must be minimized simultaneously over the same permutation space. We believe
the problem to have practical applications but our main purpose in proposing
it is the opportunity it may provide for more general understanding of mul-
tiobjective combinatorial optimization (MOCQO). There are several advantages
to the QAP as a candidate to become a useful test-bed in multiobjective opti-
mization. It has a very simple formulation, solutions being permutations of the
integers from 1..n, so that specialized heuristics and/or repair mechanisms are
not needed (or used) to tackle the problem as, for example, they are in knapsack
and graph-based problems. The objective function is fast to compute and it can
also be delta-evaluated, enabling local search to be efficiently applied [19]. Fur-
thermore, much of the knowledge about the problem, including global measures
and landscape analysis tools can be adapted from the vast QAP literature, and
‘imported’ into the multiobjective domain.



Our aim here is to encourage study of the multiobjective QAP (mQAP), and
of MOCO problems in general, through the provision of two mQAP instance
generators which allow some important parameters to be controlled and investi-
gated. Some initial test suites derived from these are also given to illustrate the
effects of some parameters and to facilitate algorithm performance comparisons.
Properties and measures for QAP instances are briefly discussed and, for the test
suites, some simple measures are applied. For the smallest instances we compute
the entire search space and present some observations of the Pareto front struc-
tures. It is our aim in future work to make much further investigations of this
problem, and we have already begun this work in [11]. But our focus here is on
providing what we hope is a useful new MOCO problem for the EMOO field in
a form that makes it easy to use.

The rest of this paper is organized as follows. In section 2 we briefly review
some of the literature related to the QAP, focusing on available instances, global
properties and landscape measures. Section 3 describes the mQAP and reviews
some other MOCO problems and what is known about their problem/landscape
structures. Section 4 introduces our generators, while section 5 presents some test
suites and provides some initial measures on some instances. Section 6 concludes.

2 The Scalar QAP

Many diverse planning tasks of practical importance can be formulated as in-
stances of the quadratic assignment problem (QAP), an NP hard [17] combi-
natorial optimization problem that dates back to the early sixties. The QAP
is a broad problem class embracing both the graph partitioning problem and
travelling salesman problem as special cases [14]. Tt is also an unusually diffi-
cult problem, where even relatively small (n > 20) general instances cannot be
solved to optimality, and it has thus been important in stimulating research in
approximate methods. The great research effort attracted by the problem means
that a relatively large amount is now known about QAP instance structures and
how this relates to global and local statistical measures of their fitness land-
scapes. This knowledge has been put to effective use in designing and tuning
metaheuristics for this problem, e.g. [19, 18, 14].

The quadratic assignment problem (QAP) entails the assignment of n facili-
ties to n locations so as to minimize a sum of flow/distance products. It may be
formulated as:

Minimize C(7) = Z Z @ijbr;x; (1)

i=1 j=1

where n is the number of facilities/locations, a;; is the distance between location
i and location j, b;; is the flow from facility ¢ to facility j, and 7; gives the location
of facility ¢ in permutation m € P(n) where P(n) is the QAP search space: the
set of all permutations of {1,2,...,n}.



2.1 Instances and generators

A number of instances of the QAP are publicly accessible from QAPIlib [3],
and come in several categories: those with uniformly random distance and flow
matrix entries; those that derive from real applications, which are generally more
structured and where typically some of the off-diagonal flow matrix entries are
zero; and, because the latter are quite small, random ‘real-like’ instances [19] that
have been artificially constructed using a parameterized generator. The real-like
instances are more practically interesting than the uniformly random instances
and although it is easier to find the optimum (or best known solution) of them on
small instances, they are generally more difficult in terms of reaching a given %
above this value. The reason for this effect is that in the uniform instances there
are far more solutions at a given % cost above the best-known (easy to find), but
it is then difficult to find which of these is close (in permutation space) to the
best-known solution, making it difficult to direct the search. These properties
can be related to the ‘dominance’ of the flow and distance matrices, defined
below.

2.2 Measures of QAP instances and landscapes

Several papers on QAP have conjectured that certain (measurable) character-
istics of QAP instances can be related to measurable properties of their fitness
landscapes. To merely characterize an instance it is sufficient to describe some
properties of the distance and flow matrices, a computationally tractable task. To
measure some property of the fitness landscape, however, it is necessary (for all
but very small instances) to sample the search space. Sampling approaches can
be broadly divided into global and local methods. The former operate by taking
arbitrary solutions (e.g. uniformly at random) and measuring some properties
such as parameter correlations between these. These global methods have been
criticized, however, because when performing optimization, little time should be
spent sampling these ‘average’ points [15]. Therefore, it may be better to use
local measures that are based on biased sampling.

