Bounded Pareto Archiving: Theory and Practice

Joshua Knowles' and David Corne?

! IRIDIA - CP 194/6, Université Libre de Bruxelles, 1050 Brussels, Belgium.
E-mail: jknowles@ulb.ac.be Web: http://iridia.ulb.ac.be/~ jknowles/
% School of Systems Engineering, University of Reading, Reading RG6 6AY, UK.

E-mail: d.w.corne@exeter.ac.uk

Abstract. We consider algorithms for the sequential storage, or ‘archiv-
ing’, of solutions discovered during a Pareto optimization procedure. We
focus particularly on the case when an a priori hard bound, NV, is placed
on the capacity of the archive of solutions. We show that for general
sequences of points, no algorithm that respects the bound can maintain
an ideal minimum number of points in the archive. One consequence of
this, for example, is that a strictly bounded archive cannot be expected in
general to contain the Pareto front of the points generated so far (where
this set is smaller than the archive bound). Using the notion of an ideal e-
approximation set—the subset (of size < V) of a whole sequence of points
which minimizes e—we also show that no archiving algorithm can attain
this ideal for general sequences. This means that in general no archiving
algorithm can be expected to maintain an ‘optimal’ representation of the
Pareto front when the size of that set is larger than the archive bound.
Furthermore, if the ranges of the PF of the sequence are not known a pri-
ori, no algorithm that certifies (using its own internal epsilon parameter
€arc) that it maintains an epsilon-approximate set of the sequence, can
maintain egr. within any fixed multiple of the minimal (ideal) € value.
In a case study we go on to demonstrate several scenarios where e-based
archiving algorithms proposed by Laumanns et al.—which perform well
when the archive’s capacity is not a priori bounded—perform poorly
when ¢ is adapted ‘on the fly’ in order to respect a capacity constraint.
For each scenario we demonstrate that the performance of an adaptive
grid archiving (AGA) algorithm (which does not assure a formally guar-
anteed approximation level) performs comparatively well, in practice.

1 Introduction

The goal of Pareto optimization is to obtain a complete set of Pareto optimal
solutions to a problem, i.e., every solution whose image in objective space is
globally nondominated. Unfortunately, this goal may be difficult to achieve in
practice, even when a search algorithm effectively concentrates its samples on
or near the global Pareto front, because the number of Pareto solutions may
be prohibitively large. In this case, it is impractical, and often unnecessary, to
store all of the nondominated solutions (or even their objective space images,
called ‘points’ in this article) discovered during an optimization process. Thus,
we have recently become accustomed to the notion of maintaining an ‘archive’ (a
subset) of these discovered nondominated points. Indeed, it is now recognized,

2 KTEX style file for Lecture Notes in Computer Science — documentation

by all of the research communities involved in multiobjective optimization, that
maintaining archives of nondominated points is a very important issue.

We can identify two main explanations of this importance, as follows. First,
and most obviously, the final contents of an archive represent (usually) the re-
sults returned by the optimization process. This leads to consideration of the
distribution and cardinality of points within it, since we normally require this
result to be a good approximation to the true Pareto front. Second, it is common
(and highly effective) to employ the archive as a pool from which to guide the
generation of new points. Some algorithms use points in the archive exclusively
for this purpose, while others tend to rely on the archive to varying degrees
according to parameter settings.

Both of these aspects, and also the computational complexity of maintain-
ing the archive itself (checking for nondominance of newly generated points),
lead to the requirement that the archive should strive to be of a bounded and
relatively modest size. As far as the archive as a result is concerned, the issue
is that an unlimited number of nondominated points may be obtained during
the optimization process, and memory becomes an issue. Concerning the use of
the archive during the optimization process, and also the processes involved in
its maintenance, computational complexity becomes an issue, especially in near
real-time applications. Since archives should therefore generally be bounded in
size (by, say, N), it is therefore of great interest to examine the properties of
algorithms which maintain bounded archives.

In this article we inquire about the properties of an imaginary édeal archiv-
ing algorithm and investigate the extent to which these properties can be, in
principle, attained. Some of the most important properties relate to whether the
archive converges in some well-defined sense. In our analysis we use the idea
that some generating process (e.g a Pareto optimization procedure) is sending
points, one by one, to the archiver to be stored. We call the sequence of these
points an input sequence. Now, if we consider the archiving algorithm as gen-
erating a sequence of archives, one new archive as each new point from the
input sequence is considered, one type of convergence is whether this sequence
of archives converges to a Pareto subset of the input sequence. Another type of
convergence occurs when the sequence of archives converges to an e-approximate
set [7] (explained below) of the input sequence. A third, slightly different type of
convergence occurs if the sequence of archives simply stops changing eventually,
provided that the input sequence is drawn from a finite set, and each point in
it is encountered an unbounded number of times. Other desirable properties of
archiving algorithms include the maintenance of a minimum number of points
in the archive and the storage of all of the nondominated extrema of the input
sequence.

In this article we also pay attention to the situation, commonly encountered,
when prior to optimization we do not know the ranges of values that the non-
dominated points discovered during optimization will take (in at least one of the
objectives). Although it may be possible to conduct preliminary experiments to
establish bounds, this is not generally the case. Thus, in practice we may of-
ten be faced with a situation where we are completely ignorant of Pareto front

KTEX style file for Lecture Notes in Computer Science — documentation 3

ranges and have only a single algorithm run from which to collect our solutions.
For ease of statement, we call this situation a ‘blind, one-shot’ scenario.

Whether in a ‘blind, one-shot’ scenario or not, we would like our archiving
algorithms to obtain an archive that approximates the sequence of points gener-
ated by the search. Seminal work on the subject of archiving by Laumanns et al.
first reported in [7] (and later published in [8] and [9]) proposed the concept of
e-approximation as a means of characterizing quantitatively how closely one set
(the archive) approximated another set (the sequence of points generated during
the search). This notion of the quality of approximation is valuable because it
gets away from the less well-defined and troublesome concepts of sets, such as
being ‘evenly-distributed’ or ‘well-spread’.

Two archiving algorithms making use of the e-approximation concepts were
also described in [7]: both have provable convergence properties, guarantee a cer-
tain quality of approximation, and at the same time ensure that the archive’s size
is bounded by some function of € (a parameter set by the user) and the extent of
the objective space. These algorithms are, in a sense, ideal when the user doesn’t
require an a priori hard limit IV on the archive’s capacity. But, when applying a
search algorithm to an unknown problem, there can be no good guide to setting
an appropriate € value. With the ‘wrong’ choice too many or too few points may
be archived, with a consequent effect on algorithm performance and/or user sat-
isfaction. Seeing this ‘weakness’ in the proposed approaches, Laumanns et al.
also described two methods for achieving size-bounded archives of the kind we
focus on in this article. In one of these (effectively, for a ‘blind, one-shot’ sce-
nario), € is adapted ‘on the fly’ by measuring the range of values observed in
the points encountered. Unfortunately, such an approach is over-conservative in
many situations, leading to archives that are too small, as we later demonstrate.
It is a main thesis of this article that other methods—those that do not assure a
formally guaranteed e-approximation level—may perform much better in prac-
tice, when a capacity bound must be respected, and especially under a ‘blind,
one-shot’ scenario.

