

Bounded Archiving using the Lebesgue Measure


Joshua D. Knowles1


Dept of Chemistry, UMIST
PO Box 88, Sackville St
Manchester M60 1QD, UK
jknowles@ulb.ac.uk


David W. Corne2


Dept of Computer Science
University of Exeter
Exeter EX4 4QF, UK


d.w.corne@exeter.ac.uk


Mark Fleischer3


Johns Hopkins University
Applied Physics Laboratory
Laurel, MD 20723-6099, US


mark.fleischer@jhuapl.edu


Abstract- Many modern multiobjective evolutionary al-


gorithms (MOEAs) store the points discovered during
optimization in an external archive, separate from the


main population, as a source of innovation and/or for


presentation at the end of a run. Maintaining a bound
on the size of the archive may be desirable or necessary


for several reasons, but choosing which points to dis-


card and which to keep in the archive, as they are dis-
covered, is not trivial. In this paper we briefly review


the state-of-the-art in bounded archiving, and present


a new method based on locally maximizing the hyper-
volume dominated by the archive. The new archiver is


shown to outperform existing methods, on several prob-


lem instances, with respect to the quality of the archive
obtained when judged using three distinct quality mea-


sures.


1 Introduction


Many modern MOEAs, and some other multiobjective op-
timizers, make use of an external population or archive to
store the points discovered during search. Viewing the set
of points discovered as a sequence, ordered by the time of
discovery, it is the job of an archiver to take this input se-
quence, chunk by chunk, and update the archive. In many
applications, storing only nondominated points from the in-
put sequence is sufficient to ‘represent’ the outcome of the
search. Fieldsend et al. [2] have recently advocated stor-
ing all of the nondominated points, arguing that this im-
proves convergence of an MOEA, and they have provided
new data structures to enable fast update of such an arch-
ive. However, in general, storing only a subset of the non-
dominated points, say bounded by


�
, is often necessary or


desirable because [10]: true nondominated sets may be in-
finitely large; the computational and memory overhead of
maintaining the archive are reduced; and, harmful genetic
drift (caused by over-representation of some regions of the
search space) may be diminished (where the archive is used
by the MOEA as a source of new points). This problem
of bounded archiving, however, turns out to be non-trivial
from both a theoretical and practical viewpoint. The prob-
lem can best be framed by the following important question:
Assuming we want to bound archive size, so that during the


search it never exceeds
�
, how can this be achieved to the


greatest advantage?


To tackle this question we first make the following sim-
plifying restriction. We assume that the points arising from
search arrive one by one, as a sequence. The archiver must
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take the ‘oldest’ remaining point from this input sequence,
compare it with the current archive and decide how to up-
date the archive. So, at most


�����
points may be ‘seen’


by the archiver at once, and at most
�
can be stored. Any


point that is no longer in the input sequence or the arch-
ive cannot be recovered/remembered or used in any way, in
future iterations. In generational MOEAs (which generate���	��
����� individuals at once) our assumption that the points
arrive one by one is not generally true (and better archiving
performancemay be possible when


��� ������
�����
points can


be ‘seen’ at once) but we leave analysis of this case until a
later time.
Returning to the question above, notice that “the great-


est advantage” refers only to the collective properties of
the points stored in the archive. Various properties of this
archive are desirable, including: the membership of all ex-
tremal points from the input sequence; as large a cardinality
as possible � �


; the close approximation of the whole in-
put sequence; the membership of only Pareto optimal points
(w.r.t. the whole input sequence); and, various types of con-
vergence properties. Knowles and Corne have recently anal-
ysed these properties in greater detail in [5], where some
theoretical limitations are also derived.
These various goals have led to a number of approaches