Vollmann and Buffa [20] introduced flow dominance as a basic means of
characterizing QAP instances. Flow dominance is a measure of the flow matrix,
A given by

1 n n 1 n n
Fd(A) = 100%, wherea = | — ZZ(% -8?  andf=; Z Za,-j.
i=1 j=1 i=1 j=1
(2)
When there is high flow dominance there is low epistasis, in general [14]. The
distance dominance dd can be defined on the distance matrix in an analogous
fashion.
Measures of the search landscape (whether global or local) often depend on
a measure of distance between solutions in the parameter space. Bachelet [1]
measures distance dist(m, ) between two QAP solutions 7 and u as the smallest
number of 2-swaps that must be performed to transform one solution into the



other (this can be computed in O(n) time); this distance measure has a range
of 0..n — 1.

From this, other measures can be easily defined. Bachelet gives the diameter
of a population of solutions P as

2wep 2pep dist(m, )

dmm(P) = P2 . (3)
The entropy [9], which is a further measure of the dispersion of solutions, is given
by
-1 G & [ng Nyj
t(P) = —— Rij Jog i 4
emt(F) nlogn;;(m ou i) @

where n;; is the number of times facility ¢ is assigned to location j in the pop-
ulation. Low values of entropy indicate highly clustered solutions; high values
that they are more randomly distributed.

These measures can be used on a random sample of points (i.e. as global
measures) but it is also possible to measure these properties on local optima, or
on, say, the fittest p% of points found during an optimization. The latter can give
a better picture of how desirable solutions are distributed in the search space.

The fitness-distance correlation [10] has also been widely used. Often a plot
is shown, giving the fitness against distance from the nearest global optimum or
best known solution.

3 The Multiobjective QAP Model

The multiobjective QAP (mQAP), with multiple flow matrices (defined below)
naturally models any facility layout problem where we are concerned with the
flow of more than one type of item or agent. For example, in a hospital layout
problem we may be concerned with simultaneously minimizing the flows of doc-
tors on their rounds, of patients, of hospital visitors, and of pharmaceuticals and
other equipment.

3.1 Problem definition

The mQAP may be formulated as follows:

‘minimize’ C(7) = {C*(x),C*(x),...,C™(n)} (5)

where o
Ck(ﬂ) = ZZaijbfrmj, kel.m (6)

i=1 j=1

and where n is the number of facilities/locations, a;; is the distance between
location 4 and location j, bfj is the kth flow from facility 4 to facility j, m; gives
the location of facility ¢ in permutation = € P(n), and finally, ‘minimize’ means
to obtain the Pareto front, or an approximation of it.



3.2 Fitness landscapes in MOCO

Although a fairly wide variety of MOCO problems have been defined and tackled
in the literature (see [8] for a survey), little work has attempted to characterize
the search landscapes of these problems. A rare and valuable foray into this
area is [2], where the property of ‘global convexity’ in bi-objective TSPs was
investigated; the distances in objective space between solutions near the PF were
found to correlate with parameter space distances. One of the implications of this
study was that applying wholly separate runs of a single-objective metaheuristic
may not be as effective as making use of information from ‘nearby’ points in the
objective or weight space. With the mQAP we expect global convexity to be
less marked but similar techniques could be used to test this hypothesis, and to
observe how global convexity varies with instance type.

The knapsack problems introduced in [22] have been used as benchmarks for
studying the performance of various metaheuristics. Generalizing over a number
of results, it now appears clear that population-based methods using only Pareto
selection have the tendency to concentrate their solutions on the centre of the
PF. This is the case, even when using advanced strategies such as the BMOA [13]
that also incorporate modern archiving methods. This ‘central tendency’ may be
due to a clustering in the parameter space of the central PF solutions, with the
extremes more isolated. Further investigations of this tendency and its relation
to MOCO problem structure is needed.

Finally, we have observed previously [12] that correlations between the weights
making up different objectives in a multiobjective MST problem can strongly
affect the PF shape, and this, in turn, has an effect on the success of weighted-
sum based approaches. The introduction of the mQAP generators (described
next) is intended to facilitate further study of the above relationships, and to
this end we have also outlined some methods [11], making use of a fast local
search for the QAP, aimed eventually at answering the following question: what
problem features affect the relative difficulty of approaching the PF vs moving
along it? This, we believe impacts strongly on the most appropriate choice of
search strategy.