Such an alternative archiving approach, which seems better when archive
capacity is limited (although being far from ideal), is adaptive grid archiving
(AGA), as described in [6] and [5]. This algorithm does not have guaranteed
convergence, in any of the three senses mentioned earlier, and can only be shown
to ‘settle down’ when certain properties of the objective space are respected [5].
This may be considered a serious weakness because the quality of the archive
achieved becomes a function of time, even when the whole of a problem space
is sampled an unbounded number of times. Nonetheless, we believe that when
archive capacity is limited, and especially in ‘blind, one-shot’ scenarios, it of-
ten gives more desirable results than the e-based methods of Laumanns et al.
To illustrate this, we provide a case study that makes use of several different
sequences of points designed to be difficult for archiving algorithms. These se-
quences include a small Pareto front in a large objective space, a discontinuous
Pareto front, and a highly non-uniformly spaced Pareto front. These sequences
pose problems for each of the archiving algorithms tested here, but it is our
finding that AGA copes much better than the e-approximate methods in these
situations.

4 KTEX style file for Lecture Notes in Computer Science — documentation

The remainder of this article is organized as follows. Section 2 provides the es-
sential mathematical framework needed to understand the archiving algorithms
discussed in this article. Section 3 goes on to propose several properties of a
theoretical, ideal archiving algorithm and goes on to show that some of these
cannot be achieved in reality, when there is a capacity constraint on the archive.
These theorems set the scene for Sections 4 and 5 where the two main archiving
algorithms considered here, are respectively described and tested on a number
of point sequences. Section 6 concludes with a discussion of our findings.

2 Preliminaries

In the following we assume, without loss of generality, that we are maximizing
objective values. We further assume that all points are positive: y,z € Z,Z C
§R’i Throughout the paper we will assume that we do not care about keeping
different solutions that map to the same point in objective space. Thus, our
optimality definitions (below) and archiving algorithms are cast only in terms of
points, and not solutions.

Definition 1 (Pareto dominance) A pointy = (y1,y2,...Yk) is said to Pareto
dominate another point z = (z1,22,...2;) iff Vi € 1.k, y; > z; A3j € 1.k, y; >
zj. This can be written as y > z.

Definition 2 (Pareto optimal point) A point z € Z is said to be Pareto
optimal (in Z) iff Ay € Z,y > z.

Definition 3 (Pareto front) The Pareto front, denoted Z*, of a set Z is given
by{z€Z|By€ Zy> z}.

2.1 Input sequence and archive

We choose to describe the archiving process, and the properties of archives,
in terms of an input sequence of points generated by some black-box process,
following the approach used by Laumanns et al. [7].

Let (fU, f@) fG) . f®) be a sequence of points where every point
fO = (fl(t), 2(t),..., lgt)),Vj € 1..k,\7’t,fj(t) € R,. As the input sequence is
generally to be understood as being generated by some search algorithm that
may revisit solutions and/or several solutions may map to the same objective
function values, there is no requirement that the elements of this sequence are
unique. Thus let F® denote the set of (unique) points in this sequence up to
and including the tth point. Let F*(®) denote the Pareto optimal points from
F®)_ For convenience, we sometimes drop the ¢ superscript and just refer to F,
which is the set of points that appeared in a completed sequence.

Now define an archive A() to store some of the points in the input sequence
up to and including time ¢t: A® C F(®)_ We also require that A is itself a
nondominated set, i.e. that no element of A is dominated by another element
of A. Using the notation of a Pareto front, we can then write that we require:
vt, A® = A*®) We may also require a bound on the capacity of the archive,

KTEX style file for Lecture Notes in Computer Science — documentation 5

i.e. that Vt,|A®)| < N for some constant N. As above, for convenience, we
sometimes drop the ¢ superscript and just refer to A. Then, for example, |A| < N
is shorthand for V¢, |A)| < N, and A C F* is shorthand for Vt, A®) C F*(!) For
convenience we also use the symbol Ax to stand for a general set of betweem 1
and N points: Ay € {2%% |1 < |An| < N}.

Now, we will need some mechanism for updating the archive, and this we call
an archiving algorithm:

Definition 4 (Archiving algorithm) Let a deterministic archiving algorithm
be defined as a mapping: Ager : AN X §Ri — An, where An is the power set
of An. Similarly, we define a stochastic archiving algorithm as a mapping :
Agio : AN X RN X §R’i — An, where Ry is the power set of a set of up to N
random variables.

The definition above sets out an archiving algorithm as giving a definite
output (an archive) for any well-defined input (an archive in addition to a new
point, and perhaps some random variables). In addition, it is to be understood
that an archiving algorithm as defined here is explicitly not allowed access to
previous points from the input sequence, that are no longer in the archive itself.
At time ¢, its update decisions must be based solely on the archive of the previous
timestep and the ¢th point in the input sequence.

2.2 Approximation sets

In order for us to make some quantitative judgments about the quality of a final
archive we will need some measure of its ‘approximateness’ to the Pareto front
of a sequence. For this we can use the concepts of e-dominance described in [7].

Definition 5 (e-dominance [7]) Let f,g € R%. Then f is said to e-dominate
g for some € > 0, denoted as f ». g, iff for all i € {1,...,k}

(1+e€).fi > gi-

Definition 6 (e-approximate Pareto set [7]) Let F C Rk be a set of vec-
tors and € > 0. Then a set F, C F is called an e-approrimate Pareto set if any
vector g € F' is e-dominated by ot least one vector f € F, i.e.

Vg € F :3f € F.such that f >, g.
The set of all e-approxzimate Pareto sets of F' is denoted P.(F).

The concept of an e-approximate Pareto set formalizes what is meant by a
well-distributed approximation of a Pareto front. Indeed, one can use the concept
as a tool for measuring the quality of an approximation [12]: the minimum e such
that A € P.(F), gives a measure of the quality of the approximation set stored,
with lower values indicating a better approximation set.

Definition 7 (e-Pareto set [7]) Let F C R% be a set of vectors and € > 0.
Then a set F} C F is called an e-Pareto set if

1. F? is an e-approxzimate Pareto set of F, i.e. F* € P(F), and
2. F} contains Pareto optimal points of F only, i.e. F C F*.

The set of all e-Pareto sets of F is denoted P} (F).

6 KTEX style file for Lecture Notes in Computer Science — documentation

2.3 Normalization and translation

It is often desirable to normalize and translate the points in a sequence to keep
them in some required range. A general system of normalization and translation
is defined as follows.

For a maximization problem, a point f can be normalized and translated
using:
(fi — min;)

Vielk, [=c+ —"—
(max; — min;)

(1)
where min; and max; denote the minimum and maximum values in the ith
objective, respectively, and ¢; > 0 is a constant used to translate the points
away from the origin. For minimization problems the following equation can be
used:

max; — f;

(K2 fl) (2)

Vi€ Lk, from = ¢; + :
(max; — min;)

where f°™ is now to be maximized. For mixed minimization and maximization
problems a combination of (1) and (2) can be used, so that all types of multiob-
jective optimization problem can be tackled within this framework. As we show
later, it is desirable with the e-base methods of Laumanns et al. to apply such
normalization and translation to encourage an even distribution of points.

3 Theory: Desirable Behaviours and Limitations

Given the preliminaries of the last section, we are now in a position to consider
the fundamental question of how an ideal archiving algorithm should behave. We
choose to formulate this purely in terms of properties of the archive (though the
computational complexity of the archiving algorithm may be a further important
consideration).

