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Summary. The concept of optimization—finding the extrema of a function that
maps candidate ‘solutions’ to scalar values of ‘quality’—is an extremely general and
useful idea that can be, and is, applied to innumerable problems in science, industry,
and commerce. However, the vast majority of ‘real’ optimization problems, whatever
their origins, comprise more than one objective; that is to say, ‘quality’ is actually
a vector, which may be composed of such distinct attributes as cost, performance,
profit, environmental impact, and so forth, which are often in mutual conflict. Until
relatively recently this uncomfortable truth has been (wilfully?) overlooked in the
sciences dealing with optimization, but now, increasingly, the idea of multiobjective
optimization is taking over the centre ground. Multiobjective optimization takes se-
riously the fact that in most problems the different components that describe the
quality of a candidate solution cannot be lumped together into one representative,
overall measure, at least not easily, and not before some understanding of the pos-
sible ‘tradeoffs’ available has been established. Hence a multiobjective optimization
algorithm is one which deals directly with a vector objective function and seeks to
find multiple solutions offering different, optimal tradeoffs of the multiple objectives.
This approach raises several unique issues in optimization algorithm design, which
we consider in this article, with a particular focus on memetic algorithms (MAs). We
summarize much of the relevant literature, attempting to be inclusive of relatively
unexplored ideas, highlight the most important considerations for the design of mul-
tiobjective MAs, and finally outline our visions for future research in this exciting
area.


1 Introduction


Many important problems arising in science, industry and commerce fall very
neatly into the ready-made category of optimization problems ; that is to say,
these problems are solved if we can simply find a ‘solution’ that maximizes
or minimizes some important and measurable property or attribute, such as
cost or profit. For example, we might want to find the set of routes that
minimizes the distance travelled by a fleet of delivery lorries; or to find the
tertiary structure of a trans-membrane protein that minimizes its free energy;
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or to find the portfolio of stocks that maximizes the expected profit over the
forthcoming year. Of course, solving these problems exactly might be very dif-
ficult or impossible in practice, but by applying one of numerous optimization
algorithms—memetic algorithms (MAs) being one very flexible and successful
possibility—very good solutions can often be found.


However, there is a caveat: maximizing or minimizing a single, lone at-
tribute can, in many cases, be a very bad thing to do. Consider designing
a car with the single objective of minimizing its weight: other desirable at-
tributes like safety, comfort, and capacity would be severely compromised as
a result. And so it is in many other generic problems: maximizing profit often
leads to compromises in environmental impact or customer satisfaction; min-
imizing production costs often leads to decreased reliability; and minimizing
planned time to completion of a project often leads to soaring costs for over-
running. Thus, it is easy to appreciate that most ‘real’ optimization problems
involve optimizing, simultaneously, more than one single attribute.


Now, given that most problems are as we’ve described—‘multiobjective’ in
nature—, what are the options for tackling them? There are basically three:
(1) ignore some of the attributes entirely and just optimize one that looks
most important; (2) lump all the objectives together by just adding them
up or multiplying them together and then optimize the resulting function;
or (3) apply a multiobjective algorithm that seeks to find all the solutions
that are nondominated (we define this later but, roughly speaking, nondom-
inated solutions are those that are optimal under some/any reasonable way
of combining the different objective functions into a single one). The first and
second options are very common and the third less so. However, (3) is rapidly
gaining popularity as it is more and more understood that (1) and (2) can
be very damaging in practice—solving the problem might be very satisfying
to the algorithm or MA practitioner, but the resulting solution may be far
from optimal when it is applied back in the real world. Thus, in this chapter,
we will argue that option (3)—seeking multiple, distinct solutions to a prob-
lem, conferring different tradeoffs of the objectives,—is the essence of true
multiobjective optimization (MOO).


Doing true multiobjective optimization with memetic algorithms requires
a few salient adaptations to the normal design principles. Clearly, since we
need to find multiple, distinct solutions, the design of multiobjective MAs will
be heavily affected by the need to encourage and preserve diversity. Indeed,
much of the research in evolutionary algorithms (EAs) for MOO has concerned
itself primarily with this issue, but with MAs the use of local search introduces
further complications for achieving diversity that must be resolved.


The goal of finding multiple solutions also dictates that the MA incor-
porate some means of storing the best solutions discovered. While MAs are
already endowed with a population, some research in EAs for MOO has found
that methods that exploit secondary populations, or archives, seem to per-
form better than single-population approaches, and elitism based on archives
appears to be particularly effective in improving search capability. Thus, ques-
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tions about how to control and use multiple populations (or non-fixed size
populations) are somewhat more relevant and pressing in MOO than they are
in ‘normal’ optimization.


A second key distinction of MOO, closely related to the need for multiple
solutions, is the inherent partial ordering of solutions in terms of their overall
quality, which characterises MOO. This impacts on many aspects of search
and how it should be conducted. In particular, the simple comparison of two
solutions is fraught with difficulties. Local search, which relies upon such com-
parisons being made, must be re-defined in some way, and there are several
competing possibilities.


There are also innumerable possibilities concerning the overall organization
of the search—how the set of tradeoff solutions (the nondominated set) is to be
built up, over time. Very coarsely, should we try to sweep across the objective
space from one ‘edge’ to the other, i.e. improving one combination of objectives
at a time, or should we more try to push the entire ‘surface’ down in parallel,
improving the whole currently nondominated set at once? In either case, what
is the best way to exploit the population(s) and the different local searchers
at our disposal?


In the remainder of this article, we will try to fill the reader in on the core
issues we have but sketched here, mapping out the little that is known and
has been tried so far, and speculating about where further research may be
most fruitful. In section 2, some MOO applications are outlined to give some
idea of their range and differing characteristics. The mathematical definition
of the MOO problem is then given, and Pareto optimization is described.
Section 3 visits a large number of metaheuristics for MOO and identifies
concepts and strategies that, we suggest, may be useful as components in
a memetic algorithm. In section 4, we elaborate on other issues in MOO
research that may impact on the design and application of multiobjective
MAs, including how to measure performance, how multiple populations can
be used, and available test functions. Section 5 provides a focused review of
existing MAs for MOO, while section 6 proposes some principles for designing
more advanced MAs. The last section considers future research directions and
gives some recommendations for immediate investigation.


2 A Brief Introduction to MOO


2.1 MAs and MOO: a good combination


The impressive record of memetic algorithms in producing high quality so-
lutions in combinatorial optimization and in real-world applications (e.g. see
page 220 [18]) is sometimes cited as a testament to their inherent effective-
ness or robustness as black-box searchers. However, since the advent of the No
Free Lunch theorems [109, 19, 21], we know that MAs, like any other search
algorithm, are only really good to the extent to which they can be ‘aligned’
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to the specific features of an optimization problem. Nonetheless, MAs, like
their forebears, EAs, do have one unassailable advantage over other more tra-
ditional search techniques: that is their flexibility. EAs and MAs impose no
requirement for a problem to be formulated in a particular constraint lan-
guage, and do not ask for the function to be differentiable, continuous, linear,
separable, or of any particular data-type. Rather, they can be applied to any
problem for which the following are available: (1) some (almost) any way to
encode a candidate solution to the problem, and (2) some means of computing
the quality of any such encoded solution—the so-called objective function.


This flexibility has important advantages. As has been observed in [83],
there are basically two ways to solve optimization problems: one is to choose
some traditional technique and then simplify or otherwise alter the problem
formulation to allow the problem to be tackled using the chosen technique;
the other is to leave the problem formulation in its original form and use an
EA, MA, or other metaheuristic. Clearly, the latter is preferable because the
answer one arrives at is (at least) to the right question, not to a question
which may have been distorted (perhaps so much so as to be irrelevant to
the real question), simply to fit in with the requirements of a chosen search
method.