4 Instance Generators for the mQAP

One approach to obtaining instances of the mQAP (or any other MOCO
problem) is simply to use and concatenate available single-objective instances.
This approach has the advantage of allowing comparison between single-objective
and multiobjective algorithm performance on the problem. The extremes of the
Pareto front—or best known single-objective solutions—would also be known,
although only the extremes. We do not criticize this approach and would en-
courage more researchers to use it (being explicit about where the instances
came from). However, some aspects of multiobjective problems cannot be easily
controlled by concatenating single-objective instances. In particular, we would
like to control the correlations between corresponding components (flows in our
case) of the different objectives of a problem instance. This is desirable because



Algorithm 1 Real-like mQAP instance generator with correlated flow elements
and overlap parameter

44:
45:
46:

47

48:
49:

Input: n € Z*, m € Z%, c[l]l..clm] € [-1,1], n € [0,1], A € Z < B € Z1,
Tmax € Z+, Rumax € Z"‘, Nmax € Z+, seed € ZT
141
while i < n do
O « U[0,2.7), R <+ U[0, Rmax), N < [U[1, Nmax + 1)]
for j «+ 1..N do
6 < U[0,2.7), r < U0, Tmax)
if i < n then
loc[i] < (Rcos © + r cos 0, Rsin @ + rsin §)
i4+1+1
end if
end for
: end while
: for i < 1..n do
for j < 1.n do
dmatriz[i][§] < Euclid(loc[i], loc[5])
end for
: end for
: print2d(dmatriz)
: for i+ 1..n do
for k < 1..m do
fmatriz[k][i][¢] < 0
end for
: end for
:fori+—1.n—1do
for j«—i+1.ndo
for k < 1..m do
if k =1 then
R1 + U[0,1)
fmatriz[k][{][j] < fmatriz[k][§][5] < [10B—A4)-F1+4
else
R2 + U[0,1)
if R2 > 79 then
if fmatriz[1][¢][j] = 0 then
R2 + U[0,1)
fmatriz[k][i][j] < fmatric[k][f][i] < |105-FD) |
else
fmatriz[k][7][J] < fmatriz[k][5][i] < O
end if

else

V < correl_val(R1, c[k]) /* see equation (7) */
fmatriz[k][i][j] « fmatriz[k][j][i] < [10P~H-V+4]
end if
end if
end for
end for
end for

: for k=1 tom do
print2d(fmatriz[k])
end for




realistic problems are likely to exhibit such inter-objective correlations, and de-
scribing how these affect the search landscape should be a key element of any
useful exposition on MOCO problem/landscape relationships.

4.1 Uniformly random instance generator

In the first of our generators, makeQAPuni.cc!, only one inter-objective corre-
lation can be controlled. The generator makes symmetric? QAP instances with
one distance and multiple flow matrices, and its basic parameters are for the
instance size n and number of objectives m. All flows and distances are integers
in 1.. fmax and 1..dpax, respectively where fiax and dpax are two further param-
eters. The desired correlation between corresponding entries in the first and all
other flow matrices, is set using the parameter ¢. Correlated random variables
are generated using:

p(r*) = Nt 1= Vo) /(L= ve).v2m),  ke2.m (7)

where p(r*) is the probability of accepting a random variable r¥ € [0,1) given
the value of a uniform random variable, 71 € [0,1), and N (X,0?) is a normal
distribution with mean Z and variance o2. The actual flows are made from the
random variables using:

=1+ rFb], kel.m (8)

The generator makes the flow entries in all flow matrices, one at a time using
the above procedure. Pseudocode for the generator is not given here but follows
a similar structure as that for the real-like generator described next.

4.2 Real-like instance generator

The real-like instance generator, makeQAPrl.cc!, makes instances where the
distance and flow matrices have structured entries. The generator follows proce-
dures for making the non-uniformly random QAP problems given the appellation
TaiXXb in the literature, outlined in [19]. Pseudocode for the generator is pre-
sented in Algorithm 1.

The distance matrix entries generated are the Euclidean distances between
points in the plane. The points are randomly distributed in small circular regions,
with these regions distributed in a larger circle. The size and number of the small
and larger circles can be controlled by the parameters rmax € Z1, Rpax € ZT,
and Npy.x € Z1.