We propose the following as a fairly complete ‘wish list’ of desirable properties
of the archive produced by an archiving algorithm:

P1l: A=A

P2: |[A|<N

P3: 3tVu > 0, A4+t = AWM e the archive converges to a stable set in the
limit of ¢

P4: A C F*, i.e. the archive contains only Pareto optimal points from the
sequence set, F'

P5: all extremal Pareto optimal points from F' are in A

P6: |A| ~ min(N, |F*|), i.e. that the archive is ‘as close as possible’ to N or the
number of Pareto optimal points |F™|

P7: for every point in F™* there is a point in A that is ‘nearby’.

Let us review the list. Items P1, P2, P4 and P5 are straightforward and
well-defined. Item P3, on the other hand, needs some further explanation. First,
note that this property is different from the others in the list because it expresses
a feature of the archive in the limit of ¢, and this further rests on the assumption

KTEX style file for Lecture Notes in Computer Science — documentation 7

that F is finite (not unreasonable in any digital computer representation of a
problem space). The other properties in the list only express some property of
A® ysually in terms of F®). However, P3 is really essential because it expresses
the requirement that the archive should eventually converge; this is arguably de-
sirable because otherwise stopping the generation process at the ‘right’ time may
become critical! Notice that P3 does not imply that after all points in the se-
quence have appeared once the archive should be converged, only that eventually
it converges. This is not a trivial property: an archiving algorithm that always
accepts a nondominated point — and removes a random point to make way for it
— will not have this convergence property, for example. Although items P1-P5
above are well-defined, clearly, P6 and P7 are not. The reason for leaving these
last two in this ‘loose’ form is that we want to capture the ideas, respectively,
of the final archive not becoming too small, and of being well-distributed, but
without prejudicing how these properties might be formulated. As it is, the list
covers, we think, everything that could conceivably be wanted of a size-limited
archiving algorithm. Notice that the issue of the archive being well-distributed is
covered by P7. We do not write that the points in the archive should be ‘evenly
spread’ or some such because this is not, in general, true. Notice also that the
list is not supposed to enumerate completely orthogonal properties. Some of the
properties are coupled, but each is sufficiently independent to warrant its own
place in the list.

We would now like to ask if any archiving algorithm exists that can guarantee
to produce archives satisfying all of the properties. However, because of the loose
definition of P6 and P7, we are unable establish whether or not an ideal archiving
algorithm is possible. So, to make progress, we need to sharpen up the definitions
of these properties.

Let us start with P6. If we were to replace ~ by =, to tighten this desired
property up then we would be confronted with:

Theorem 1. No archiving algorithm, stochastic or deterministic, can maintain
|A| = min(N, |F*|) for general N, on general input sequences.

(Informal) Proof of Theorem 1:
What we will show is that without access to the entire set F'*, it is impos-
sible for an archiving algorithm to make decisions about what solutions
to accept into, reject from, or maintain in, the archive A such that |A|
always equals either NV or |F*|; the latter when |F™*| is less than N.
Consider F*. What are the properties of its evolution over time?
At any time step its cardinality can increase by one, stay the same, or
decrease to a value between 1 and |F*| — 1. So we have:

I[P e {1,2, ..., |F*®| +1}. (3)

Now consider a transition in F* given by: |F*®)| > N and |F*(t+1)| =
M, where M € 1..N — 1. At time ¢ we must have, A # F* and |A| = N.
And at time ¢t + 1 we need |A| = |F*(t + 1) = M < N. Thus, exactly
N — M points must be ejected from A. But the number M is unknown to
the archiving algorithm, in general, making it impossible to eject exactly

8 KTEX style file for Lecture Notes in Computer Science — documentation

N — M points. The value of M is unknown because M is a function of
all the points in F*® (and of f(*+1), the new point), but at time ¢,
A # F*. Since the archiving algorithm as defined in Section 2.1 uses
only A and the new point (plus some random variables in the case of a
stochastic archiver) to determine A of the next time-step, and does not
use any information about previous points, it cannot calculate M. Thus,
no policy used by an archiving algorithm can follow these transitions, in
general.
This is sufficient to prove the theorem.

O

We supplement the above proof with Figure 1. This shows the contents of
A and of F* at successive time-steps on a particular sequence of points. This
example illustrates the fact that the archiving algorithm cannot predict the
cardinality of F* without direct knowledge of F™* itself, which it does not have.

Time t Time t+1
— = *(1)] =
N=4 |A®|=a [F0]=s N-4 |A0]=a [F0]=s
3] _ £+ =
W s
T T T T T T
| R 1 o eFw L] s epw
< ' S S
[o R . . n Foer e . B T g 7 *
o [+er®
o © O eal o N eal
o o e
L L T ERSTE S S s o I S
&) &
f1 f1

Fig. 1. The figure shows |F”| reducing from 5 to 3 in the transition from time ¢ to
time t + 1, due to the generation of f**Y) which dominates three points in F*®),
However, the archiving algorithm cannot ‘follow’ this change in the cardinality of F’*,
since A®) only contains 4 points out of the 5 stored in F*®). So, |A®TY| will not
equal |F*(t+1)|, unless the archiving algorithm ‘guesses’ correctly. Thus, guaranteeing
|A| = min(V, |F*|) is impossible

Thus we have shown that trying to keep the minimum size of the archive high
is impossible in a strict sense. Notice that our proof does not rely on the archiving
algorithm complying with any of the desirable properties P1-P7, except for P2
impicitly. Thus it holds in a very general case: whenever the archiving algorithm
cannot access all of the nondominated points from the sequence, i.e. the whole
set F™*.

At present, it is not clear to us how to rigorously define a ‘softer’ requirement
of keeping the archive’s size ‘as large as possible’. This does not mean that this

KTEX style file for Lecture Notes in Computer Science — documentation 9

issue is not important. Clearly, if we want IV solutions and obtain only 1 < N
when there were |F™*| > N available then we may feel (justifiably) aggrieved.
However, for now, we must be content to know that no algorithm can guarantee
keeping min(N, |F*|) points. As we shall see in the next sections, the archiving
algorithms proposed in [7] suffer from the problem of archiving far too few points
in certain circumstances. What we have highlighted here is that no algorithm
can escape from this problem entirely.

Moving now to P7 in our ‘wish list’, we can make this property more explicit
by using the notion of an e-approximate set. We can say that ideally A should
be an e-approximate set of size up to N that minimizes e:

Aldeal = argming.p {e € RY ||A] < N}

€-approx
This seems reasonable but unfortunately we have:

Theorem 2. No archiving algorithm, stochastic or deterministic, can maintain

by b : vdeal .
an ‘ideal’ archive A6 ..., for general input sequences.

Proof of Theorem 2:
For this proof it is sufficient to show that there exist two sets F®) and
FOD with FH) = pO y {0} such that Af € F, f # f+D f €
Atdeal (FED) and f ¢ Adeel | (F®). In words: a point in the se-
quence up to the point just before f{+1 is generated, is needed in the
ideal archive of F*+1) but it does not appear in the ideal archive of
F(®)_ This proves the theorem since, in this case, either the first or the
second ideal archive cannot be produced by an archiving algorithm. (An
archiving algorithm cannot make the transition between the two sets).