In [19], the advantages of ‘leaving the problem alone’ (and applying a
flexible search technique) was reiterated and used to make a further, com-
pelling point. How often are optimization problems in the real world (or from
real-world origins) squeezed and stretched into the strait-jacket of a single-
objective formulation, when their natural formulation is to have multiple ob-
jectives? Doesn’t the same observation of [83] apply in this case, too? What
is the effect of throwing away objectives or of combining them together as a
weighted, linear sum, as is so often done? If we are to believe the EA/MA
mantra about tackling problems in their original formulation, shouldn’t we be
tackling multiobjective problems in the same way?


Of course, the answer is that we should. And there are two reasons: (1)
simplifying a problem does change it irrevocably and make it irrelevant in
many cases, and (2) with EAs, including MAs, we have the capability to
tackle multiobjective problems in their native form and indeed the cost of
doing so is demonstrably not high.


2.2 Some example MOO problems


One could argue that engineering is the art of finding the good compromise;
and indeed many problems encountered in engineering do have multiple and
distinct objectives. Fortunately, we are now gradually seeing that the op-
timization problems being formulated in various engineering sub-disciplines
are respecting the multiobjective nature of the underlying problem. For ex-
ample, civil engineering tasks such as designing water networks are being
seen as multiobjective optimization problems [48, 13, 14, 15], as is power
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distribution [3, 4, 6, 79], and various telecommunications network optimiza-
tion tasks [73, 72]. And, at the other end of the engineering spectrum,
the design of various types of controllers has been aided by such an ap-
proach [2, 8, 104, 24, 38, 41] for some years now.


Scheduling and timetabling are two huge classes of planning problem that
can involve a multitude of different objectives. In scheduling, problems tackled
in the academic literature often consider only one objective: minimizing the
makespan—the total time needed to complete all jobs. However, the reality of
scheduling in factories, space programmes, engineering projects and so forth
is far more complex. Reducing the makespan is undoubtedly one objective
but other important ones are mean and total tardiness, mean flow time, mean
waiting time, and the mean and total completion time. In addition to these
objectives there are often a number of constraints. If all these constraints are
modelled as ‘hard’, the resulting schedules can be brittle and sub-optimal.
By softening some of these constraints (those which are not really inviolable)
and treating them as further objectives, great gains can sometimes be made
for minute sacrifices elsewhere. Frequently, the robustness of a schedule to
unforeseen changes, such as late arrival times of materials, machine failures
and so forth, should also be modelled. Making robustness an objective enables
planners to consider fully the tradeoffs between allowing some slack, versus
‘risking it’ and going for the absolutely optimal schedule.


Much the same can be said for timetabling, particularly with regard to
constraints. More often than not, timetabling problems are tackled as con-
straint satisfaction problems in which hard constraints must be satisfied and
soft constraint violations should be minimized. However, the latter are usu-
ally just added together, leading to absurd situations, where, for example, the
optimization algorithm ‘chooses’ that nineteen students having consecutive
exams is better than 14 having to get up early one morning, together with
6 invigilators working through their lunch break! Fortunately, the recogni-
tion that these problems are multiobjective, and need to be tackled as such,
is leading to more research in this vein: e.g. [46, 51, 59, 62] in scheduling,
and [91, 12] in timetabling.


There are a whole host of other varied MOO applications emerging on a
more and more frequent basis: from the training of neural networks [1, 11, 111,
93], to various design applications [92, 95, 5], to dealing with the challenges of
dynamic optimization [110, 35]. The short survey presented here scratches but
the surface, and the reader is directed to [32] and [16] for more comprehensive
reviews.


2.3 Basic MOO definitions


An unconstrained multiobjective optimization problem can be formulated as


“minimize” z = f(x)
where f(x) = (f1(x), f2(x), . . . , fk(x))
subject to x ∈ X


(1)
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Fig. 1. An illustration of a multiobjective optimization problem with a search space
X, a vector fitness function f that maps solutions in X to objective vectors made up
of two component ‘costs’ z1 and z2 to be minimized. The solid objective vectors are
nondominated and comprise the Pareto front. The solutions corresponding to these
points are Pareto optimal. The relation between the three objective vectors A, B,
and C is A < B < C


involving k ≥ 2 different objective functions fi : <n 7→ < to be minimized
simultaneously. Note that if fi is to be maximized, it is equivalent to minimize
−fi.


The term “minimize” appears in quotes in (1) to emphasise that the exact
meaning of the vector minimization must be specified before optimization can
be performed. That is, we need to specify a binary relation on objective vectors
in order to form a (partial) ordering of them. Although different possibilities
exist, in this chapter we will be concerned only with the component-wise order
relation, which forms the basis for Pareto optimization as defined below (also
see figure 1).


Definition 1 The component-wise order relation < is defined as zr < zs ⇔
zri ≤ zsi , i = 1..k ∧ zr 6= zs.


Definition 2 A solution x∗ ∈ X is called Pareto optimal if there is no
x ∈ X such that f(x) < f(x∗). If x∗ is Pareto optimal, z∗ = f(x∗) is called
(globally) nondominated. The set of all Pareto optima is called the Pareto
optimal set, and the set of all nondominated objective vectors is called the
Pareto front (PF). Finding an approximation to either the Pareto optimal
set or the Pareto front is called Pareto optimization.


More generally, Miettinen [84] defines solving a multiobjective problem as
finding a Pareto optimal solution to (1) that also satisfies a decision maker
(DM), who knows or understands something more about the problem. Such
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a definition brings into play the science of multi-criteria decision making
(MCDM), where methods are used to model the preferences of decision mak-
ers in order to aid them in comparing and choosing solutions. Thus, according
to this definition, solving a multiobjective problem, involves both search and
decision making, and to accomplish this, one of three general approaches is
normally taken:


1. A priori optimization
2. A posteriori optimization
3. Interactive optimization


In a priori optimization, the decision maker is consulted before search
and a mathematical model of her preferences is constructed (following one of
several regimes for this), and used in the search to evaluate all solutions. The
best solution found, according to the model, is returned and represents the
outcome of the optimization process with no further input from the DM. The
drawback with such methods is obvious: decision makers find it very hard
to give adequate models determining which solutions they prefer, without
knowing or having any idea what it is possible to attain, and how much one
objective may have to be sacrificed with respect to others. Furthermore, notice
that this method, in a sense, places all the additional work associated with
MOO, firmly with the DM, and leaves the search problem as seen by a search
algorithm, in much the same form as for normal optimization, i.e. one solution
must be found and all solutions are comparable (using the DM’s a priori pref-
erence model). For this reason, we do not consider a priori optimization any
further in this article, as standard MAs could be used (or trivially adapted)
to this case.


A posteriori optimization approaches the multiobjective problem from the
reverse angle. First, search is conducted to find the Pareto optimal set (or an
approximation/representation thereof) and the DM will then choose between
these alternatives by inspection (with or without using some mathematical
decision-making aid). The disadvantage (according to [84]) of this approach
is the difficulty DMs may have in visualizing the different alternatives and
choosing between them, particularly if a large number have been generated.
Nonetheless, the problem of decision-making is in our opinion definitely aided
by knowing something about what solutions are possible. Thus, a posteriori
methods move at least some of the work from the DM to the search algorithm,
which now is given the task of searching for multiple different solutions. Ex-
actly what solutions the search algorithm finds will depend upon how, inter-
nally, it evaluates solutions, but it should be oriented towards finding Pareto
optima. And in order to give the DM what she needs—real alternatives—the
Pareto optima should not be all in one region of the objective space, but
should be spread as far and wide as possible. (Being more precise than this is
problematic as seen in section 4.1 where we will discuss how to evaluate differ-
ent approximations to Pareto fronts). In any case, a posteriori optimization is
the method we advocate in this article, in preference to a priori methods, and
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Fig. 2. Illustration of the drawbacks of scalarizing objectives using the weighted sum
approach. The figures show a Pareto front and lines of equal cost under a weighted
sum. In the left figure, A is the optimal solution. A slight change to the weights,
slightly altering the angle of the isocost lines, as shown in the figure on the right,
makes C the optimal solution. The nondominated solution B is ‘non-supported’ –
not on the convex hull of the Pareto front. Therefore it is not optimal under any
linear combination of the objectives


we assume in the remainder of the article that finding a ‘good’ approximation
to the whole Pareto front is the goal of multiobjective optimization, leaving
decision-making as a separate issue.