The flow entries are non-uniform random values, controlled by two parame-
ters, A € Z and B € ZT, with A < B. Let X be a random variable uniformly
distributed in [0,1). Then a flow entry is given by

|_10((B—A)*X+A)J_ (9)

! Available from http://iridia.ulb.ac.be/~ jknowles/mQAP/ . C code for reading
instances is also provided

2 Without loss of generality, since an asymmetric matrix can always be transformed
into a symmetric one [14]



With negative values of A the flow matrix is sparse, i.e. it contains a number
of off-diagonal zero entries. The non-zero entries have non-uniformly distributed
values. Different values of A and B cannot be set for each different flow matrix
but this is an easy extension that might later be added.

The entries in the kth flow matrix (2 < k < m) are generated using (9) but
the random variable X is correlated with the value of X that was used in the
corresponding entry in the first flow matrix. Here, correlations (in [—1,1]) can
be set between the first and each of the additional flow matrices using m — 1
further parameters to the generator.

A degree of ‘overlap’ between the matrices can also be specified using a
parameter 7 € [0,1]. It controls the fraction of entries in the jth flow matrix
that are correlated with the corresponding entries in the 1st flow matrix. With
the overlap parameter n = 0, a random un-correlated value, calculated using

[10(B*X) |, (10)

will be placed in each entry of the jth flow matrix that corresponds to a zero
entry in the first flow matrix. Using this, (and not (9)) ensures that the flow is
non-zero. Conversely, a zero will be placed in each entry of the jth flow matrix
that corresponds to a non-zero value in the first flow matrix. Thus there is no
overlap between the flows of the first and jth matrix when n = 0. With thenp =1
all the flows overlap and are correlated. With the overlap set to intermediate
values some of the flows will overlap and others will not.

5 Test Suites

Table 1 describes three 10 facility, 2 flow matrix instances, produced by the uni-
form instance generator. All off-diagonal distances and flows in the matrices are
from the set 1..100. The instances differ in the correlations between correspond-
ing elements in the first and second flow matrix. All instances have very similar
flow and distance dominance values so the epistasis present (when considering
just one flow matrix at a time) should be about the same. However, the differ-
ent correlations in the instances may affect difficulty for two reasons. First, the
shape of the Pareto front may be changed. For example, in [12] it was found that
positive correlations between weights in mc-MST problems led to more convex
and smaller Pareto fronts, whereas negative correlations led to large, flat Pareto
fronts. The latter were more difficult for weighted sum-based approaches in the
sense that many weight vectors (in a naive approach where these are uniformly
randomly generated) tend to push the search to either extreme of the PF, mak-
ing it difficult to find the intermediate optima. The mQAP instances here should
allow these correlation effects to be isolated and studied further. The difficulty
of moving toward the Pareto front may also be affected by the correlation. One
might guess that if the correlation between objectives is strongly positive then
the problem reduces to the single objective one. Whereas if there is little, or
even negative correlation, then there should exist more optima and they are
more likely to be spread out in the space. Therefore the search to find at least
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Parameter/Property Values by Instance
Param /Property KC10-2fl-1uni KC10-2f1-2uni KC10-2f1-3uni
max(d) 100 100 100
max(f) 100 100 100
corr(f', %) 0.0 0.8 -0.8
Spearman r 0.18 0.92 -0.75
fd', fd* 76.7, 69.9 66.1, 63.2 64.8, 69.8
dd 57.9 622.3 69.8
#PO 27 4 135
#supported 7 3 14
diam(PO) 7 6 8
ent(PO) 0.71 0.39 0.78
seed 68203720 289073914 73892083

Table 1. Test suite of three 10 node, 2 flow matrix, uniformly random instances with
different flow correlations and other parameters. The first figure in an instance name
is the number of nodes, the second is the number of flow matrices and the third is just
an index. The global parameters/properties are: max(d), the maximum distance in the
distance matrix; max(f), the maximum flow in any of the flow matrices; corr(f?, f7),
the correlation parameter affecting corresponding flow matrix entries of the ith and j
flow; Spearman r, the measured sample rank correlation between (off-diagonal) corre-
sponding entries in the first and jth flow matrix; fd’, the flow dominance of the jth
flow matrix; dd, the distance dominance; #PO, the number of Pareto optima; #sup-
ported the number of supported Pareto optima; diam(PO), the diameter of the Pareto
optimal set; ent(PO), the entropy of the Pareto optimal set. The random seed to the
generator is also given for reference

one (but not a specific one) may be easier. The correlation parameter used to
set the desired correlation may be compared with the value, given in the table,
of the Spearman rank correlation measure [16] of the actual flow entries.