to bounded archiving. For a more detailed introduction to
this see [10] and [5]. Most archivers4 work in the same
way when the archive’s cardinality is below the bound: they
accept each new point that is not dominated by the arch-
ive, discarding all those in the archive (if any) that become
dominated by the new introduction. Once the archive is full,
however, different strategies can be followed, leading to a
number of distinct archivers. Rudolph and Agapie’s arch-
iver [11] only accepts new points that dominate one or more
archive members. This leads to a certain type of provable
convergence but inhibits the attainment of an extensive non-
dominated front and the improvement, over time, of the dis-
tribution of points. Other strategies are less restrictive and
are able to accept nondominated points and discard a (non-
dominated) member of the archive to make way for it. The
choice of point to discard is often based on estimating the
density of points in objective space, and removing one that
is crowded by nearby points. Knowles and Corne’s adap-
tive grid archiving (AGA) algorithm [6] works in this way,
using a histogram technique to estimate local density, while
the ever-popular SPEA [13] makes use of clustering to trun-
cate its external population.
Laumanns et al. [8] (see also [9]) proposed a quite dif-


ferent and more theoretically well-founded approach based
on � -approximate sets. In this, a point is accepted into the
archive if and only if there is, already in the archive, no point
that closely approximates it. The level of approximation is
chosen at the outset, using up to ��� -parameters that define
4Though not the � -based approaches introduced in [8]







the distance thresholds in each of the � objectives. This ap-
proach has provable convergence and approximation prop-
erties and is computationally cheap to run. It also bounds
archive size but only as a function of the � -parameter(s), and
the (possibly unknown) ranges of the Pareto front (PF). If
one wants to archive � points, no more and little fewer, then
selecting � appropriately can be problematic. A strategy for
setting and adapting � on-the-fly, in order to remove the ne-
cessity of selecting, a priori, appropriate � -values, was also
proposed in [8]. However, in this approach, � cannot be
reduced over time (because otherwise convergence and ap-
proximation properties are lost) — a restriction that means
that far fewer points than desired may be archived in many
cases. The � -approximation set approach was also extended
to an � -Pareto approach in [8], in which only Pareto optimal
points of the input sequence are archived, but this suffers
from similar drawbacks. Overall, the approaches of Lau-
manns et al. are excellent when a decision maker (DM) re-
ally desires a given level of approximation (caring not about
the number of points), but seem not to work so well when
� points are required [5].
In this paper we present a new archiver for bounded arch-


ives, similar to one previously sketched in [7]. It is based on
computing the hypervolume (or Lebesgue measure) of the
region dominated by a set of (nondominated) points, given
some bounding point. This measure was proposed by Zit-
zler in [12] (where it was called the � metric) for assessing
the outcome of search. It has become a popular measure
and was recently placed on a secure footing [14] by the ob-
servation that it is currently the only unary quality measure
that is complete with respect to weak out-performance [4],
while also indicating with certainty that one set is not worse
than another (compatible with the �� relation [14]).
The new archiver works by performing steepest-ascent


hillclimbing in the space of hypervolumes of the regions
dominated by the evolving archive. This approach has been
made practically realizable by a recent innovation due to
Fleischer [3]: an algorithm for calculating the Lebesgue
measure in polynomial time for general input length and
number of objectives. Fortunately, not only does Fleischer’s
algorithm compute the hypervolume of an entire approxi-
mation set, it is also trivially adapted to compute efficiently
the change in hypervolume when a single point is added or
removed from a nondominated set, making it ideal for use
in archivers.
In the remainder of this paper, we first review Fleischer’s


algorithm and present the new archiver, LAHC, derived from
this. A series of experiments follow. The first set, using se-
quences of unique, nondominated points, is designed to es-
tablish if LAHC operates ideally: actually maximizing the
bounded archive’s hypervolume. In the second set of exper-
iments, LAHC is run on more general sequences (includ-
ing repeated and dominated points) like those arising from
search, and its performance is compared with three other
archivers. Finally, we summarise our findings and discuss
LAHC’s computational overhead.


