
Local Search, Multiobjective Optimization and the Pareto ArchivedEvolution StrategyJoshua Knowles and David CorneDepartment of Computer Science, University of Reading, UKJ.D.Knowles@reading.ac.uk, D.W.Corne@reading.ac.ukwww.reading.ac.uk/�ssr97jdkOctober 11, 1999AbstractThe Pareto Archived Evolution Strategy1 (PAES) [KC99c, KC99b, KC99a], a local search algorithm formultiobjective optimization tasks, is compared with a modern, proven population-based EA, the StrengthPareto Evolutionary Algorithm (SPEA) of Zitzler and Thiele [ZT98, ZDT99, ZT99]. Comparison is carriedout with respect to six test functions designed by Deb, each of which is designed to capture and isolatea speci�c problem feature that may present di�culties to multiobjective optimizers. Statistical techniquesintroduced previously, and derived from those of Fonseca and Fleming [FF96], are used to process theresults to form con�dence measures relating to the percentage of the non-dominated front which is coveredby each algorithm. These results indicate that, with no attempt at tuning PAES to any of the problems, itoutperforms SPEA conclusively on four of the test functions. Some investigation of the mutation rates usedby PAES is then carried out. This shows that using a higher mutation rate improves the performance ofPAES on two of the test problems so that it outperforms SPEA on a further function in the test suite, T4, ahighly multimodal function. The use of Gray encoding of this problem is also found to improve performancesigni�cantly, while it is found to be detrimental on some of the other problems. We �nd that PAES isunable to compete with the performance of SPEA on function T5, a strongly deceptive problem, althoughwith higher mutation rates its performance on this problem is shown to be competitive with a range ofother multiobjective EAs including NPGA. The results presented provide evidence that local search may bea powerful technique for optimization in multiobjective spaces. To explain this �nding we conjecture thatthere are fewer local optima in multiobjective problem spaces than in their equivalent objective aggregatedspaces, and provide some argument to support this claim.1 IntroductionThe �eld of Evolutionary Multiobjective Optimization [Coe99b, Coe99a, Vel99] is dominated by population-based algorithms that seek to �nd a non-dominated set of solutions to a problem, from a single optimization run.The prevailing wisdom is that EAs of this sort, often employing recombination too, are well-suited to the task of�nding diverse, high-quality sets of solutions to problems which may possess features which have already beeninvestigated in a single-objective context using evolutionary approaches, such as multimodality and deception.Whether this view is supported by su�cient comparison with other techniques or not, there have certainly been alarge number of successful applications of MOEAs to real world problems (see [Coe99b] for a comprehensive list)and a steady stream of variations on the theme [HL92, FF93, HNG94, SD94, BW97, PM98] since the pioneeringwork of Scha�er [Sch84]. Recently, a large subset of the well known MOEA schemes was compared [ZDT99] usinga set of test functions of di�ering di�culty and encompassing problem features hypothesized to cause di�cultiesto multiobjective optimizers, provided by Deb according to the recommendations given in [Deb98]. The �ndingsof this study were threefold. First, that the test functions were of a su�cient di�culty to di�erentiate theperformance characteristics of the various algorithms. Second, the algorithms were found to fall into a rankordering which was almost independent of the test function. And third, the addition of elitism to the MOEAswas found to improve their performance signi�cantly on all of the test functions.In this paper, we take the raw data sets from the study by Zitzler et al.2 and compare them with theperformance of a local search optimizer, PAES [KC99c, KC99b, KC99a], on the same test functions. In doingthis, we have attempted to recreate the same operating modes (i.e. number of evaluations, parameter settingsetc.) for the local optimizer as was set for each of the multiobjective EAs, and where this was not possible twoor more data sets were collected under di�erent operating modes to establish if any di�erences in performancecould be explained by these di�erent conditions. The aim of these experiments is to establish whether a localsearch optimizer can cope with the diverse set of test functions which are used in [ZDT99]. Furthermore, we1a brief decription of PAES, electronic copies of publications relating to it, and all of our results are available fromhttp://www.reading.ac.uk/�ssr97jdk/multi/PAES.html2available from http://www.tik.ee.ethz.ch/�zitzler/testdata.html1