The interactive methods of search combine a priori and a posteriori meth-
ods in an iterative funnelling of goals, preferences and solutions discovered.
These methods are probably preferable to a posteriori methods, since they
limit the choices shown to a DM at any instant, and focus the search on a
smaller area. However, we do not make more than a passing reference to them
in what follows, for two reasons. First, because, so far, relatively little research
in the EA community has been directed to this general approach, so it is diffi-
cult to make judgments or recommendations. And more importantly, because
effectively, from a search point of view, the problem is still one of finding a
set of alternatives, albeit reduced in size, and so we can regard it as a special
case of a posteriori optimization.


2.4 An overview of methods for generating a Pareto front


What methods can we use to build up an approximation to the true Pareto
front (our goal as outlined above)? Leaving aside, for the moment, the finer
details of the overall algorithm design, the initial question is simply: how
can any solution be evaluated so that some form of heuristic search can be
effected?


There are a great variety of answers possible. One large family of meth-
ods is to replace (1) with some parameterized single scalarizing function to
minimize, such as a weighted sum of the objectives:
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Fig. 3. The figure on the left shows a Pareto front where even a large change in the
weights of a weighted sum scalarization would result in finding the same solution.
On the right, the weighted Tchebycheff problem (equation 3) can find non-supported
Pareto optima, as shown. Here, the reference point is taken as the origin


minimize
∑k
i=1 wi.fi(x) (2)


where we usually specify
∑


k wi = 1 and wi ≥ 0, for i ∈ 1..k. Then, by
varying the weighting parameters wi in some systematic way, a representation
of the PF can be built up. The weighted sum is only one possible method
in this family of scalarizing methods and has some serious drawbacks. Only
supported solutions—those on the convex hull of the PF—will be generated by
minimizing the weighted sum. Furthermore, a small change in the weights can
cause big changes in the objective vectors (see figure 2); while, on the other
hand, very big changes in the weights may lead to the same or very similar
vectors (figure 3, left). Other methods in this family that can generate the
non-supported solutions are possible, e.g. the weighted Tchebycheff problem:


minimize maxi∈1..k[wi|fi(x) − z∗i | ] (3)


where z∗ is a reference point beyond the ideal point, i.e. each of its compo-
nents is less than the minimum value possible on the corresponding objective.
With such a reference point correctly specified, every Pareto optimal solution
minimizes the function for some particular value of the weights. However, as
with the weighted sum, in order to achieve an ‘even sampling’ of the Pareto
front, care must be taken with how the weights are adjusted.


Other parameterized scalarizing methods include the epsilon-constraint
method and achievement scalarizing functions: see [84] for further details.
Notice that these methods are suitable for exact algorithms, local searchers
and so forth, since they effectively transform the problem back into a single-
objective problem temporarily. So, for MAs, they may well be used as part of
the overall algorithm.
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With many metaheuristics, particularly traditional EAs, however, it is not
necessary to have an explicit function to minimize, but only some means
of estimating relative fitness (as in EA populations) or accepting/rejecting
neighbour solutions (as in e.g., simulated annealing and tabu search). This
opens the door to at least two other distinct approaches. One is to consider
alternately one objective function then another; and there are various ways
this could be organized (see section 3.5). The other approach is to use some
form of relative ranking of solutions in terms of Pareto dominance (section 3.1
and 3.2). The latter is the most favoured approach in the EA community be-
cause it naturally suits population-based algorithms and avoids the necessity
of specifying weights, normalizing objectives, and setting reference points.


3 A Whistle-stop Tour of Metaheuristics for MOO


In the last section, we discussed the reasons why we will restrict our working
definition of MOO to be the problem of generating an approximation to the
entire PF, ignoring methods that seek only a single solution. Following this,
we went on to outline three general ways in which solutions could be evaluated
in a search algorithm in order to effect optimization. In this section, we will
expand greatly on this outline as we tour a host of metaheuristics for MOO.
In addition, we will begin to appreciate two other related issues: how to build
up the Pareto front during search (i.e. how to ensure a spread of solutions
across it); and how memory of these solutions is organized to exploit them
during search and/or to store them for presentation at the termination of the
search process.


In the following we attempt a fairly broad survey of MOO algorithms
in order to furnish the reader with a library of ‘components’ from which
MAs could be constructed. We cluster different algorithms together in ad-hoc
categories, as we review them.


3.1 Non-elitist EAs using dominance ranking


Goldberg in a short discussion in [44] suggested that multiple objectives could
be handled in an EA using a ranking procedure to assign relative fitness to
the individuals in a population, based on their relative Pareto dominance. The
procedure, known as nondominated sorting, has become one of the bedrocks
of the whole EMOO field. It is described and depicted in Figure 4. Although
Goldberg did not implement it himself, it was not long before it gave rise
to the popular NSGA [100]. The contemporaneous MOGA, of Fonseca and
Fleming, [39] uses a slightly different ranking procedure based on counting
the number of individuals that dominate each member of the population but
otherwise the idea is very much the same.


Both NSGA and MOGA also employ fitness sharing [45], a procedure that
reduces the effective fitness of an individual in relation to the number of other







Multiobjective Memetic Algorithms 11


z1


z2
1


1


1
1


2


4


2


3


1


2


Nondominated sorting


z1


z2
1


1


1
1


2


6


3


4


1


3


Nondominated ranking


Fig. 4. On the left, individuals in a population are assigned dummy fitness values
using Goldberg’s nondominated sorting scheme. In this, successive iterations of the
sorting procedure identify, and remove from further consideration, the nondominated
set of solutions. A dummy fitness of 1 is assigned to the first set of solutions removed,
and then fitness 2, and so on, ‘peeling off’ layers of mutually nondominated solutions.
On the right, individuals in the same population are assigned fitness values using
MOGA-style ranking, where fitness is 1+ the number of dominating solutions. Note,
in both schemes, lower values are associated with greater fitness in the sense of
reproductive opportunity or survival chances


individuals that occupy the same ‘niche’. In MOO, the niche is often defined
by the ‘distance’ of solutions to one another in the objective space, though
parameter space niching may also be used. Sharing and other methods of
niching have to be used in dominance-ranking MOEAs in order to encourage
a spread of solutions in the objective space. Some objective-space niching
methods are depicted schematically in Figure 5. Both NSGA and MOGA use
similar methods to convert the shared fitness value to actual reproductive
opportunity: a ranking-based selection.


The niched Pareto GA (NPGA) of Horn and Nafpliotis [53] uses, instead,
tournament selection. In addition to the two individuals competing in each
tournament, a sample of other individuals is used to estimate the dominance
rank of the two individuals. In the case of a tie, again, fitness sharing was
applied.