2 Review of Fleischer’s Algorithm


Fleischer’s algorithm [3] for computing the Lebesgue mea-
sure of the region dominated by a set of nondominatedpoints
is based on the following observations. From any set of non-
dominated points (in any number of dimensions), one can
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Figure 1: On the left, 4 points (with integer components)
in a 3D space, dominating a region defined by a bounding
point at (0,0,0). On the right, the point ���
	���������� has
been removed, spawning points � , � , and � . The region
that has been ‘lopped off’ in this process is a rectangular
polytope and its volume can be easily calculated. Repeat-
edly lopping off rectangular polytope regions is the basis of
Fleischer’s algorithm


easily identify and ‘lop off’ a dominated region that does
not intersect with any other dominated region. Moreover,
these dominated regions are rectangular polytopes so that
their hypervolumes are trivial to compute. Therefore, by
repeatedly lopping off such regions until none is left, and
summing up over their hypervolumes, one can arrive at the
hypervolume dominated by a set.
As an example, consider the four points:


	�����������	�����������	 �!"�#��$��	%����!"�&�'
which are illustrated in Figure 1, left. The four points repre-
sent objective vectors, in a maximization problem, dominat-
ing a region that is bounded from below by a lower bound-
ing point, ()�*�+	�,#",#�,!� . To compute the volume contribu-
tion of the point �-�.	��#������� , one can remove it, replacing
it with the three ‘spawned’ points shown in Figure 1, right.
These are the three points:


�/�0	1�!�������2�3�0	����������2�4�5	��������$�'
obtained by taking the point � and replacing each of its com-
ponents 6 �
��787 � by a new value 9�: . The value 9;: is the
nearest value lower (respectively higher in a minimization
problem) than � ’s 6 th component, in a list of the 6 th compo-
nents of all the points, including the lower bounding point.
The volume ‘lopped off’ by this removal and replacement
is given by the volume of the rectangular polytope:


	�<�=?>A@�=���	�<!BC>AD'B$��	�<&EF>AG&E$�H�I��7 ,#7
Now the same process is repeated for each of the spawned
points. Taking point � first, we remove it and replace it with
the spawned points:


J �5	�,#�������2KL�0	 �!�������2M-�I	 �!���$�$�'7
But each of these points is either dominated or it contains a
component that is equal to the corresponding component of
the bounding point, (�� . Thus these three points each con-
tribute nothing to the hypervolume of � and can be ignored
from further consideration.







Algorithm 1 ���������
	������������������� ��� 	�������! �"���
#$� // � 	�� is now
�%�&�('*)


while � 	+�-,/.�021 do354687:9(;<4 � � )= � ��>?� �@	A�
for B8� )?C%C D


doEGF �IHKJML
N >O�QP<RQSUT?V�� JO� B � = �
	A�384W6X7:9(;<4 � � 384W6X7$9Y;<4 �8Z ��[ F:\^]
F �_ �I` �<Tba�P�S J2c
L >?d � = �eB
� E?F �
if 	gfh _jilk F fm . ] F then�Q�<�W � _ �M#$�
end if
end for����� 354W6�7$9(;�4 �
end whilenGoOp2q5nsr � �
// where HtJ&LWN >O��P<R-SUT?V%� JO��B� = �	t� returns the


nearest value to the B th component of = from a
list containing the B th components of the lower
bounding point and of all the vectors in 	
// and ` ��Tba�PQS J2cML >?d � = �WB� EGF � returns the vector y


with its B th component replaced by E?F .


From these three points we can calculate the contribution
of � to u ’s contribution, as follows:


� ]&vj\ 0 v �M� ]&w�\yxGw �&� ]
z�\|{?z � m )?C � C
The same process is repeated for } and ~ , and it can be seen
that the total contribution of u to the dominated region is
4.0, in this example.
Generalizing from the above example, Fleischer is able


to give us an efficient and simple procedure for computing
the hypervolume of any set of nondominated points; and
the algorithm works equally well for maximization or min-
imization problems.
In Fleischer’s algorithm, points are initially pushed onto


a (LIFO) stack. When the first point is popped off the stack,
it spawns


D
other points (where


D
is the number of objec-


tives). Each of these (in no particular order) is then pushed
onto the stack if and only if it is not dominated by any point
in the stack, and it does not have a component equal to the
bounding point’s corresponding component. Otherwise it is
discarded. The algorithm continues by again popping the
next point off the stack. Upon each pop, the volume of
the rectangular polytope that is lopped off is computed and
added to a running total hypervolume.
Fleischer has shown that the total number of points in