wish to �nd out if, like the other MOEAs, PAES can be placed at some position in a hierarchy of performance,independently of the test function, or whether it has any di�erent areas of strength or weakness. Finally, anumber of further runs are also described, in which some tuning of the local optimizer is carried out. A numberof di�erent mutation rates are tried, and the coding of the test functions is changed from binary to Gray. Theseexperiments are carried out to explore the best parameter settings for PAES and to establish how the codingof problems may interact with the search algorithm.In the next section the test functions used in [ZDT99] are reviewed. Section 3 describes the techniques usedfor comparing the results achieved by di�erent algorithms. Section 4 provides details of the experiments thatwere carried out in [ZDT99], explains how these experiments have been replicated for testing PAES, giving theparameter settings used and noting where there are di�erences in experimental set up. The results of theseexperiments are tabulated, graphical results are presented, and some discussion is provided. A summary ofour experiments and �ndings is then given. Finally, a concluding section presents a conjecture relating to our�ndings and indicates lines of possible future research.2 Test FunctionsIn [Deb98] a procedure for creating tunable test functions with speci�c problem features is presented. First,two tasks that any e�ective MOEA should perform are identi�ed. These are :1. Guide the search towards the global Pareto-optimal region, and2. Maintain population diversity in the current non-dominated front.Next, a number of problem features are identi�ed which can cause di�culty in performing these tasks. Severalexample test functions are then given to illustrate how test problems incorporating some of these features can beconstructed. Six such test functions, constructed by Deb, were used in a comparison of the performance of eightdi�erent MOEAs undertaken by Zitzler [ZDT99]. The six functions comprised T1 with a convex Pareto front,T2 with a non-convex Pareto front, T3 having a discontinuous Pareto front, T4 a multimodal problem with 219Pareto fronts, T5 a deceptive problem, and T6 having a non-uniformly distributed search space with solutionsnon-uniformly distributed along the Pareto front. Each of the functions is a two-objective minimization problemon m parameters. In �ve of the problems the parameters xi were coded as a binary string decoded such thatxi 2 [0; 1]. The remaining function (T5) also employed a binary chromosome but this time unitation was usedto evaluate each of the parameters. The experiments presented in this paper employ identical functions tothose presented in [ZDT99] and are coded onto chromosomes using identical numbers of bits to represent eachparameter.3 Statistical Comparison of Multiobjective OptimizersProper comparison of the results of two multiobjective optimizers is a complex issue. Several di�erent solutionshave been put forward in recent years [SD94, Rud98, VL98, HJ98, SNT+99, SFF99, ZDT99]. However, we use atechnique [KC99a] based on a promising method put forward by Fonseca and Fleming [FF96], in which the set ofnon-dominated solutions generated on an optimization run are taken to de�ne a surface, called the attainmentsurface, that delineates the objective space into two regions, the dominated region and the non-dominatedregion. Two optimizers then can be compared with respect to the set of attainment surfaces that they generateover several optimization runs. Speci�cally, the surfaces can be sampled using lines of intersection, to determinethe distribution of these surfaces along the intersection line. A non-parametric statistical test can be used todetermine which algorithm has performed best on the sampled part of the objective space, at a given con�dencelevel. By performing many such tests using lines distributed over the whole objective space, an indication ofthe proportion of the objective space on which one algorithm outperforms another can be computed.The technique we employ has the advantage that it is completely independent of the actual numbers ofsolutions found, instead only concerning itself with the surface de�ned by the set of these solutions takentogether. In the case of Pareto multiobjective optimization, where we must assume that all non-dominatedsolutions are to be preferred to all dominated solutions it should be irrelevant how many solutions were found ina particular