These EAs, NSGA, MOGA and NPGA, represent a trio that were tested
and applied to more problems than any preceding algorithms for MOO, and
pushed forward immensely the popularity and development of the evolution-
ary multiobjective optimization (EMOO) field. Most MOEAs today still use
some form of dominance ranking of solutions, albeit often combined with
elitism, and some form of niching to encourage diversity.
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Fig. 5. Schematics depicting the different forms of niching used in various MOEAs
to encourage diversity in the objective space; nondominated solutions are shown
solid, and dominated ones are in outline. (a) fitness sharing (as used in NSGA and
MOGA) reduces the fitness of an individual falling within another’s niche (dashed
circles), the radius being defined explicitly by a parameter. (b) NSGA-II crowding
ranks solutions by measuring the distance of it’s nearest nondominated neighbours,
in each objective. (c) a grid is used in PAES, PESA and PESA-II, to estimate
crowding: individuals in crowded grid regions have reduced chances of selection. (d)
in ε-dominance archiving, a solution dominates a region just beyond itself, specified
by the ε parameter so that the shaded region is forbidden — thus new nondominated
solutions very nearby to those shown would not enter the archive


3.2 Elitist EAs using dominance ranking


Elitism in the EA terminology means the retention of good parents in the
population from one generation to the next, to allow them to take part in
selection and reproduction more than once and across generations.
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The first multiobjective evolutionary algorithms employing elitism seem
to have appeared at approximately the same time as MOGA, NSGA, and
NPGA were put forward, around 1993-4 as reviewed in detail in [52]. In some
elitist MOEAs, the strategy of elitism is combined with the maintenance of
an ‘external population’ of solutions that are nondominated among all those
found so far. Several early schemes are discussed in [112] but the first elitist
MOEA paper to be published in the mainstream evolutionary computation
literature was [94]. In this work, Parks and Miller describe a MOEA that
maintains an ‘archive’ of nondominated solutions, similar to a store of all
nondominated solutions evaluated, but limited in size: members of the main
population only enter the archive if they are sufficiently dissimilar from any
already stored. Reproductive selection takes parents from both the main pop-
ulation and the archive. The authors investigate the effects of different degrees
of selection from each, and also different strategies for selecting from amongst
the archive, including how long individuals have remained there.


At around the same time Zitzler and Thiele proposed what is to date one
of the most popular of all MOEAs: the strength Pareto EA (SPEA) [113].
It uses two populations: an internal population, and an external population
consisting of a limited number of nondominated solutions. In each generation,
the external population is updated by two processes: addition of new nondom-
inated individuals coming from the internal population (with removal of any
solutions that consequently become dominated); and removal of solutions by
objective-space clustering, to maintain a bound on the population’s size. The
new internal population is then generated by selection from the union of the
two populations, and then by applying variation operators. The novelty, and
perhaps the efficacy, of SPEA derives from the way the internal and exter-
nal population interact in the fitness assignment step. In this, each external
population member is first awarded a strength, proportional to the number
of internal population members it dominates. Then each internal population
member is assigned a dummy fitness based on the sum of the strengths of
the external population members that dominate it. Binary tournament selec-
tion with replacement is used based on the dummy fitness/strengths of the
combined populations. This fitness assignment strategy is a co-evolutionary
approach between two distinct populations and its purpose is to bias selection
towards individuals with a lower dominance rank and that inhabit relatively
unpopulated ‘niches’. The niches in SPEA are governed by the position of the
nondominated individuals, and these are clustered so should themselves be
well-distributed.


Numerous other elitist MOEAs exist in the literature, offering slightly
differing ways of assigning fitness, choosing from a main population and an
archive, and encouraging or preserving diversity. Regarding the latter, a trend
towards self-adaptive niching (see Figure 5) has established itself with SPEA,
PAES [73], NSGA-II [26], and PESA [20], amongst others, to avoid the ne-
cessity of setting niche sizes in the objective space, a problem with early
algorithms such as MOGA and NSGA. Control of the degree of elitism has
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Fig. 6. Schematics depicting the different strategies employed by different local
search metaheuristics, as described in section 3.3


also been investigated, e.g. in [27], and there has also been a trend towards
lower computationally complexity, as evidenced by PAES, NSGA-II and the
micro-GA [17]. More efficient data structures for ranking and niching avail-
able now [64] should make the current breed of elitist MOEAs a good starting
point for designing good MAs for MOO.


3.3 Local search algorithms using scalarizing functions


One of the earliest papers on local-search metaheuristics for MOO is [99],
which proposes and investigates modifications to simulated annealing in order
to tackle the multiobjective case. A number of alternative acceptance criteria
are considered, including those based on Pareto dominance, but the preferred
strategy combines two weight-based scalarizing functions. In order to sam-
ple different Pareto optima during one run of the algorithm, the weights for
each objective are slowly modified, at each fixed temperature, using a purely
random (non-adaptive) scheme.


The MOSA method [107] follows Serafini regarding the modification of
the SA acceptance function, but uses a different approach to building up the
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approximation to the Pareto set. Where Serafini’s approach varied the weights
of the scalarizing function as the cooling occurred, MOSA method works by
executing (effectively) separate runs of SA, each run using its own unique
weight vector, and archiving all of the nondominated solutions found.


A population-based version of Serafini’s SA is proposed and tested in [23].
The Pareto simulated annealing algorithm, PSA, performs each step of the
SA algorithm ‘in parallel’ on each independent member of a population (N.B.
the members are not in competition: there is no selection step), and each
member carries with it its own weighting vector. Of particular note is the fact
that the members of the population co-operate through an innovative adaptive
scheme for setting their individual objective weights, in order to achieve a good
distribution of solutions in the objective space. In this scheme, each member
of the population continually adjusts its own weight vector to encourage it to
move away from the nearest neighbour solution in the objective space.


These three SA algorithms, Serafini’s SA, MOSA method, and PSA, il-
lustrate three different ways to organize the building up of a Pareto front,
respectively: (1) use a single solution and improve it, letting it drift up and
down the PF via the use of randomly changing scalarizing weights; (2) use
separate, independent runs and improve a single solution towards the PF,
each run using a unique direction; (3) use a population of solutions and try
to improve them all in parallel, at the same time encouraging them to spread
out in the objective space. These alternatives are illustrated respectively in
Figure 6 (a),(b),(c).


The idea of adaptively setting the weight vectors of individuals in a popu-
lation, as used in PSA, is also used and extended in a tabu search algorithm,
called MOTS [49]. In this, an initial population of points is improved in par-
allel, much as in PSA, but using a tabu search acceptance criterion. MOTS
has another notable feature of particular relevance to MA design: it uses an
adaptive population size based on the current nondominance rank of each
member of the population. When the average of this rank is very low, it indi-
cates that the members of the population are already well-spread (since few
dominate each other), so the population size is increased in order to be able
to cover more of the Pareto front. If the rank becomes too high this indicates
that solutions are overlapping each other in objective space, and hence the
population size is decreased—see figure 6(d).


Most recently, [90] describes a generic local search-based procedure for bi-
objective problems, the two-phase local search (2PLS). In this approach the
so-called ‘first phase’ applies local search to the problem, considering only
one objective in isolation. When a good local optimum has been found, the
‘second phase’ begins. It uses the previous good solution as a starting solution
for a new local search based on a scalarizing of the two objectives. Once a
good solution has been found, the weights of scalarization are adjusted and
the LS is again applied, again using the previous solution as a starting solu-
tion. Thus, a ‘chain’ of LS runs is applied, until a specified number of weights
has been completed and the algorithm terminates (figure 6(e)). Depending
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on the problem, the weights may be adjusted gradually or randomly. For the
multiobjective TSP it is shown that gradual changes in the weights leads to
good performance. In a slight variation to the algorithm, called the Pareto
double two phase local search (PD2PLS), two first phases are used, one for
each objective, and subsequently the best solution returned by each LS run
is augmented using a search for nondominated solutions in its neighbourhood
(figure 6(f)). This increases the number of nondominated solutions found by
the algorithm with little overhead in time. Overall, the 2PLS and PD2PLS
algorithms exhibit high performance on benchmark multiobjective combinato-
rial optimization problems, and are thus worthy contenders as subroutines for
use within an MA for MOO, although versions for more than two objectives
are needed.