the stack can never be greater than ����� ��'�D \ )
, where����� � is the stack’s initial depth — since for any spawned


point, all of its spawns except one are necessarily dominated
by the remaining contents of the stack [3]. Therefore, de-
spite the fact that spawned points can spawn points, and so
on, the total number of points in the stack remains tightly
bounded, leading to a worst-case complexity for the algo-
rithm of � � ����� � z D w � .
If Fleischer’s algorithm is run until there are no points


left in the stack, then the hypervolume of the entire set of
points is computed. But for the purposes of archiving we


Algorithm 2 LAHC( � �e� )BX�I�� ���
while B�� � � � do
if � F f� � then
if � F h � then� ���(�l� ����� � F!� �
else if � F8� � then� � ����� � F �
if � � ��,�� then� � ����� TGdW�?���%P�2�?� � ���U����� � �¢¡ �
end if
end if


end if


i++
end while


return
�


// where ���£� � � returns the nondominated points
from


�
// and � F is the B th point from the sequence � .


would like to compute just the hypervolume contribution
of a single point to the set. Fleischer’s algorithm is ideally
suited for this job too, as our earlier example illustrated.
Given a set of nondominated points already in the stack,
and a new nondominated point, whose hypervolume con-
tribution we would like to know (were it added to the set),
we need merely to push on the new point and run Fleis-
cher’s algorithm, terminating it when the depth of the stack
is what it initially was (since this means the new point and
all its spawns, spawns of spawns etc., have been removed),
and all other points remain. This algorithm, ���X�"���
	������� ,
is shown in Algorithm 1. It computes the contribution of a
point � to a set 	 , where 	 contains only unique and mutu-
ally nondominated points, and the point � is also unique and
nondominated in 	 . For simplicity, we imagine 	 is a stack
already, and can accommodate the new point. We also as-
sume a maximization problem and the point ��� is the lower
bounding point of the dominated region. (All points must
have positive measure w.r.t. this bounding point). For more
precise and extensive details of the procedures described
above, the reader is referred to [3].


3 Lebesgue Archiving Hillclimber LAHC


In the last section, we reviewed Fleischer’s algorithm
and showed that it can be used to efficiently calculate the
hypervolume contribution of a single point to a set of points.
This means that, given � 'Y) points in a set, we can compute
the set of � points that maximizes the hypervolume. (To do
this we must merely compute the contribution of each of the� '¤)


points to the hypervolume and retain all but the one
contributing the least). A straightforward approach to this
takes � �"� z D w � time.
So, given a sequence of points � to be archived, and an


archive
�
of capacity � , i.e. � � �A¥¦� , the principle be-


hind the Lebesgue archiving hillclimber (LAHC) is to re-
move the point in


�
that contributes least to the hypervol-


ume, whenever the archive is full and there is a new point
available to be added. More precisely, the next point in the







sequence is archived in � (provided it is unique) if it: (i)
dominates one or more points in � (in which case the dom-
inated points in � are removed); or, (ii) it is nondominated
in � and � ������� ; or, (iii) it is nondominated in � and
� �����	� and it is not the minimum contributing point to
the hypervolume (in which case the minimum contributing
point is removed). LAHC is defined in Algorithm 2.


4 Does LAHC Maximize Hypervolume?


How good is the LAHC algorithm presented above? Ideally,
we might hope that LAHC, given any input sequence 
 ,
always obtains an archive of cardinality ������ ��������� � 
�� � �
that maximizes the hypervolume of the region dominated,
over all such subsets of the sequence. However, on general
input sequences (i.e. those including dominated points), we
cannot expect this to happen since it has been proved in [5]
that no archiver can maintain ������ ��������� � 
�� � � points on
general input sequences.
However, if we restrict our attention only to sequences of