We now give an example to demonstrate this case. In Figure 2 (left)
a sequence of four points is plotted in objective space. The points are
fM = (100, 200), f = (150,175), f®) = (200,100) and f*) = (199, 174).
We now consider the situation where N = 2 and we wish to calculate the
ideal archive at times ¢t = 3 and ¢ = 4. In the table (right), we calculate,
for each possible pair of points in the archive, the minimal € value that
ensures all points in the sequence are e-dominated by the two archived
points, i.e.

max min max %.
YEZ z€A i€l.k Z2;

The result shows that at time ¢ = 3 the ideal archive is {f®, f®)}
(with a corresponding ideal € value of 0.14), and at time ¢ = 4 the ideal
archive is { f(), f®} (with a corresponding ideal € value of 0.0057), thus
completing the proof.

O

The above shows that in general it is not possible to obtain the ideal minimum e
value. Moreover, we can make this result even stronger (i.e. more limiting) if we
assume no knowledge of the extent of the Pareto front of the generated sequence
of points, as follows.

10 KTEX style file for Lecture Notes in Computer Science — documentation

220 if‘ (1)f S ‘ A=3) lowest € value
2000 {777 033
180 - fé) f(zg, {f87f§;} 0.50
180 {9, 77} 0.14
S R Al=19) lowest € value
O R {0, 7@y 033
S R T B 1,
,,,,, SR S T R Y f 0.0057
100 : : : 0 }f@),f@)% 0.33
80 I I | | | | (2) (4) 0 14
80 100 120 140 160 180 200 220 {f f } .
f1 {f®fOY 0.15

Fig. 2. A sequence of four points plotted in objective space and the corresponding
minimum values of € for archiving just two of the points such that all the points in the
sequence up to time ¢ are e-dominated

Theorem 3. No archiving algorithm, stochastic or deterministic, can maintain
an e-approximate set of cardinality < N with an € that is less than a constant k
of the ideal € value, for general input sequences, without additional knowledge
of the extent of the PF of the input sequence.

In the following proof of Theorem 3 we construct a sequence of points in such
a way that the Pareto front of the points in the sequence gets smaller (periodi-
cally) over time, without bound. Thus, any static value of €, used internally by
an archiving algorithm to certify that its archive is an e-approximate set, will
eventually be more than k times larger than the ideal value of e.

(Informal) Proof of Theorem 3:

We can easily construct an unbounded number of ‘local’ Pareto fronts of
decreasing size in a box of side 1. For example, let the following sequence
of points be generated: (1,0), (0,1), (0.2313,0.7687), ... and so on, until
there are say, 1000 random points on the line going from (0,1) to (1,0).
Now let the sequence continue with (0.6103, 0.8897),...and 1000 more
random ‘front-two’ points, where each vector has components that sum
to 1.5. The ‘front-three’ points can be the same with the sum of the
components being 1.75. And soon

Notice that any line L in a box of side 1, composed of points (z,y)
with 4y = a,a > 1 will have length I = (2—a).\/2, so as the value of a
follows the sequence 1.0,1.5,1.75,1.875, ..., so the length [of the Pareto
front tends to zero.

Now, assume that an ideal archiving algorithm exists with the re-
quired property. Then if we stop it at any time during this unbounded
sequence it must return an e-approximate set of cardinality less than or
equal to N with € less than x times the ideal value.

I¥TEX style file for Lecture Notes in Computer Science — documentation 11

To guarantee doing this the algorithm will need to keep its own in-
ternal value of €, call it €,,., by which it can certify that the current
archive is an e-approximation of the sequence of points so far encoun-
tered. It needs €4, so that when a point (nondominated in the current
archive) is rejected it can check that there is a point in the archive which
e-dominates it.

But now we can see that this internal €,,. value must reduce over
time as each new front in our sequence (defined above) is generated,
otherwise, at some point, the value of €,,. will become greater than
times the ideal € value. But if €,,. is reduced, the algorithm must be
able to guarantee that no point previously excluded using a prior, larger
€qrc value, should be in the archive, given the reduced €,,. value—a
contradiction since these points have been excluded and no information
about them remains.

O

The above proof uses a sequence construction that is not likely to arise in
practice, and indeed, it is of course limited by the accuracy with which numbers
can be represented in a digital computer. Nonetheless, it illustrates a point: if
we use an algorithm that guarantees an e-approximation but with an initially
undefined € value (a value which is returned only at the end by the archiving
algorithm), then difficulties may arise since there is no limit to how far from
ideal this final € value will be. Thus, even on more ‘reasonable’ optimization
functions, the archive obtained may be arbitrarily too small, and be a very long
way away from the true Pareto front (see next section).

On the other hand, it would seem that in practice if we use an algorithm
that does not make the guarantee of e-approximation, then we may be able to
obtain a good approximation with close to the desired number of solutions, albeit
without any formal guarantee of approximateness.

Notice that in the above we have excluded the possibility that we know in
advance the extent of the PF of the sequence of generated points. If we do know
these then we can calculate € beforehand, to bound the archive size as required
(see section 4.2, equations 4 and 5), and then simply discard any point that is
not within the ranges of the final Pareto front. However, this approach will not
maintain an e-approximate set of the input sequence, but only obtain it after
all points have been considered. For example, if the optimization algorithm is
stopped early, the archiver may have stored no points at all.

This section has demonstrated the existence of some theoretical limitations
on algorithms for maintaining bounded archives. In the next section, we de-
scribe several practical archiving algorithms, focusing on two in particular, and
relate them back to our ‘wish list’ of desirable properties, and to the theoretical
limitations we have described.

4 Practical Archiving Algorithms

In this section we will first briefly summarise the convergence properties of two
practical archiving algorithms, previously analysed in [6] and [5]. Both of these

12 KTEX style file for Lecture Notes in Computer Science — documentation

algorithms maintain bounded, nondominated archives but have some clear weak-
nesses, allowing us to neglect them from further empirical analysis. Following this
summary, we present, in Sections 4.1-4.3, the adaptive grid archiving algorithm
(AGA) and two e-based archivers, all of which we go on to test empirically in
Section 5.

In [6] and [5], we have analyzed the convergence properties of three algorithms
for maintaining bounded archives. This analysis makes use of an assumption that
a positive-definite generating function is used to generate points. This means
that for all time-steps all points in the finite objective space have a non-zero
probability of being generated. Using this assumption it is easy to show that
some simple algorithms converge in the sense of item P3 in the ‘wish list’ of
the last section. For example, an algorithm we call here RA1 (because it is
like one considered in Rudolph and Agapie [10]), which uses the following two
rules, converges in this sense. Rule 1: When the archive is below its capacity
all nondominated points are accepted, and any dominated points in the archive
are removed. Rule 2: When the archive is at its capacity only dominating points
are accepted, and any dominated points are removed. As far as our ‘wish list’
is concerned, this algorithm satisfies items P1, P2, P3, and P4 but it does not
attempt to address items P5, and P7 at all. In other words, it does not have
any mechanism at all for accepting a new, nondominated (but not dominating)
point over one already in its archive (which it could discard) in order to obtain a
better net approximation, in the sense of accepting points that would increase the
objective space extent of the archive or improve its distribution. This algorithm
will usually obtain a ‘close to full’ archive, i.e. item P6 is partially satisfied.