Some of the correlation effects can also be appreciated by observation of the
values of the other measures given. The number of Pareto optima (found by
exhaustive search) is smaller when the correlation is large and larger when it is
negative. Similarly, the diameter and entropy of the Pareto optima vary with
inter-objective correlation. From the values we see that the optima are in fewer,
larger clusters (in parameter space) when the correlation is positive and more
spread out, and less clustered when the correlation is negative. The number of
supported solutions (those lying on the convex hull of the Pareto front) is small
in these instances, indicating that it may be difficult for a weighted sum approach
to find all the Pareto optima. However, this is an artifact of the problems being
very small; with larger instances the number of unsupported Pareto optima
would generally be smaller as the PF assumes a smoother shape due to the
‘central-limit’ effect from summing larger numbers of flow/distance products.

Five small, two objective instances of the real-like problems are presented in
Table 2. Similar observations apply to these problems. The Spearman r values
correlate well with the correlation parameter setting for the first three instances.
However, when the overlap parameter is set to 0.6, in instances 4 and 5, the r
values drop significantly, as one would expect. Looking at the number of Pareto
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Parameter /Property Values by Instance
Param/Prop | KC10-2l-1r1 KC10-2-2r1 KC10-2f-3r] KC10-2fl-4r] KC10-2l-5r]
max(d) 155 111 145 136 138
max(f) 9445 9405 9732 9419 95476
A -2 -2 -2 -2 -5
B 4 4 4 -4 5
corr(f*, %) 0.0 0.7 -0.7 0.7 0.7
overlap 7 1.0 1.0 1.0 0.6 0.6
fd*, fd* 243.0, 194.1 230.8, 242.8 248.9, 219.6 304.7, 272.1 405.3, 561.99
dd 69.5 60.7 65.6 58.6 58.6
Spearman r 0.15 0.83 -0.77 0.39 -0.10
#PO 38 17 58 33 48
F#supported 13 3 25 12 14
diam(PO) 8 7 8 8 8
ent(PO) 0.68 0.49 0.62 0.58 0.63
seed 35243298 18178290 7810398 48972324 2129704715

Parameter/Property Values Common to All Instances

Nmax = 1, Tmax = 100, Rmax =0
Table 2. Test suite of five 10 node, 2 flow matrix, real-like instances with different
flow correlations and other parameters. A and B control the distribution of flow val-
ues, in particular the fraction of off-diagonal zero entries, thus they influence the flow
dominance and epistasis. The overlap parameter 7 indicates the fraction of entries in
the first flow matrix that are correlated with the corresponding entries in the other
flow matrices. The distance matrices of all these instances are the Euclidean distances
between random points in a single circle of radius 100. Other parameters are as in
Table 1

optima, and their entropy and diameter values, we see that the r value explains
these quite well. For the fifth instance, which has the largest flow dominance
(lowest epistasis), the number, distance and entropy of Pareto optima is some-
what surprising. We might expect these values to be lower, but because the r
value is negative they lie between those of the first and third instances, un-
derlining the importance of the inter-objective correlation in determining the
distribution of Pareto optima. Of course, many further observations are needed
to verify this effect.

In Figure 1 we compare the shape of the Pareto front in instances 4 and 5,
which differ in parameters only in the value of A and B. It is seen that instance
5 (despite having a negative r correlation) has a much more convex-shaped PF.

In Table 3 we present the first of our two publicly available test suites, pro-
duced using the uniform instance generator. The first three instances are of size
n = 20 and have two objectives. The second three instances are of size n = 30
and have three objectives. For these instances it is not practical to perform ex-
haustive search, so we are unable to give measures of the Pareto front. However,
we are able to repeatedly (100000 times) apply a deterministic local search to
these instances, and can measure the number of internally nondominated op-
tima found, as well as their entropy and diameter. For more information on our
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Parameter/Property Values by Instance
Param/Property KC20-2fl-1uni KC20-2f1-2uni KC20-211-3uni
max(d) 100 100 100
max(f) 100 100 100
corr(f', %) 0.0 0.7 -0.7
Spearman r -0.14 0.79 -0.82
fd', fd* 58.5, 64.6 58.6, 56.9 60.3, 61.8
dd 60.7 61.9 62.2
# nondom 80 19 178
diam(nd) 15 14 16
ent(nd) 0.828 0.43 0.90
seed 89749235 20983533 48927232
Param/Property KC30-3fl-1uni KC30-3f1-2uni KC30-31-3uni
max(d) 100 100 100
max(f) 100 100 100
corr(f1, f¥>1) 0.0 0.4 -0.4
Spearman r -0.02, -0.02 0.43, 0.50 -0.43, -0.42
fd*, fd*?, fd’° 59.4, 61.3, 64.8  60.3, 57.2, 58.3  61.0, 59.2, 61.8
dd 59.9 58.7 60.1
# nondom 705 168 1257
diam(nd) 24 22 24
ent(nd) 0.97 0.92 0.96
seed 549852743 394908123 121928193