3.4 Model-based searchers using dominance ranking


Model-based search is a name for a class of algorithms that employ some
kind of statistical model of the distribution of remembered good solutions in
order to generate new solutions. They can be seen as a development of EAs,
in which recombination is replaced by a more statistically unbiased way of
sampling from the components of known good solutions. Examples of model-
based search algorithms are population-based incremental learning (PBIL),
univariate distribution algorithms (UDAs), ant-colony optimization (ACO),
Bayesian optimization algorithms (BOAs), and linkage-learning EAs. Recently
a number of attempts at extending model-based search to the multiobjective
case have been made, and like most MOEAs, they use the dominance ranking
(see figure 4) to evaluate solution quality.


Straddling the middle-ground between a standard EA and a model-based
search, the messy genetic algorithm, which attempts to learn explicit ‘building
blocks’ for crossover to operate with, has been extended to the MOO case with
the MOMGA and MOMGA-II algorithms [108, 115].


A step further away from standard, recognisable EAs, are algorithms
that replace recombination altogether by using instead an explicit proba-
bility distribution over solution components, in order to generate new so-
lutions. Several different attempts have been made at adapting Bayesian
optimization algorithms (BOAs) and similar variants, to the multiobjective
case [65, 80, 98, 106]. In the models proposed in [106], it is found that a fac-
torization based on clusters in the objective space is necessary to obtain a
good spread across the Pareto front. This results in an algorithm that is quite
similar to the population-based ACO [47], described below, except that here
the model is based only on the current population and not on a selection from
a store of all nondominated solutions. The approach of [80] is a little different:
instead of a mixture of clustered univariate distributions, a binary decision
tree is used to model the conditional probabilities of good solution compo-
nents. In order to encourage this model to generate sufficient diversity in the
objective space, the selection step is based on ε-dominance [82] (see figure 5),
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whereby solutions that are very similar tend to ε-dominate each other and
will not be selected.


Ant colony optimization [30], is an agent-based search paradigm, partic-
ularly suited for constrained combinatorial optimization. Briefly, in this ap-
proach, candidate solutions are constructed ‘component by component’ by the
choices made by ‘ants’ as they walk over a solution construction graph. At
each step of a solution construction, the components available for the ants
to select have associated with them a particular desirability, which biases the
selection. This bias is mediated through the concentration of pheromone on
the nodes or edges of the construction graph. In the usual implementations
of ACO, the initially random pheromone levels change gradually via two pro-
cesses: depositing of pheromone on the components making up a very good
solution whenever one is found, and evaporation of pheromone, as a forget-
ting mechanism to remove the influence of older solutions. In population-based
ACO, no evaporation is used, and instead a population of good solutions is
always stored. Whenever a solution in the population is replaced by a new
one, the pheromone trails associated with the old one are entirely removed
from the construction graph, and the new member of the population deposits
its pheromone instead. In [47], population-based ACO is adapted to the mul-
tiobjective case. This is achieved by making use of a store of all nondominated
solutions found, and periodically choosing a subset of this to act as a tem-
porary population. Promotion of diversity in the objective space is achieved
in two ways: (1) the members of a temporary population are selected from
the nondominated set based on their proximity to one another in the objec-
tive space (so there is a kind of restricted-mating or island-model effect); and
(2) each objective has its own pheromone and the selection of components is
governed by a weighted sum over the different pheromone levels—the weights
being determined by the location, in objective space, of the current temporary
population, relative to the entire nondominated set.


3.5 Algorithms using alternating objective functions


Schaffer is widely regarded as having started the field of evolutionary mul-
tiobjective optimization with his seminal paper on the vector evaluated ge-
netic algorithm (VEGA) [97]. This was a true attempt at the evolution of
multiple nondominated solutions concurrently in a single EA run, and the
strategy was aimed at treating possibly non-commensurable objectives. Thus,
aggregation of objectives was ruled out in favour of a selection procedure that
treated each objective separately and alternately. As explained in [40], the ap-
proach is, however, effectively assigning reproduction opportunities (fitness)
as a weighted linear function of the objective functions, albeit it implicitly
adapts the weighting to favour the objective which is ‘lagging’ behind. This
behaviour means that on problems with concave Pareto fronts, ‘speciation’ oc-
curs, meaning that only solutions which do well on a single objective are found,
while compromise or middling solutions do not tend to survive. Another early
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approach, this time using evolution strategies (ESs) as the basis, was proposed
by Kursawe [78]. The paper included some interesting early ideas about how
to deal with non-commensurable objectives but the algorithm proposed has
not been tested thoroughly to date.


Nearly ten years younger than the latter, [102], describes one of the first
distributed EAs for MOO. It employs three separate but interacting popula-
tions: a main population and two islands, with the main population accepting
immigrants from the islands. The performance of three strategies were com-
pared. One strategy is to use homogeneous populations, each evolving indi-
viduals using the dominance ranking for fitness assignment. The second is to
use heterogeneous islands, each evolving individuals to optimize a different
objective, while the main population is still evolved using dominance ranking.
The third is the same as the second but restarts are additionally used in the
island populations. Testing on a number of scheduling problems revealed the
latter to be consistently and significantly the most effective and efficient of
the three strategies.


Gambardellaet al. use a similar kind of heterogeneous, co-operative ap-
proach in their ant-colony optimization algorithm for a vehicle routing prob-
lem [42]. The problem tackled has two objectives: to minimize the number of
vehicles needed to visit a set of customers with particular time window con-
straints; and to minimize the total time to complete the visits. To achieve this,
two separate ant colonies work pseudo-independently and in parallel. Starting
from a heuristically generated feasible solution, one colony attempts to mini-
mize the number of constraint violations when one fewer vehicle is used than
in the current best solution, while the other colony attempts to reduce the
total time, given the current best number of vehicles. Feasible improvements
made by either colony are used to update the current best solution (which is
used by both colonies to direct construction of candidate solutions). In the
case that the colony using one fewer vehicles finds a feasible solution, both
ant colonies are restarted from scratch, with the reduced number of vehicles.


3.6 Other approaches


One MOO approach which stands very much on its own is a method proposed
in [37]. The originality of the approach lies in the way the whole multiobjec-
tive optimization problem is viewed. In every other approach outlined above,
whether it be population-based, model-based, or a local search, it is individ-
ual solutions that are evaluated, and the fitter ones somehow utilised. By
contrast, [37] proposes evaluating the whole current population of solutions
in toto and using this scalar quantity in an acceptance function. For example,
simulated annealing in this scheme would work by applying some measure
(and Fleischer proposes the Lebesgue integral of the dominated region – see
figure 7) over a population of current solutions. When a neighbour solution
of one of the population is generated, it is accepted modulo the change in the
Lebesgue measure of the whole population. Fleischer points out that since the
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Fig. 7. The Lebesgue measure (or S metric) of a nondominated approximation set
is a measure of the hypervolume dominated by it (shaded region), with respect to
some bounding point (here shown by an X). The maximum of the Lebesgue measure
corresponds to the Pareto front


maximum of the Lebesgue integral is the Pareto optimal set (provided the
number of solutions is large enough), a simulated annealing (for example) op-
timizing this measure provably converges in probability to the Pareto optimal
set.