A second algorithm analyzed in [6], S metric archiving, uses a similar strategy
to that above, but it has an additional rule that, when the archive is full, it will
accept a new nondominated point (and discard a current archive member) if
this would lead to a net increase in the S metric value of the archive. The
S metric [11] measures the quality of a nondominated set by measuring the
hypervolume of the region dominated by the set. So, S metric archiving satisfies
items P1, P2 and P3, but it sacrifices P4. On the other hand, it attempts to
address items P5 and P7: if a new point is either extremal or very far away
from any point in the archive, it will tend to be accepted by the algorithm, and
a point which is ‘not so important’ will be discarded. As in RA1, item P6 is also
respected. In many ways, then, this archiving algorithm may be practically ideal
but until recently its computational overhead was thought to be prohibitively
high because of the computational cost of calculating the & metric. However,
recent developments by Fleischer [2], in which a polynomial time algorithm is
given for this calculation, suggest it may now be worth investigating further.
However, since this development is very new we do not consider this archiving
method further in this article.

4.1 Adaptive grid archiving, AGA

A stochastic archiving algorithm, described and analyzed in [5, 6], and one of the
two we focus on in our experiments below, is adaptive grid archiving (AGA).
AGA works on similar lines to the two above but is much more efficient than S

KTEX style file for Lecture Notes in Computer Science — documentation 13

metric archiving, while retaining much of the latter’s ability to obtain a ‘good’
approximation.

As with the previous algorithms, when the archive is not full AGA accepts all
nondominated points, while dominated members of the archive are discarded.
When the archive is full a couple of computationally efficient stochastic rules
are used to see if a new nondominated point should be accepted and a current
member discarded. These rules are based on how crowded together are the dif-
ferent points in the archive. Basically, if a point is in a crowded region, estimated
using a grid in the objective space (which adaptively changes in position and
size to cover the archived points), then it is liable to be removed to make way
for a new, less-crowded point. However, to ensure the archive maintains the PF
extremes, points that are uniquely extremal on any objective are also protected
from removal. A precise description of the entire algorithm can be found in [5],
where it is also shown that the archive ‘settles down’ (in a clearly defined way)
for some types of input sequence. However, a general convergence proof is not
possible. In summary, we can say that this algorithm satisfies P1 and P2, and
does well on P5, P6 and P7, while sacrificing on the strict convergence property
P3. Furthermore, it can easily reject/discard Pareto optimal points and replace
these with non-Pareto optimal ones, so it does not satisfy P4.

Despite the weaknesses, we believe this algorithm performs well in practice
in our ‘blind, one-shot’ scenarios compared to other methods. In particular,
we suggest that it generally performs better in these circumstances than those
algorithms (described next) that have a convergence proof and guarantee an
e-approximation set.

4.2 Adaptive e-approximate algorithm, LTDZ1

Laumanns et al. [7] proposed two deterministic archiving algorithms, one for
obtaining a guaranteed e-approximate Pareto set, the other for obtaining a guar-
anteed e-Pareto set. In the basic versions, € is a parameter set by the user prior
to optimization. The algorithms then guarantee to archive a bounded number
of points, at this given approximation level. But this bound is a function of the
(possibly unknown) objective space ranges. Thus, in general, with € set prior to
optimization these algorithms will not keep |A| < N.

If a hard capacity bound must be satisfied, as we assume here, then one of
two alternative strategies can be used. With prior knowledge of the ranges of
values of the Pareto front in objective space, the algorithm is changed so that
all points that lie outside the ranges of the PF are not archived, and a static €
value is calculated a priori using:

l+e= RNl/(lk—l) (4)

where R is given by:

maz; sign(maz; —min;)
R—;gg;;ﬁ{ﬁﬁéﬁ—())

min;

14 KTEX style file for Lecture Notes in Computer Science — documentation

where maz; and min; are respectively the maximum and minimum values of the
nondominated points from the sequence set F. (An alternative, approximate way
to derive € is given in [7]. We find Equation 3 to be more correct and effective
in practice.)

The result will be an e-approximate Pareto set of size less than N. However,
as Equation 3 is maximally ‘conservative’ then the resulting set may have far
fewer than the desired number of points. So, when using these algorithms, even
with prior knowledge of objective ranges then items P6 and also P7 may not
be well-satisfied. On the other hand, items P1, P2, P3 and P4 are respected.
Item P35 is not directly addressed by these algorithms.

In a ‘blind, one-shot’ scenario, a different strategy must be employed to keep
the archive bounded by N. Laumanns et al. [7] proposed an adaptive version
of each of their algorithms, where the algorithm’s internal ¢ parameter, used
for making archiving decisions, is adapted over time with respect to the range
of values currently in the archive, by again making use of Equation 6. The
description in [7] of this adaptive method is rather sketchy for the e-Pareto
set archiving algorithm and some important details are not given. Fortunately,
for the adaptive e-approximate Pareto set archiving algorithm, sufficient details
are given to implement it, and since both of the adaptive algorithms work in
essentially the same way we may infer from any problems we find with the one,
that similar problems will arise in the other.

Algorithm 1 (shown overleaf), denoted LTDZ1 here, defines this adaptive

algorithm, which guarantees to archive an e-approximate Pareto set of any se-
quence of points, F. The algorithm works by calling a simple function for up-
dating the archive set A with each successive vector f from the sequence. Lines
14-20 of Algorithm 1 comprise this update function. The vector f is accepted
if it dominates any vector in A or if it is not e-dominated by any vector in A,
otherwise it is rejected. In case it is accepted, all points in A that are domi-
nated by f are removed, to maintain A as a nondominated set. Note that the
function works only if all points in the sequence are elements of % . To ensure
this condition, normalization and translation of points can be applied, e.g. using
Equations 1 and 2. In this case all comparisons of the vectors would use the
normalized and translated points (not shown in Algorithm 1).
If maxz and min' are not known prior to optimization, then they must be
updated during search. Lines 1 to 13 of Algorithm 1 describe the extra steps
needed in the adaptive version of the algorithm. First, the new point f is checked
against the current extrema (max and min vectors). The extrema are updated if
f is beyond any of them. Using Equation 4 and the new extrema, € is updated. If
€ increases as a result of the update then all of the points in the archive, A®=1)
must be ‘filtered’. This means they are considered one by one, oldest first. If a
younger point is ever e-dominated by an older one then it is removed from A.
Initial extrema and an initial € are calculated using the first two nondominated
points in the sequence.

! These are sometimes known as the ideal and the nadir points. They are not, in
general, points themselves in the sequence set F', but are the points defining the
upper and lower boundaries, respectively, of the Pareto front

KTEX style file for Lecture Notes in Computer Science — documentation 15

Algorithm 1 LTDZ1: Update function of the adaptive-ranges e-approximate
archiving algorithm

1: Input: AD, f, maz, min, e, t
2:t+t+1

3: flag < 0

4: for i+ 1 to k do

5: if (fi > maxz;) V (fi < min;) then
6: update_ranges(maz;, min;, f;)

7 flag + 1

8 end if

9: end for

10: if flag = 1 then

11: update_epsilon(f, maz, min) // see Equationms 4, 5
12: filter(A¢1) ¢)

13: end if

14: if 3f' € A~V such that f >, f then
15: AWM AC-D

16: else

172 D+ {f e AV |f~f}

18: A® — AV U{fI\D

19: end if

20: Output: AY, maz, min, ¢, t

4.3 Non-adaptive e-Pareto archiving, LTDZ2

As we mentioned in the last section, if prior knowledge of Pareto front ranges
are known in advance, it is possible, in both of the algorithms proposed and
described in [7], to set € to a constant value (e.g. using Equation (3)) and reject
all points that lie outside of the known Pareto front region. We would like to test
this strategy, together with the two adaptive methods, AGA and LTDZ1, if only
to give some upper bound on how well the other two could perform. For this we
opt to use the ‘better’ of the two algorithms from [7]—that which guarantees an
e-Pareto set. For convenience, we call this approach LTDZ2 here.