unique, mutually nondominating points then it is reasonable
to wonder whether LAHC always obtains the set of points
of cardinality � that maximizes the hypervolume over all
such sets drawn from the input sequence. Supposing it did,
one consequence (useful for testing the hypothesis) would
be that if presented with any permutation of the same input
sequence, this would result in the same hypervolume of the
objective space being dominated.
To test the hypothesis that LAHC is ideal in this sense,


we use sequences of points generated uniformly randomly
(using polar co-ordinates) on the surface of a hypersphere of
radius 1. Experiments are carried out on different sizes of
sequence, number of objectives, and different archive sizes:
archive size is set to 10%, 50%, and 90% of the input se-
quence length, for each of three different sequence sizes of
two and three objectives. For each triple ( � 
 � , � , � ), we
do 30 independent runs of LAHC, each time first permuting
the input sequence randomly.
In Figures 2 and 3, boxplots indicating the hypervolume


attained over these 30 runs are shown for each instance.
From these it is clear that LAHC is not ideal in the sense
defined above: there is some fluctuation in the hypervol-
ume dominated by the archive when the input sequence is
permuted. This result shows that there are local optima in
the space of hypervolumes, when a ‘single-swap neighbour-
hood’ is used to move between point sets (archives).
Nonetheless, the fluctuation in LAHC’s performance seems


very small. To estimate more accurately how far from ideal
the LAHC is, we also compared its performance with three
other methods of selecting a subset of size � from the input
sequence, described next.


Agglomerative clustering (AGG)


The first method is agglomerative clustering based on the
average link — the method used in SPEA to reduce the
size of its external population. In our experiments, cluster-
ing was applied to the entire input sequence, not iteratively.
Thus, unlike LAHC, it was not constrained to maintain only
� points at any time. Instead, it was given the opportunity
of selecting the best � points, using all available informa-
tion. The clustering method is deterministic, independent


of sequence order, so only one run was carried out on each
instance.


Random subsets (RAN)


The second method used to provide a lower bound on per-
formance was to select randomly a subset of � points, �
times, calculate the hypervolume of each subset, and return
the best. The method is clearly stochastic, so 30 runs were
carried out. � ����� �!� was used in the experiments.


Simulated annealing (SA)


Finally, to provide an upper bound on what is possible with
a point-by-point archiver (i.e. one that only maintains �
points and can consider only one new point at a time, never
revisiting previous points), we used simulated annealing to
improve the set of points found by LAHC. First, LAHC is
run on the input sequence. Then, starting from this archive,
each iteration of the SA proceeds as follows. A point from
the input sequence, and not in the archive, "$#!%'& , and a point
in the archive " ( # are selected uniformly at random. The
new point " #!%)& is added to the archive and the contributions
of both " #!%*& and " ( # are calculated. If +-, � " ( #.�/�-�/0�1 �2
+ , � "!#!%*&3�4�5�60�1 � then " ( # is discarded and the new point
is accepted. On the other hand, when + ,7� "!( # � � �4081 �:9
+ ,;� "!#!%*&3�4�5�60�1 � , the Metropolis criterion is used to deter-
mine the probability of accepting this ‘move’. If the move
is rejected, the new point is discarded from the archive.
A geometric cooling schedule was used with the tem-


perature < being reduced every iteration. The SA was run
for 50,000 iterations with the initial temperature calculated
to give a probability of 0.5 to accept a move that decreases
the hypervolume by 0.01%. At the final temperature, moves
that decrease the hypervolume by 0.001% are accepted with
probability 0.5. SA was run ten times, permuting the in-
put sequence each time (so that the starting solution coming
from the LAHC may be different).


Results of the comparison


Looking at all of the boxplots in Figures 2 and 3, it is clear
that LAHC performs strongly. When the archive size � is
large compared to the input sequence length (3rd column),
it performs nearly as well as simulated annealing, in some
cases as well. When the archive size is relatively smaller,
there is some fluctuation in the hypervolume achieved but its
performance is still much closer to the SA than to the much
weaker clustering algorithm. As input sequence length in-
creases (lower rows), for a given fixed percentage of points
archived, there is no clear change in the relative perfor-
mance of LAHC. Similarly, LAHC, performs equally well
in the 2 and 3 objective cases.