Table 3. Test suite of three 20 node, 2 flow matrix, and three 30 node, 3 flow matrix,
uniformly random instances with different flow correlations and other parameters. Pa-
rameters and properties are as for previous tables, except that nondom replaces PO
here, and refers to an internally nondominated set from a total of 100 000 local optima

procedure for doing this see [11]. We can observe that on these instances, where
the fd and dd levels are fairly constant, the number of nondominated optima
and their diameter and entropy follow closely the value of r.

Table 4 presents the second of our test suites and gives identical measures
for the local search samples. Figure 2 summarises the effects of inter-objective
correlations on the number of PO /nondominated solutions found, over otherwise
homogeneous sets of instances.

6 Conclusion

We have presented instance generators and test suites for the mQAP, with the
aim of providing new benchmarks for EMOO algorithms and to facilitate stud-
ies of the relationships between problem characteristics, search landscapes, and
algorithm performance in MOCO. In the previous section we have observed
some simple relationships between two problem characteristics, namely flow-
dominance and inter-objective correlations, and the resulting search landscapes.
In [11], we also defined some methods for measuring properties of local landscape
features. Of particular interest to us, is obtaining some measure of the relative
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Parameter/Property Values by Instance

Param/Prop | KC20-2l-1r] KC20-211-2rl KC20-211-3rl KC20-211-4rl
max(d) 196 173 185 164
max(f) 9954 9644 9326 96626
A -2 -2 -2 -5
B 4 4 4 5
corr(f!, f2) 0.0 0.4 -0.4 0.4
Spearman r 0.08 0.43 -0.49 0.32
overlap 7 1.0 1.0 1.0 1.0
fd*, fa® 206.8, 230.1 243.8, 367.0 246.2, 350.0 305.9, 477.5
dd 54.9 57.9 56.3 56.5
# nondom 541 842 1587 1217
diam(nd) 15 14 15 15
ent(nd) 0.63 0.6 0.66 0.51
seed 1213563 45767 8347234 1121932
Param /Prop | K(C20-2f-5rl KC30-3fl-1rl K(C30-3-2rl KC30-311-3r1
max(d) 185 172 180 172
max(f) 98776 9929 9968 9852
A -5 -2 -2 -2
B 5 4 4 4
corr(f', %) 0.4 0.4 0.7 -0.4
corr(f, %) - 0.0 -0.5 -0.4
Sp.r(ft, ) -0.25 0.10 0.46 -0.75
Sp.r(f, f3) - -0.29 -0.67 -0.70
overlap 7 0.5 0.7 0.7 0.2
fd', fd®, fd° |351.5, 391.1,~ 235.3, 320.7, 267.5 233.7, 337.5, 341.8 251.7, 359.5, 328.3
dd 57.3 56.1 58.6 56.8
# nondom 966 1329 1924 1906
diam(nd) 15 24 24 24
ent(nd) 0.56 0.83 0.86 0.86
seed 3894673 20983533 34096837 9346873

Parameter /Property Values Common to All Instances

Nmax = 1, Tmax = 100; Rmax =0

Table 4. Test suite of five 20 node, 2 flow matrix, and three 30 node, 3 flow matrix,
real-like instances with different flow correlations and other parameters. Parameters

and properties as in previous tables

difficulty of moving towards the Pareto front versus moving along it. This, we
think, should bear strongly on the overall search strategy that is most effective
on a given problem. Our future work will focus on this issue.
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PF of KC10-2-4rl (lower fd)
PF of KC10-2-5r1 (higher fd) . B
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Fig. 1. The effect of different low dominance (fd) on the Pareto front shape. Notice
the logarithmic scale; with high flow dominance the PF is strongly convex
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Fig. 2. The effect of inter-objective correlations on the number of nondominated solu-
tions
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