5 Case Studies

In this section we test empirically the archiving performance of AGA and of the e-
based archivers, described above. For the testing, we use several types of sequence
that have been selected purposely for the difficulty they may cause to one or more
of the archivers. For each sequence type we consider, we always generate one
sequence first, (independently of any archiving method) and then use this same
sequence as the input to each archiver. The sequences were generated sometimes
just using a function, and other times actually running a search algorithm on a
problem to be optimized. For the e-based algorithms, LTDZ1 and LTDZ2, we
need only make one archiving run on any given sequence, since both algorithms
are deterministic. For AGA we need to make several runs because AGA contains

16 KTEX style file for Lecture Notes in Computer Science — documentation

a stochastic procedure—when a point is discarded from the archive it is selected
at random from a region that is one of the set of ‘most-crowded’ regions.

To present the results, we show plots of the archives, compared to the true
Pareto front of the sequence (though not in the one 3-objective problem we
tackle). For AGA we just select one run (the first) to show in these plots. In
addition to these visual results, we use two performance metrics to provide quan-
titative results. The first metric is:

Absolute_mean_utility(A, U) |U| Z (6)
uelU

where u is a utility function, U is some set of utility functions, and u*(4) =
maxsca{u(f)}. The second metric, defined in [3] compares two algorithms as
follows:

R2(A,B,U) > (B). (7)
|U| uelU
For both metrics we use the Tchebycheff utility function:
u(f) = .Télla}i{)\i-(maéﬂi — fi)/(maz; — min;)} (8)

where > .., A = 1,Vi € 1.k, \; > 0, and maz and min are the ideal and
nadir points, respectively, of the sequence. The set U is constructed by using
500 evenly distributed A weight vectors.

To deal with the separate runs of AGA, we report on the mean values for
AGA, giving in addition the standard deviation of the absolute mean utility.

A note on normalization and translation for LTDZ1

The distribution of points archived by the LTDZ1 algorithm is dependent on the
normalization and translation of the points in the objective space. Equation 3
shows that the value of € is dependent on R, the largest ratio of the maximum
to the minimum objective value in any objective. Thus, the normalization and
translation of points may affect € and thus the distribution of archived points.
If we normalize and translate points so that they lie in the semi-open interval
(0,1] then this may lead to a non-uniform sampling of the Pareto front in some
situations. To illustrate this effect we generated a sequence of 1000 points (f1, f2)
with fo = 1 — +/f1, by starting at f; = 0.001 and incrementing it by 0.001 a
further 999 times. We then applied LTDZ1 to this sequence with N = 100. The
result is shown in Figure 3 (left). Only 14 points are actually archived and they
are non-uniformly distributed despite the uniform distribution of the underlying
sequence. The strong non-uniformity is caused by the fact that € begins very
small (because the ratio of max and min values is initially small), and grows
ever larger. We can improve the behaviour of LTDZ1 greatly by just normalizing
and translating all points so that they lie in the range (99,100]. Figure 3 (right)
shows the archive of LTDZ1 in this case, on the same sequence. 69 points have
been archived and they are more evenly spread. In all our following experiments,
then, we translate all objective values to lie in (99,100], using (2) to avoid this
effect occurring with LTDZ1.

f2

KTEX style file for Lecture Notes in Computer Science — documentation 17

1 ‘ ‘ 1 ‘ ‘ ‘
é LTDZ1 = X LTDZ1 = X
0.9 4 09 |
X | [x
0.8 5, 058
07 r X 1 0.7
o6 X] o6 %
05 - < N 05}
04 X 1 04
03 r 4 03}
X
0.2 4 02t
0.1r X 1 0.1t
O L L L L O L L L L
0 02 04 06 08 1 0 02 04 06 08 1
f1 f1

Fig. 3. Left: A non-uniform distribution of points generated by the LTDZ1 algorithm,
caused by e starting small and growing over time, as points were being generated from
left to right. Right: A more uniform distribution of points, on the same sequence,
obtained by translating all points far away from the origin so that € is not so variable

100 : :
99.99 W
99.98 |]
99.97 |]
99.96 |]
99.95 |]

f2

99.94 1
99.93 1

99.92 | 1

PF

99.91 | AGA |
LTDZ1 X

99.9 :

99.988 99.99 99.992 99.994 99.996 99.998 100
fl

Fig. 4. The archived points when AGA and LTDZ1 are used on the same sequence of
points generated by PESA-II on a problem with a small PF. LTDZ1 archives only one
point because e grows very large initially, and cannot be reduced subsequently

Sequence I: a small Pareto front

The LTDZ1 algorithm has the weakness that € cannot be decreased over time.
This means that if € becomes large with respect to the size of the Pareto front
then a very poor approximation results. Consider the two-objective maximiza-

18 KTEX style file for Lecture Notes in Computer Science — documentation

tion problem described by:

fi=@0Q—r)+r.sin(v.7/2)
fo= (1 —=r)+r.cos(v.w/2), where
r = 0.01+0.99.u!/1°

and where u and v are two decision variables in the interval [0,1). Here, the
radius, r, or the Pareto front is very small compared to the biggest and smallest
values in the objective space.

We used 40 bits each to encode u and v and made a sequence of points by
running the search algorithm PESA-II [1] on this function for 10,000 evaluations.
Figure 4 shows the set of points archived by LTDZ1, and by the first run of
AGA when N = 20 is used. (The true Pareto front of the sequence is made up
of 1824 points so it appears smooth in the plot). Clearly, the archive of AGA is
significantly better. In total, 10 independent runs of AGA on this same sequence
of points were collected. For these, quantitative results are given in Table 1.

On this problem, as on those that follow, we also ran the non-adaptive LTDZ2
algorithm. To do this, we found a fixed value of € empirically by running the
algorithm on the sequence several (here, five) times until we had found a value
giving us as close as possible |A| = N. The results for this final run of LTDZ2
are also given in Table 1 for comparison.