Other results not shown


The results presented in the boxplots above have been sup-
plemented by some limited testing on 4-objective instances
of hypersphere sequences, and by testing on sequences of
unique, nondominated points not on the surface of a hyper-
sphere. These results are not shown here but in all cases the
results are similar to those given above. These results can
be obtained by email to the first author.
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Figure 2: Boxplots showing the hypervolume of the dominated region obtained by each method on instances of �����
objectives with different input sequence lengths � ��� and archive capacities � . The names of instances are of the form
� ��� – � d– � . The central line in a boxplot is the median, the box height is the IQR and the whiskers extend to observed
values up to 1.5 times the IQR. Outliers are shown as circles


5 Comparisons on General Point Sequences


In the last section we observed that on sequences of unique
and mutually nondominated points, LAHC is able to main-
tain an archive of size � that is close to the ideal, in terms
of maximizing the hypervolume of the dominated region.
Sequences of points arising from an optimization process,
such as anMOEA, however, generally contain repeated points
and points that dominate each other. On these more general
sequences, how does LAHC perform?
In this section, we consider a number of different se-


quences, each difficult for an archiver for different reasons,
and compare the performance of LAHC with other state-of-
the-art archivers. To compare the performance we use three
different measures of approximation set quality.
In the following we describe each archiver and each per-


formance measure used. Then each input sequence is de-
scribed, with all results presented in Table 1. For all ex-
periments the archive’s capacity was set to � �	��
 . A
bounding point is needed for both the � -based archivers and
for all three of the measures used. To choose this, we use
our knowledge of the true PF to set the bounding point such
that all points in the true PF have positive measure.


Archiver: Adaptive grid archiving algorithm (AGA)


AGA has been described in detail in [6]. It uses a histogram
approach to density estimation— the objective space cover-


ing the points ‘seen’ by the archiver is divided up into grid
regions of equal size. Points in crowded regions are sus-
ceptible to being removed from the archive to allow entry
of new nondominated points. AGA is nondeterministic, so
10 runs were used for each sequence and all results reported
are the mean measure over the ten runs.


Archiver: � -Pareto set archiver
The archiver based on the � -Pareto set is described in [8]. In
order for the archiver to operate, one or more � -parameters
must be first given. Here we use the multiplicative version
of � -approximation and give one value only, which is used
in each objective dimension. We run the archiver five times,
trying to find the best value of � such that the archive size
never exceeds � but is as close as possible to � . Results
are given for the best run only.


Archiver: Adaptive � -approximate Pareto set archiver
The archiver based on the � -approximate Pareto set is de-
scribed in [8]. We use here the adaptive version that does
not require us to set � beforehand. Instead, � is calculated
‘on the fly’ by using the current ranges of the points in the
archive. This adaptation policy can never reduce � , however,
which leads to problems when the PF is small compared to
the whole objective space. The algorithm is deterministic
so only one run is necessary.
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Figure 3: Boxplots showing the hypervolume of the dominated region obtained by each method on instances of �����
objectives with different input sequence lengths � ��� and archive capacities � . The names of instances are of the form
� ��� – � d– �


Measure: absolute Lebesgue measure ( 	�
��� )
This is commonly known as the 	 metric of Zitzler [12].
This measure is exactly what LAHC is trying to maximize.


Measure: binary � -indicator ( ��
�������� )
This measure (described in [14]) takes two approximation
sets and compares them. The measure indicates the factor
by which one set’s points must be multiplied such that all of
them ‘cover’ the points in the other set. Both ��
������� and
��
�������� are considered. In the case where ��
������������ and
��
��������! �� then approximation set � is strictly better than
� .
Measure: unary � -indicator ( �#"$
��� )
This measure (described in [14]) is equivalent to ��
���&%(')� .
That is, it measures the factor by which the points in an ap-
proximation set � must be multiplied in order for the whole
PF to be covered.