4 Going Further: Issues and Methods


We have seen in the last section a variety of metaheuristic approaches to
MOO, illustrating some of the basic principles of how to assign fitness and
maintain diverse ‘populations’ of solutions. These are the basic pre-requisites
for MAs for MOO, however a number of further issues present themselves.
In this section we briefly discuss the current thinking on some of these other
issues.


4.1 Performance measures in MOO


If one is developing or using an algorithm for optimization it almost goes
without saying that there should be some way to measure its performance.
Indeed, if we are to compare algorithms and improve them we really must
first be able to define some means of assessing them. In single-objective op-
timization it is a relatively simple case of measuring the quality of solution
obtained in fixed time, or alternatively the time taken to obtain fixed quality
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Fig. 8. On the left, two sets A and B, where A outperforms B, since every vector in
B is dominated by at least one in A. On the right, two sets that are incomparable—
neither is better under the minimal assumptions of Pareto optimization


– and quality and time can themselves be defined unequivocally in some con-
venient way. In MOO the situation is the same regarding the time aspect of
performance assessment but the quality aspect is clearly more difficult. Recall
that the standard goal of MOO (as far as we are concerned) is to approximate
the true Pareto optimal set, and hence the outcome of the search is not one
best solution, but a set of solutions, each of which has not one, but multiple
dimensions of quality. We call these approximation sets, and it is clear that
approximation sets cannot be totally ordered by quality, (see figure 8), if we
remain loyal to the minimal assumptions of Pareto optimization. Nonetheless,
a partial order of all approximation sets does exist, so it is possible to say that
one set is better than another for some pairs, while others are incomparable.


The partial ordering of approximation sets is sometimes unsatisfying be-
cause it, of itself, does not enable an approximation set to be evaluated in
isolation. For this reason, practitioners sometimes (often implicitly) adopt an
ad hoc definition of a ‘good approximation set’ as one exhibiting one or more
of: proximity to the true PF; extent in the objective space; and a good or even
distribution—and use measures for evaluating these properties. The problem
with such an approach (if not done with great care and thought) is that these
measures can conflict utterly with the stated goal of approximating the PF.
This problem is illustrated in Figure 9.


If one wants to really do Pareto optimization, and needs a unary measure
of approximation set quality, the fact that there is a true partial ordering
of all approximation sets (under Pareto optimization assumptions) demands
that good or reliable measures of quality respect this ordering in some way.
Using this fact, it is possible to assess how useful and reliable are different
potential measures of approximation set quality. If a measure can judge an
approximation set A to be better than B, when the converse is true, for
some pair of sets A and B, then the measure is, in a sense, unreliable and
fairly useless. On the other hand if a measure never states that A is better
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Fig. 9. A Pareto front and three approximation sets, A, B, and C. Depending on
the measure used A, B, or C might be considered the best, and even better than
the PF! If a measure of ‘well-distributednes’ is used B is best, better even than the
PF. If a measure of proximity to the PF is used, C is best, even though B is just as
close in parts, and if extent in objective space is measured, A is best


than B when the reverse is true, then it may be of some use, even if it does
not detect all positive cases. More useful still, is if it always detects positive
cases correctly but sometimes judges one set better when they are, in fact,
incomparable. The ideal situation is when a measure always detects A better
than B when it is the case, and never gives a false positive, when it is not.


A plethora of different measures for overall or specific aspects of MOO
performance are described in the EMOO literature but it is not until rela-
tively recently that some researchers have begun to critically assess them.
Most notably, Zitzler et al. [114] give an extensive treatment of performance
measures in MOO, using a framework that formalizes the notion of respecting
the true partial ordering of approximation sets, as described above. A key
result of [114] is that no unary measure (i.e. one taking just one approxima-
tion set as input, and returning a number or vector of numbers) whatever,
including any finite combination of unary measures, can detect reliably when
one approximation set is better than another, without giving false positives.
Such results underline the necessity of thinking very hard before selecting
measures to evaluate performance. For earlier work on the same issue, see
also [50, 68, 72].
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4.2 Archiving, multi-populations, and convergence


In the tour of metaheuristics of section 3 we saw some examples of algorithms
using secondary populations, archives, and/or populations of non-fixed size.
The use of such mechanisms seems to be a necessary element of more advanced
methods for MOO, which aim to build up and store a good approximation to
the PF. Some of the options for incorporating these elements within existing
algorithms are summarised below:


• Use a main population only: the population is the store (NPGA [53],
NSGA [100], NSGA-II [26])


• Use a single-point local search, but keep separately a bounded-sized archive
of nondominated points found (PAES [73])


• Use a main and a secondary population - both of fixed size (SPEA [113],
PESA [20])


• Use a main population of fixed size and an archive of unbounded size [36]
(RD-MOGLS [60])


• Use multiple populations as in an island model [66]
• Have a dynamic main population size [105] (MOTS [50])


With the use of an (unbounded) archive of solutions, an algorithm can
potentially converge to the (entire) Pareto front. Thus, convergence proofs
for MOEAs now exist in the literature: Rudolph [96] proved convergence to
the Pareto front (that is at least one Pareto optimal solution) for some simple
multiobjective EAs, and it is possible to prove that the entire Pareto front can
be enumerated provided an unbounded archive is available. More realistically,
archives should be bounded in some way. A number of more recent papers have
been written regarding what can be proved with respect to the convergence
properties of such bounded archives [71, 70, 74, 82, 81]. Research in this area is
still needed and the issue of which solutions to store during the search in order
to converge towards a ‘good approximation set’ remains an open question.


4.3 Test functions, problems, and landscapes


Early test functions in the EMOO literature comprised a number of ad hoc,
low-dimensional functions, enabling a proof-of-concept for early MOEAs, but
nothing more. A large step toward a more scientific approach was taken with
the introduction, by Deb [25], of a framework for constructing functions with
identifiable features such as concave, discontinuous, and non-uniform PFs, lo-
cal optima, and deception. A suite of six 2-objective functions derived from
these became popular for some time, despite some drawbacks. Deb later ex-
tended the framework in [29] to allow scalable functions of any number of
objectives to be generated and this is becoming more popular for testing now.


There is still a lack of understanding of the relationships between the prop-
erties of problems, their ‘landscape’ topologies — given a particular represen-
tation and a notion of distance between solutions within this representation
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—, and strategies for search. A couple of studies that have begun investigat-
ing these aspects with respect to combinatorial problems are [9] and [69]. [9]
investigates ‘global convexity’ in multiobjective TSP problems and finds that
optima nearby to each other on the PF are quite similar, a finding that sug-
gests restricted mating in MOEAs and strategies for chaining local searches
along the PF, like the 2PLS [90], would be effective on this problem. [69] in-
troduces a tunable multiobjective version of the QAP problem and proposes
some techniques for characterising the landscapes of instances of this problem.
The latter is ongoing work.


4.4 Not quite Pareto


In much of the above discussion we have explicitly stated that finding a good
approximation to the entire Pareto front is the goal of MOO, as far as we
are concerned. Nonetheless, several situations arise when finding the whole
Pareto front may not be desirable, and yet finding a single solution, as would
be obtained by transforming the problem into a single objective, would not be
adequate either. In particular, when the number of objectives is much above
two or three, the size of the Pareto optimal set may be very large, necessitat-
ing a more restrictive notion of optimal. In these cases, some kind of ‘middle
ground’ may be the best option, in which some Pareto optima may be treated
as more desirable than others. One of the seminal papers on non-Pareto ap-
proaches is [7], which proposes a number of alternative ranking policies for
use in EA selection. Other more recent policies are described in [10, 34], and
in [31] where the concept of the order relation, ‘favour’, is introduced. Where
more explicit preferences of a decision maker are available more advanced
methods may be used, as in, for example, [22].