Sequence II: a three-objective problem with small PF

The AGA algorithm can suffer from cyclic behaviour on problems having more
than 2 objectives, and where there exist points that are extremal but not Pareto
optimal [6]. For example, imagine a three-objective case where (assuming we wish
to maximize on each objective), the Pareto front contains the points x = (4,9,7)
andy = (4,7,9). Further, the point z = (3,7, 8) is clearly not on the Pareto front.
Now, assume that we have a full archive, and, of these three, only x is currently
in the archive, and x is an extremal point with respect to the first objective.
That is, no other point currently in the archive has a value of 4 or worse on
this objective. Now, suppose point z is generated by the optimization process
and therefore (since it is not dominated by anything in the archive) becomes a
candidate for placing into the archive. As a consequence of the way AGA works,
z will certainly enter the archive (if the archive is full, z will enter and some
non-extremal point will be removed; since z extends the archive’s range in at
least one objective, AGA naturally requires that such a point enters the archive,
in order to promote the idea of a good representation of the entire Pareto front.
However, suppose that later on the point y is generated; it will certainly enter
the archive because it dominates z, and z will therefore be removed. This will
then cause AGA to update the grid parameters in such a way as to reduce the
represented range of objective 1, since the point in the archive worst on that
objective is now y. The crucial point is that it is possible for y to become lost
from the archive at some future iteration (since AGA can lose Pareto optimal
points). This would then allow z to enter again, creating a cycle. This cycle
of expanding and shrinking grid boundaries may repeat. This fact undermines

KTEX style file for Lecture Notes in Computer Science — documentation 19

Table 1. Results comparing the archives with the true Pareto front (PF) for the various
sequences in the case study. The ‘absolute’ value is calculated using Equation 5. The
comparative values are the R2 metric values (Equation 6). For AGA values are the
mean of 10 runs. The standard deviation of the absolute value is also given, in brackets

|algorithm || [A] [N] absolute |vs LTDZ1[vs LTDZ2| vs PF |

Sequence I: small PF
AGA 20 [20]0.7505 (< 10 °)[0.3371 0.0001 0.0000
LTDZ1 1 120 0.4134 - 0.-0.3370 -0.3371
LTDZ2 20 |20 0.7504 - - -0.0001
PF 1824 | — 0.7505 - - -
Sequence II: 3-objective small PF
AGA 20 [20]0.6246 (< 10 °)] 0.0369 0.0000 |-0.0001 ()
LTDZ1 5 120 0.5877 - -0.0368 -0.0369
LTDZ2 19 |20 0.6246 - - -0.0001
PF 78 | - 0.6247 - - -
Sequence III: highly non-uniform PF
AGA 20 [20]0.7505(< 107°) | 0.0184 0.0006 0.0000
LTDZ1 4 120 0.7321 - -0.0178 -0.0184
LTDZ2 18 |20 0.7499 - - -0.0006
PF 50 | - 0.7505 - - -
Sequence IV: discontinuous PF

AGA 20 [20]0.7503 (< 1075)] 0.1055 0.0063 -0.0002
LTDZ1 5 120 0.6448 - -0.0992 -0.1057
LTDZ2 19 |20 0.7440 - - -0.0065
PF 78 | - 0.7505 - - -

the convergence of AGA in the general (more than 2 objectives) case, since
convergence of the archive rests on convergence of the grid boundaries (see [6]
and [5] for more detailed analysis).

To see how much of a problem this behaviour is in practice, we used the
following 3-objective optimization problem:

fi=@=r)+r.cos(v.m/2). cos(w.7/2)

fa= (1 —=7r)+r.cos(v.m/2).sin(w.7/2)

fz=(1—r)+r.sin(v.w/2), where
r=0.01+0.99.u'/1°

and where u, v and w are decision variables in the interval [0,1). Like, that of the
previous sequence, the Pareto front is small compared to the objective space, so
cyclic behaviour of AGA can certainly occur. We used 30 bits to encode each
variable (u, v, and w) and generated a sequence by running PESA-II on the
problem for 1500 evaluations. This gave a sequence with 78 Pareto optima.
It is difficult to display the visual results on this problem so we just give the
quantitative results (Table 1). Clearly AGA has little difficulty in approximating
this set very accurately, even though non-Pareto optimal points are generated
outside the ranges of the PF during archiving of the sequence. To show that this

20 KTEX style file for Lecture Notes in Computer Science — documentation

99.7
99.6 | Y 1
(0] VoS
g , ,
S 995} 1
>
> |
2 994 | 1
>S5
o
o]
5 99.3 | ;
=
3
» 992 | l
o
S
99.1 l

99 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600

iterations

Fig. 5. The lower grid boundaries of AGA’s grid in objective space, fluctuating over
time on a 3-objective problem sequence

is happening we have plotted the lower boundary values of the adaptive grid
against evaluations in Figure 5. As expected, there are fluctuations, although
the values are tending towards the correct value of 99.99.

As in the previous sequence, LTDZ1 performs very poorly by comparison
with AGA, partly because its € value becomes too high early on and cannot be
reduced later. As for LTDZ2, even with several runs to tune the fixed € value,
its performance is not perceivably better than that of AGA (sse Table 1).

Sequence III: highly non-uniform spacing in the PF

Consider a sequence of nondominated points where some pairs are spaced much
(orders of magnitude) closer together than others. Adaptive e-dominance based
approaches will update the value of R (Equation 3) based on the extremal values
of the observed nondominated points, and by this € will also be set. Using this
method, all of the closely spaced points will be filtered out by the (relatively)
large € value. In contrast, adaptive grid methods do not take such drastic action
to avoid over-filling the archive. Only one point is ever removed using the adap-
tive grid methods, except when a point f dominates more than one member of
A. Thus, adaptive grid methods are better suited to these non-uniformly spaced
Pareto fronts.

To illustrate this phenomenon, we randomly generated a sequence of 500
points using the functions:

£ =227 4L 1yy®(10), and
£9 = 257 — 22" £ 14 (10), where
z® is uniformly randomly chosen from{0.0,0.1,0.2,...1.0},

I¥TEX style file for Lecture Notes in Computer Science — documentation 21

300 \
PF
280 r AGA ,
80 LTDzZz1 X
260 % :
240]
220 r 1
N
200]
180]
X
160]
140 r i
120 1 1 1 1 1
20 40 60 80 100 120

f1

Fig. 6. A sequence of points forming an exponentially spaced PF. The archives achieved
by AGA and LTDZ1 when N = 20 is used, compared to the true Pareto front (PF)
which has 50 points. Notice that AGA keeps many more points at the top left of the
PF so that it more accurately approximates the true PF. LTDZ1 is not able to do this

where U(y) is a uniformly random variate in [0,y).

We then applied the archiving algorithms AGA and LTDZ1 to this sequence,
and compared it to the Pareto front. The results are shown in Figure 6. As
before, quantitative results are given for this sequence in Table 1. They indicate
that AGA performs significantly better than both the e-based archivers.

Sequence IV: a discontinuous Pareto front

If the Pareto front is discontinuous this may cause problems to either AGA
or LTDZ1. If the nondominated points are concentrated only in small, isolated
regions then AGA’s grid may become ineffective at controlling the distribu-
tion of points. This is because within a grid region AGA has no control over
distribution—so if all points lie in just, say, two or three isolated grid regions
then we would expect the points to show a fairly random distribution at the fine
level, rather than an even one. For LTDZ1, the problems are even more serious,
however. As we have already seen, the setting of € is conservative: it assumes that
points may be distributed across the whole range of the objective space, with no
gaps. Thus, when there are gaps in the PF, LTDZ1 may obtain much fewer than
the desired number of points. This may severely affect the quality of the approx-
imation set achieved. Figure 7 presents results on a sequence of points, forming
a discontinuous Pareto front with three isolated regions. As predicted, AGA

22 KTEX style file for Lecture Notes in Computer Science — documentation

1 ‘
0.9
0.8
0.7
06]
o5f]
04f]
03|]
02t]
01}]
) ‘

f2

e

0 01 02 03 04 05 06 07 08 09 1
f1

Fig. 7. A sequence of points forming a discontinuous PF made up 200 points. The
archives achieved by AGA and LTDZ1 when N = 20 is used, compared to the true
Pareto front (PF). Because LTDZ1 estimates e based on the front being continuous, it
over-estimates how big it should be, and consequently only 4 points are found. AGA
correctly finds 20 points and distributes them relatively evenly between the isolated
parts of the PF

obtains the maximum number of points allowed and samples all three isolated
regions, but at the fine level its distribution of these points is somewhat uneven.
Nonetheless, its performance is far better than LTDZ1’s which only manages to
find four points, and shows a much poorer approximation of the sequence. AGA
also performs better than LTDZ2. Quantitative results are given in Table 1.