part of the space; only the attainment surface they de�ne should be relevant. Some other methods[ZDT99] rely on counting the number of nondominated solutions that are covered by another nondominated setof solutions. This is not necessarily equivalent to calculating the percentage of the space on which one algorithmcovers the other, and can thus give misleading information, favouring particularly algorithms which generate alarge number of solutions.There are disadvantages to the method we employ too, however. First, the non-parametric test cannotdetermine how much better one algorithm is than another. Second, the number of sampling lines needs to belarge to ensure they cover the space su�ciently well. Third, the sampling lines can distort the proportion ofthe space that they each cover, giving unreliable information. Fourth, it is computationally expensive. On thepositive side, it can be used on problems of any number of objectives, it compactly provides statistical decisionsas to which algorithm covers more of the space, and can also be used to plot statistically meaningful graphs,2



such as the median attainment surface. Improving the technique further is the subject of future work. In thisstudy we use the technique as it is described in [KC99a].Here, the technique is used to compare pairs of algorithms only, although it can also be used to compareany number of optimizers together. When comparing two algorithms A and B the statistics returned are madeup of a pair of numbers [a; b] that represent :a the percentage of the space on which algorithm A beats algorithm B, andb the percentage of the space on which algorithm B beats algorithm Aeach with respect to a p value of 0.95 using the Mann-Whitney U test [MB94]. The tests carried out in thisstudy all used 500 sampling lines of intersection.4 Experimental ResultsExperimental methodIn [ZDT99] eight algorithms were compared on the six Deb test functions. Each algorithm was executed 30times on each test problem, and o�-line a record of all nondominated solutions encountered was kept, andreturned as the outcome of each run. For each pair of algorithms A;B and for each of thirty runs, a metric Cwas used to compute the proportion of nondominated points in A covered by B and vice-versa. The medianand interquartile ranges of the resulting C values were then plotted using box plots.The results indicated that on four of the test functions, T1 � T3 and T6, the Strength Pareto EvolutionaryAlgorithm (SPEA) [ZT98], generates solution sets which consistently dominate all of the other algorithmstested. On test function T4 SPEA is clearly superior to all other algorithms in terms of the median of the Cvalue although it no longer consistently beats two of the algorithms, namely NSGA [SD94], and SOEA (a singleobjective EA run 100 times with a di�erent randomly chosen linear combination of the objectives). However,although SPEA is not consistently better than these two algorithms on this function it does produce a betteroverall distribution of C values. On test function T5, very similar performance can be observed between NSGAand SPEA while SOEA actually does slightly better in terms of the median and the whole distribution of Cvalues achieved. To summarize these results, one can say that SPEA is the best algorithm overall and is onlybeaten on one test function, T5, by one algorithm, SOEA, which was given far more evaluations than any otheralgorithm (in fact 100 times as many).Due to the dominance of SPEA alluded to above, PAES is initially tested only against the raw resultsachieved by SPEA, on each of the test functions. Where PAES does not exhibit clear superiority over SPEAon any test function then further tests against the other algorithms in [ZDT99] are performed, again using theraw data available from the web-site given earlier. This should give an indication of the approximate rank ofPAES compared with the other algorithms, without the need for explicitly testing against each of them.The algorithms in [ZDT99] each employed a population of 100 solutions and were run for 250 generationson each of the test functions. The only exceptions to this were SOEA (using the results from 100 runs) andSPEA which has two populations, an internal population and an external population. Zitzler et al. chose togive SPEA an internal population of 80 and external population of 20 out of fairness to the other algorithms.This immediately gives us a problem when we wish to replicate the conditions given to the other algorithms forPAES. Since we would like to be sure of our results we try all of the alternative options and observe the e�ectof these