5 MAs for MOO: the fossil record


The extensive array of existing metaheuristics, issues and methods reviewed
in the sections above gives a richer basis from which to design new MAs than
do the existing MAs for MOO themselves. Nonetheless, before outlining some
principles and ideas for new MAs, it is worth reviewing the few multiobjective
MAs described in the current literature.


Arguably, it is just three separate groups of authors that are responsible
for much of the small multiobjective MA literature, each group having writ-
ten several papers. A small number of others have published more isolated
works and these tend to be application-based rather than aiming at devel-
oping general algorithms. The three main groups are: Ishibuchi and Murata,
who proposed a ‘multiobjective genetic local search’ (MOGLS) [54] algorithm
in 1996; Jaszkiewicz, who proposed an algorithm initially called RD-MOGLS
for ‘random directions’ MOGLS [60], and a slight variant called the Pareto
memetic algorithm (PMA) [61]; and Knowles and Corne, who developed an
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algorithm called M-PAES [67]. In all of these algorithms, the basic idea is sim-
ple: a local search is applied to every new offspring generated (by crossover
or mutation), and the improved offspring then competes with the population
for survival to the next generation (Lamarckianism). In all cases, only one
local search operator is available and there has been no work on mechanisms
for deciding whether or not to apply a local search to an offspring. The al-
gorithms of Ishibuchi and Murata and Jaszkiewicz are quite similar in other
respects too: both use randomly-drawn scalarizing functions to assign fitness
for parent selection and in the local search. The algorithm of Jaszkiewicz uses
an unbounded ‘current set’ of solutions, CS, and from this selects a small
‘temporary population’, TP that comprises the best solutions on the incum-
bent scalarizing function. It is then TP that is used to generate offspring
by crossover. Some results put forward by Jaszkiewicz suggest that scalariz-
ing functions are particularly better at encouraging diversity than dominance
ranking methods used in most EAs. Ishibuchi and Murata have also made a
number of interesting studies on their algorithm over the years, investigating
restricted mating and other innovations, and have tested it on several prob-
lems [55, 86, 87, 88, 58, 57, 56, 89]. Knowles and Corne’s M-PAES algorithm
is quite different in at least one respect from the other two: it does not use
scalarizing functions at all, either in the local search or the parental selection,
employing instead a form of Pareto ranking based on comparing solutions
to an archive of nondominated solutions. This may perhaps make it slower
when very fast local search heuristics are available because the comparison of
solutions takes longer to operate than applying a scalar acceptance function.
On the other hand, whereas the MOGLS algorithms will discard newly gen-
erated nondominated solutions if they are poor on the incumbent scalarizing
function, this will not happen in M-PAES, making it potentially more parsi-
monious of function evaluations—an advantage when these are more costly.


Of the more isolated papers, a few stand out for their interesting ideas or
applications. In [43] the idea of using supported solutions (figure 9) to seed
an EA is proposed. That is, on problems where some exact algorithm for
computing supported Pareto optima is available, [43] proposes a two-phase
hybrid approach where the exact algorithm is applied first, then an EA is
used to search for the non-supported Pareto optima, which cannot be found
using the exact heuristic.


Another kind of two-phase approach is described in [103]. The proposed
procedure is as follows: run an MOEA for a fixed number of generations; then
for each Pareto optimal solution, compute the neighbourhood and store any
nondominated solutions found; update the list of PO solutions and again re-
compute all the neighbourhoods; iterate the procedure until no improvement
occurs.


Similarly to [103], [27] proposes to run an EA (NSGA-II) and then apply
local search afterwards to improve the Pareto optimal set. To do this, the
authors apply a local search using a weighted sum of objectives. The weights
used are computed for each solution based on its location in the Pareto front
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such that the direction of improvement is roughly in the direction perpendic-
ular to the PF. Nondominated solutions are then identified and clustering is
finally applied to reduce the number of solutions returned.


Finally, worth mentioning because the results on a well-known application
problem are apparently good, is [1]. This paper introduces a hybrid of differen-
tial evolution [101] and backpropagation learning in order to evolve both the
architecture and weights of an artificial neural network. Two objectives are
minimized, the summed squared error in training, and the number of neural
units in the network. Abbass reports good reports on the Australian Credit
Card and Diabetes Data sets.


6 Recommendations for MA design and practice


In the previous sections we have reviewed current MOO practices: we revisited
a swathe of metaheuristics, considered some of the most salient issues and
results, and looked briefly at some existing MAs. We now consider how we
should draw on this background to build a more ‘memetic’ MA for MOO.


In recent years, Moscato and Krasnogor have provided a guiding manifesto
for putting the ‘memetic’ back in memetic algorithms [77, 85] advocating, in
particular, the use of multiple memes: memeplexes. These are collections of
ways of learning or adapting which can be transmitted at different levels and
through different processes. For example, multiple local searches, multiple
recombination operators, and so on could co-exist in a single algorithm, that
then learns, at both the individual and the population level, which operators
to use, and when, depending on the monitoring of internal processes at the
level of the individual or population. The MAs that we have seen in the MOO
literature to date are relatively poor images of these ‘fully-fledged’ MAs.


Algorithm 1 Candidate MA framework for MOO


1: P := Initialize(P )
2: A := Nondom(P )
3: while stop criterion not satisfied do
4: while stagnation criterion not satisfied do
5: C := SelectFrom(P ∪ A, sel sched(succ(SEL)))
6: C′ := Vary(C, var sched(succ(VAR)))
7: C′′ := LocalSearch(C ′, ls sched(succ(LS )))
8: P := Replace(P ∪ C ′′, rep sched(succ(REP)))
9: A := Reduce(Nondom(A ∪ P ), red sched(succ(RED)))


10: end while
11: P := RandomImmigrants(P, imm sched(succ(IMM )))
12: end while
13: return(A)
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In Algorithm 1, we put forward a simple framework that could serve as a
guide for making a more memetic MA for MOO. In line 1, a population P of
solutions is initialized. As usual, this procedure may be simply random or it
may employ some heuristic(s). Line 2 sets the archive A to the nondominated
solutions from P . Thereafter, the main loop of the MA begins. Line 4 sets up
an inner loop in which a stagnation criterion is checked. This should be based
on some memeplex which monitors progress in diversity, proximity, and/or
some other criteria. Lines 5–9 give a very high level description of the update of
the population and archive. Five different ‘schedulers’ are employed, basically
corresponding to mating selection, reproduction, lifetime learning, survival
selection, and update of the archive, respectively. Each scheduler chooses from
a memeplex of operators, based on estimates of the current success of those
operators. E.g., in line 5, SelectFrom is the operation of mating selection, the
domain of which is the union of the population and archive, and co-domain
is a child population C; the selection is controlled by the scheduler, sel sched,
which uses a success measure, succ, to choose one operator from the set,
SEL, of currently available operators for selection. Notice that P and A are
potentially of variable size, in this scheme. In line 11, the population P is
updated using some immigration policy to release it from stagnation. The
archive of nondominated solutions is returned in line 13.


The framework proposed is rather broad and actually instantiating it re-
quires us to consider how we should resolve many choices, including those
considered in the following sections, at the very least. Table 1 summarises
some of the MA elements/configuration choices to consider.


6.1 Desired outcomes and prevailing conditions


As in any other optimization scenario, we should know at the outset what is
a desirable outcome, how this can be measured, and what are the prevailing
conditions under which the search is going to take place.


One important factor in MOO is knowing how many solutions are desired.
The answer could be as many as possible, an exact number, or could be
expressed in terms of some resolution at which the PF is sampled. These
considerations might affect different options for storing the nondominated
solutions (see Table 1, question 1).