6 Concluding Discussion

Archiving algorithms are important components of search algorithms for Pareto
optimization for two main reasons. First, they store the points found so that
they can be presented at the end of a search run. Second, they can be used
as an on-line memory, used to help generate new points. Although, ideally we
would like to keep all Pareto optimal solutions encountered during a search, in
practice setting a bound on the archive’s capacity may be necessary or desir-
able. Both memory and computational overhead become important issues when
the archive’s capacity grows without bound. The computational overhead is a
particularly important constraint when points in the archive are to be used as
an on-line memory.

KTEX style file for Lecture Notes in Computer Science — documentation 23

So, given that limiting the archive’s size is a reasonable demand, what de-
sirable properties of an archive can be achieved? We have shown that certain
desirable properties are theoretically impossible in any archiving algorithm what-
ever: the number of points in the archive cannot, in general, be the minimum
of N, the capacity bound, and |F™*| the number of Pareto optimal solutions en-
countered; and it is not possible to guarantee an e-approximate set with € less
than k times the ideal minimum value. These results raise the question as to
whether, in practice, it is better to use an archiving algorithm with ‘guaranteed
convergence and diversity’ such as those proposed in [7], or algorithms which
do not offer these guarantees but employ mechanisms that merely ‘encourage’
diversity and convergence. We have focused particularly on the case where we
are not privileged with a priori knowledge of objective space or Pareto front
ranges. Then, on several sequences possessing particular features, we compared
the performance of LTDZ1 and AGA. Our findings suggest that, at least in these
scenarios, AGA archives a significantly better approximation to a sequence than
LTDZ1. The usual reason for this is that LTDZ1 is necessarily conservative in its
adaptation of € and so often ends up with far fewer points than desired, giving
a poor approximation set.

We also compared the performance of AGA to the non-adaptive e-Pareto set
approach, called LTDZ2 here, when the latter was run multiple times to find an
empirical setting of €. Even against this approach, AGA performs remarkably
well, with no statistical significance in its performance difference. If we had just
used Equation 3 to set the e value of LTDZ2, knowing the Pareto front ranges,
the performance of AGA would have been significantly better in a comparison.
Overall, this shows that even with prior knowledge of ranges, or even prior runs,
it is difficult to set € to give performance comparable to a single run of AGA.

Unfortunately, AGA is still not practically ideal. The fact that convergence
is not generally guaranteed is a weakness. A potentially better approach, being
considered now (see [4]), is the S metric archiving. This method has guaranteed
convergence in the sense that cyclic behaviour is not possible: so eventually the
archive stops changing given reasonable assumptions about the search space and
generating function. Furthermore, it pursues an archive which maximizes the
hypervolume of the dominated region—a measure which is one of the best unary
measures of approximation set quality. Future work will investigate further the
theoretical and practical performance of this promising method.

Acknowledgments

Joshua Knowles gratefully acknowledges the support of a European Commission
‘Marie Curie’ research fellowship, contract number HPMF-CT-2000-00992.

References

1. David W. Corne, Nick R. Jerram, Joshua D. Knowles, and Martin J. Oates. PESA-
II: Region-based Selection in Evolutionary Multiobjective Optimization. In Pro-
ceedings of the Genetic and Evolutionary Computation Conference (GECC0’2001),
pages 283-290, San Francisco, California, 2001. Morgan Kaufmann Publishers.

24

10.

11.

12.

KTEX style file for Lecture Notes in Computer Science — documentation

Mark Fleischer. The measure of Pareto optima: Applications to multi-objective
metaheuristics. In Carlos M. Fonseca et al., editor, Evolutionary Multi-Criterion
Optimization, Second International Conference, EMO 2003, number 2632 in LNCS,
pages 519-533. Springer, 2003.

Michael Pilegaard Hansen and Andrzej Jaszkiewicz. Evaluating the quality of
approximations to the non-dominated set. Technical Report IMM-REP-1998-7,
Technical University of Denmark, March 1998.

Joshua Knowles. Pareto archiving using the Lebesgue measure: Empirical obser-
vations. Technical report, IRIDIA, Université Libre de Bruxelles, Belgium, May
2003.

Joshua Knowles and David Corne. Properties of an adaptive archiving algorithm
for storing nondominated vectors. IEEE Transactions on Evolutionary Computa-
tion, 7(2):100-116, April 2003.

Joshua D. Knowles. Local-Search and Hybrid Evolutionary Algorithms for Pareto
Optimization. PhD thesis, The University of Reading, Department of Computer
Science, Reading, UK, January 2002.

Marco Laumanns, Lothar Thiele, Kalyanmoy Deb, and Eckart Zitzler. On the
Convergence and Diversity-Preservation Properties of Multi-Objective Evolution-
ary Algorithms. Technical Report 108, Computer Engineering and Networks Lab-
oratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich, Gloriastrasse
35, CH-8092 Zurich, Switzerland, May 2001.

Marco Laumanns, Lothar Thiele, Kalyanmoy Deb, and Eckart Zitzler. Combining
convergence and diversity in evolutionary multi-objective optimization. Evolution-
ary Computation, 10(3):263-282, Fall 2002.

Marco Laumanns, Lothar Thiele, Eckart Zitzler, and Kalyanmoy Deb. Archiving
with Guaranteed Convergence and Diversity in Multi-Objective Optimization. In
W. B. Langdon et al., editor, Proceedings of the Genetic and Evolutionary Compu-
tation Conference (GECCO’2002), pages 439447, San Francisco, California, July
2002. Morgan Kaufmann Publishers.

Giinter Rudolph and Alexandru Agapie. Convergence Properties of Some Multi-
Objective Evolutionary Algorithms. In Proceedings of the 2000 Conference on
Evolutionary Computation, volume 2, pages 1010-1016, Piscataway, New Jersey,
July 2000. IEEE Press.

Eckart Zitzler. Evolutionary Algorithms for Multiobjective Optimization: Methods
and Applications. PhD thesis, Swiss Federal Institute of Technology (ETH), Zurich,
Switzerland, November 1999.

Eckart Zitzler, Marco Laumanns, Lothar Thiele, Carlos M. Fonseca, and Viviane
Grunert da Fonseca. Why Quality Assessment of Multiobjective Optimizers Is
Difficult. In W. B. Langdon et al., editor, Proceedings of the Genetic and Evolu-
tionary Computation Conference (GECCO’2002), pages 666673, San Francisco,
California, July 2002. Morgan Kaufmann Publishers.