Sequence I: small PF


The first sequence has a small PF compared with the extent
of the whole objective space. This can cause problems par-
ticularly to the adaptive � -approximate archiver. Consider


the two-objective maximization problem described by:


* "+�,
-�/.102�435076&8:9;
<>=;?A@A�*$B �,
-�/.102�43507C#D 6 
E<F=;?2@>�G� where
0H�JILK IL�(35ILK MAMAN "&OP"-Q


and where N and < are two decision variables in the interval
[0,1). Here, the radius, 0 , or the PF is very small compared
to the biggest and smallest values in the objective space. We
used 40 bits each to encode N and < and made a sequence of
points by running the search algorithm PESA-II [1] on this
function for � IR��IAI>I evaluations. The sequence has 1824
Pareto optima of which 790 are unique.


Sequence II: three-objective problem with small PF


The second sequence is similar to the first but in three di-
mensions. This can cause problems to AGA because it can
get into a cyclic behaviour where the same points are admit-
ted and discarded from the archive repeatedly. Consider the
3-objective optimization problem:


* "S�,
 � .102� 3 0TC#D 6 
E<F=)?2@A�UC#D 6 
EV/=;?A@A�* B �,
-�/.102�43W0TC D 6X
E<F=)?2@A�U6&8Y94
EVZ=;?2@A�*$[ �,
-�/.102�43W0 6&8Y9 
E<F=;?2@>�G� where
0\�JIRK IR�]3�IUK MAM2N "�OP"^Q


and where N , < and V are decision variables in the interval
[0,1). We used 30 bits to encode each variable ( N , < , and







Measure Archives produced by���
LAHC AGA � -Pareto � -approximate�����


1824 19 20 20 1�
	 � �
0.000078426 0.000076403 0.000075571 0.000067285 N/A (see caption)


Sequence I �� 	��������
� � � – – 1.030565394 1.038158505 N/A (see caption)�� 	 � �����
�
� � – – 1.055535693 1.028020776 N/A (see caption)���� 	 � – 1.038171201 1.059230128 1.037876042 N/A (see caption)�����
65 19 20 19 5� 	 � �
0.968080978 0.964729636 0.938582354 0.847524436 0.742310914


Sequence II �� 	��������
� � � – – 1.011198133 1.039126209 0.999732999�  	 � �����
�
� � – – 1.114107929 1.161638329 1.270885307�� � 	 � – 1.083754288 1.123195531 1.161638329 1.281251718� � �
50 19 20 11 4� 	 � �
23075.06598 23071.23324 23054.98198 23002.62088 21387.79461


Sequence III �  	��������
� � � – – 1.002219636 1.003942747 1.0�� 	 � �����
�
� � – – 1.011380203 1.008386320 1.163402272���� 	 � – 1.005833388 1.011380203 1.009657601 1.168966854�����
239 20 20 20 4�
	 � �
0.237551138 0.235358351 0.228839624 0.230301490 0.190955751


Sequence IV �� 	��������
� � � – – 1.047078098 1.036835631 1.009708834�� 	 � �����
�
� � – – 1.303809817 1.085867009 1.437271827� �� 	 � – 1.047078098 1.303809817 1.085867009 1.437271827


Table 1: All results from the experiments with the four archivers over the four sequence sets. Bold face is used to indicate
the best result in a row (excluding the nondominated filter


���
). For the binary epsilon indicator, where LAHC is compared


with the other archivers, the upper row indicates the factor by which the points in LAHC’s archive must be multiplied so
as to dominate the column algorithm’s archive, while the lower row indicates the converse. Thus, smaller numbers on the
upper row indicate LAHC’s archive is ‘better’, though it is not better in a strict sense unless the upper row entry is also���
. Bold face indicates the best archive in the weak sense, and italics are used to indicate a result where LAHC’s archive


is strictly better. Note that for Sequence 1, results for the � -approx archiver are not available because the point it found had
negative measure with respect to the lower bounding point used for computing these measures


 
) and generated a sequence by running PESA-II on the
problem for 1500 evaluations. This gave a sequence with
65 unique Pareto optima.