The dimensionality of the objective space is another important factor and
how this is going to be dealt with. If there are only two or three objectives
then there is some evidence that dominance-ranking-based selection methods
may be the most appropriate, assuming a good approximation to the Pareto
front is desired, with no particular preference for either diversity or proxim-
ity. On the other hand, if the number of objectives is high, Pareto selection
may be problematic, because many solutions will be incomparable. There
are various alternatives to consider: using the relation favour [31], instead
of component-wise order; using some other aggregating methods as proposed
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Table 1. Some suggestions for configuring an MA design


Question Answer Choices


1. How many solutions
are desired?


precisely N : Use Lebesgue archiving [75] or adaptive
grid archiving [70]


as many as possible: Use an unbounded archive [36]
require ε-approx set: Use ε-Pareto archiving [82]


2. Is diversity more
or less important than
proximity?


More: Use scalarizing functions; optimize di-
versity only


Less: Use strong elitist selection; dominance
ranking approach;


No preference: Combine Pareto approach with scalar-
izing methods; monitor progress using
an overall unary measure like the S
metric


3. What is the dimen-
sionality of the objective
space?


1-d: Consider ‘multi-objectivizing’ [76, 63]
2-d or 3-d: Use Pareto-ranking approaches


4-d+: Use the order relation favour [31], or
preference methods [22], to reduce the
number of effective optima; consider
aggregating correlated objectives


4. How long does func-
tion evaluation take?


Minutes-to-days: Use Bayesian approach [80] , or other
computationally intensive model-based
methods


Seconds: Use self-adaptation, other medium-
overhead methods


Microseconds: Rely on fast LS strategies [90]


5. Is the true Pareto
front known?


Yes: Use epsilon-measure to compute
progress/measure overall perfor-
mance [114]


No: Use S measure to compute
progress/measure overall performance


6. Are supported solu-
tions available?


Yes: Seed the MA with them and try to find
the non-supported solutions [43]
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in [7]; or, actually aggregating some of the objectives together following a
correlation/mutual information analysis.


6.2 Methods for monitoring progress


The MA framework proposed above requires that operators and procedures be
selected based on their current success rates. These, in turn, must be estimated
by some notion of progress. How should this progress be measured? Deb has
proposed a number of running time metrics in [28] and Zitzler has advocated
using the S metric [112] (see figure 7) to detect convergence. We have not
seen much in the way of statistics for detecting or measuring the success of
particular operators so far but these could be adapted from similar measures
used in EAs.


6.3 System- and self-adaptation


Adaptation of mutation rates, crossover probabilities, and so forth is a topic
that has received significant attention in the EAs literature over the years
(see [33] for an extensive review). By comparison, the topic of self-adaptation
in MOO, is surprisingly under-developed. Where it has been used, as we saw
earlier, is in the control of the search ‘direction’ in the objective space: i.e. to
direct the search towards sparsely populated areas of the Pareto front. Thus,
it is usually some kind of weighting vector adaptation. The potential in MOO
for self-adaptation is large, however, and should be part of any ‘real’ memetic
approach. The adaptation of selection pressure/elitism maybe of particular
importance, since we would expect that the different stages of building up
a Pareto front might demand more or less aggressive searches. Getting to a
local Pareto front quickly may demand aggression, whereas stagnation there
might suggest decreasing the selection pressure in order to spread out along
it, or hopefully find a route to a better front.


Some attempts have been made at adapting population size to the size of
the Pareto front – whether that be the archive population or the main one.
E.g., as we saw in MOTS, the mutual dominance of the population was used
to adapt the size of the population. In the work of Laumanns, it is by setting
a desired level of approximation that the archive’s size is controlled, so that
an appropriate number of solutions is maintained. These methods seem to be
going in the right direction, as the use of a fixed population size, when trying
to search efficiently a multi-dimensional objective space would seem to be too
restrictive.


6.4 Controlling the overall search


Let us assume that we are interested in maximizing the rate at which the S
measure increases – that is our gold standard of progress. Then, we could have
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a number of overall search strategies competing with each other in some form
of bidding mechanism, where they each have wealth in proportion to a record
of the prior rates of progress they achieved when in control of the search. We
could have, for example, the following two search strategies:


1. A PLS-like strategy that applies a local search repeatedly in one direction,
using an aggregation function, until some convergence criterion is fulfilled.
After this, a nearby weight is chosen and the same solution is once again
improved. All nondominated solutions are stored in an archive.


2. A PESA-like strategy in which a whole front of nondominated solutions
is used to generate new solutions, generation by generation, via recombi-
nation and variation, with selection based on crowding.


One strategy could be chosen at random to start with. After each ‘generation’
the strategy of choice could be reviewed. However, changing a strategy could
be tabu for some time immediately after a change, in order to give it a chance
and for decent statistics on it to be collected. Noticeable drops in progress
rate could invoke a change in the current strategy in use.


Much work is needed to investigate if advanced ‘multi-meme’ approaches
like this illustrative example really could provide robustness over different
types of landscapes arising from different problems, or indeed within a single
problem. It is not clear, even from the existing single objective literature, that
this kind of high-level adaptation is really beneficial, but the time is perhaps
overdue for us to try and find out.


7 Future Prospects


What does the future of multiobjective MAs hold and what are the most
promising avenues to investigate now? In this article we have tried to dis-
til a rich soup of ideas from the ever-growing literature on multiobjective
metaheuristics, and a little on MAs, in order to provide some basis for the
generation of new, more advanced algorithms. Many of the basics will proba-
bly remain the same: solutions will be evaluated by a combination of Pareto
ranking-type methods and scalarizing methods; diversity will be encouraged
using niching and crowding in parameter and objective space, and by the
controlled use of different weights in the scalarizing functions. However, there
is great scope for building more advanced and more memetic algorithms. In
particular, it seems that the need, unique to MOO, to obtain and maintain a
diverse pool of different solutions, suggests that such things as adaptive pop-
ulation sizes, multi-populations, and combinations of local and global search
are especially relevant.


Expanding on this, and looking into the near future, we see that there is
potential for more investigation as to the effects of restricted mating schemes,
and how the success of these relates to features of the underlying problem
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and/or multiobjective landscapes. For problems with a large number of objec-
tives, new non-Pareto methods for ranking solutions need more investigation,
as do methods for analysing correlations between objectives, perhaps to com-
bine some objectives together; and conversely, we have seen some evidence
in the recent literature [76, 63] that even single-objective problems may be
tackled more effectively using multiobjective methods – work which merits
further attention.


We have also provided in this article a glimpse of the different possible
routes to building up a Pareto front employed by different multiobjective
algorithms and have hinted at ways that these different overall strategies
could be combined together in self-adaptive strategies that are sensitive to the
progress being made in the search. This area, we think, is most promising.


New, advanced data structures for the storage and retrieval of Pareto
optima [64] may offer increased speed of MAs and EAs which will, if developed
further, enable exact solutions to be found even in relatively large solution
spaces, provided fast local searches and evaluation functions are available.


And at the other end of the spectrum, where the evaluation of a solution
takes a relatively long time, the recent advanced methods in model-based
search promise a more principled way of sampling the search space. We have
yet to see how these could be combined with local searches and other heuristics
to build advanced MAs for these tough problems but the future is certainly
exciting.
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Computing Systems: Design, Management and Applications, pages 271–279,
Amsterdam, 2002. IOS Press. ISBN 1-58603-297-6.


70. Joshua Knowles and David Corne. Properties of an Adaptive Archiving Algo-
rithm for Storing Nondominated Vectors. IEEE Transactions on Evolutionary
Computation, 7(2):100–116, April 2003.


71. Joshua Knowles and David Corne. Bounded Pareto archiving: Theory and
practice. In X. Gandibleux, M. Sevaux, K. Sörensen, and V. T’Kindt, editors,
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