Sequence III: highly non-uniform spacing in the PF


Consider a sequence of nondominated points where some
pairs are spaced much (orders of magnitude) closer together
than others. This tests an archiver’s ability to keep points
well-separated, even when the points in the input sequence
are not evenly spaced.
We generated a sequence of 500 points using the func-


tions:


!�"$#&%� ')(+*-,/.1032 "�#&% 	 ��4 � � and!�"$#&%
* ')(658719:(6* ,/. 032 ";#&% 	 ��4 � � where< "�#&% is uniformly at random =?> 4 � 4 � 4 � � � 4 � ( � ����� � � 4A@ �


and 2 	&B � is a uniformly random variate in C 4 �DB � .
Sequence IV: a discontinuous PF


In sequence IV, the points form a PF with three isolated re-
gions. This sequence is particularly difficult for AGA since
the regions are small compared to the whole extent of the
PF, thus many points lie within each grid region used by
AGA, hindering its ability to obtain a good distribution at
the fine level.
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Figure 4: Points discovered by the three best algorithms
on part of Sequence IV’s PF. N.B: The points discovered
by each algorithm have been shifted vertically to aid view-
ing; in reality they all lie on the PF. The more even spacing
achieved by LAHC is clearly visible


The sequence is made up of 300 points generated using:


! "�#E%� 'GF "�#&% 0H2 "$#&% 	 4 � � �!�"�#E%
* ' � 9


I !�"$#&%� �
where


F "$#&% is selected uniformly at random from > 4 � 4 � 5 � 4 � J @
Visual results of the comparison are given in Figure 4.







6 Summary and Discussion


The Lebesgue measure of the region dominated by a non-
dominated set is a theoretically well-founded unary estimate
of the ND set’s overall quality. In this paper, a new arch-
iver, LAHC, was presented, that uses the Lebesgue mea-
sure to perform steepest-ascent hillclimbing in the space
of archive sets with a specific bound. Results when ap-
plying this technique to nondominated sequences of points
showed that steepest-ascent hillclimbing, point by point, is
very close to optimal in terms of arriving at the archive of
size � that maximizes the Lebesgue measure over all possi-
ble such subsets of an input sequence. Onmore typical input
sequences, such as those arising from an MOEA optimiza-
tion, LAHC outperformed each of adaptive grid archiving
(AGA) and two � -based approaches of Laumanns et al. in
terms of the quality of archive set obtained, given identical
input sequences.
Performance in terms of archive quality is not the only


factor in assessing practical archivers, however. Computa-
tional cost must also be considered. Fleischer’s algorithm is
an efficient method of computing changes to the Lebesgue
measure when one point is added to or removed from a set.
Nonetheless, it remains expensive to find, in a set, the point
that is contributing the least to the size of the dominated
region — and this has to be done at every step of LAHC
(since the inclusion of just one new point can affect the con-
tributions of all other points in the archive, except in the
2-d case). In fact, the computation time for the 2 and 3
objective problems considered in this paper are not high.
However, when moving to 4 objectives we have noticed
a significant increase in computation time, such as would
make our current implementation impractical in all but the
most computationally demanding of applications. The rea-
son for this large step up in computation time needs further
investigation. No doubt some of it is due to the fact that
no attempt at efficiency has been made in our implementa-
tion (so that the actual worst-case complexity of our algo-
rithm is worse than the theoretical worst-case), but a further
reason is that as objective space dimension increases, more
and more points are nondominated so that spawned points
‘hang around’ for much longer in the archive. This effect
compounds over to the spawns of spawns and so on, so that
computation time is much closer to the worst case than it is
for the two and three objective sequences. It is unclear at
present to what extent this problem can be alleviated by ad-
vanced bookkeeping and the use of efficient data structures
for storing and querying nondominated sets but we believe
that any improvement in the 4-objective case will carry over
to still higher dimensions, since in the 4-d case the depth
of the stack remains close to the worst case already. Our
immediate future work will investigate this further.
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