di�erent conditions. PAES has an internal population of just two since it uses a (1+1) or hillclimbingstrategy. However, like SPEA it does have an external population, though it is used only as a comparison setfor the purpose of ranking the current and candidate solutions, and is never used as a pool from which selectioncan occur. All of the algorithms in [ZDT99] have a total population of 100. Therefore, PAES could be given anexternal population limit of 98 so that it too has a total population of 100. This seems to be the fairest methodof comparing these algorithms. However, SPEA was only given an external population of 20. Potentially, thiscould have hindered its performance (although this set up was chosen presumably to be the best compromiseof internal and external population size given a maximum total population of 100) so we also compare PAESto SPEA with an external population of 20.The number of evaluations carried out in [ZDT99] by each algorithm is 25000 (250�100). The total numberof evaluations for all versions of PAES tested is also 25000. All of the algorithms in [ZDT99] were tested withrespect to their o�-line performance. Zitzler et al. note that this changes the relative performance of somealgorithms compared to when on-line performance is considered. The performance of VEGA, for example, isimproved greatly by considering its o�-line performance. Thus, to demonstrate the on-line performance of PAESwe include comparison of PAES with SPEA where PAES is only allowed to return the solutions stored in itsexternal archive population at the end of each run, a maximum of 100, in addition to our o�-line tests.A mutation rate of 1% was used with each algorithm, on all problems in [ZDT99]. However, we choose touse a mutation rate (in our initial experiments) of 1 bit per chromosome because in previous experiments withPAES this setting has provided reasonable results. As the EAs in [ZDT99] all employ crossover, and mutationis only a secondary operator, we do not deem it necessary to choose the same mutation rate for PAES sinceits primary and only method of generating new points is through mutation. Nonetheless, we note that in this3



Algorithm versionProblem PAES on-line PAES[98] PAES[20] PAES[98]GrayT1 [47.6, 7.5] [88.5, 3.6] [24.9, 3.6] [0, 97.1]T2 [93.5, 0.8] [86.9, 3.6] [90.1, 1.1] [2.3, 48.5]T3 [97.6, 1.0] [95.9, 2.1] [95.1, 2.6] [0.3, 77.5]T4 [0.0, 100.0] [0.0, 100.0] [0.0, 100.0] [97.7, 0.1]T5 [0.0, 100.0] [0.0, 100.0] [0.0, 100.0] |T6 [100.0, 0.0] [100.0, 0.0] [99.5, 0.0] [98.1, 0.0]Table 1: PAES vs SPEA on the six test functions (four di�erent operating modes of PAES were tested)
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Figure 1: Solutions found from 30 runs of SPEA and PAES to test function T1 with 0:9 � f1 � 1:0study we are unable to `tune' the parameters of the MOEAs that we are using for comparison, and accept thatthis may a�ect the strength of our conclusions.PAES also uses a form of crowding for which one parameter must be set. In PAES, the crowding is computedby dividing the objective space recursively into hypercubes. A count of the solutions residing in each hypercubeis then performed. The number of recursive divisions, l of the space determines the `niche size'. In previousexperiments with PAES for a two-objective problem, l = 5 giving 1024 hypercubes has given good performance,and we use that setting here. Although using this crowding method is not equivalent to the niching used by thealgorithms in [ZDT99], it is an integral part of the PAES algorithm and in any case we have shown in previouswork [KC99a] that the crowding technique used by PAES is less computationally expensive than niching.Initial resultsThe results for these initial experiments are shown in Table 1. PAES on-line refers to runs in which the on-lineperformance of PAES was examined3. PAES[98] refers to PAES with an archive population of 98, and similarlyfor PAES[20]. PAES[98]Gray uses Gray coding of the parameters in place of binary. The results indicate thatPAES outperforms SPEA on functions T1 � T3 and T6 regardless of its operating mode (with the exception ofthe Gray coded version). Using Gray codes adversely a�ects the performance of PAES on functions T1�T3 butcauses PAES to outperform SPEA on function T4. Otherwise, PAES is outperformed by SPEA on problemsT4 and T5, the multimodal and deceptive problems respectively. Further investigation of these two problems isgiven below.As the results shown above do not indicate the degree to which PAES outperforms SPEA on functions T1�T3and T6, two examples plots are shown. In Figure 1 all of the solutions returned by PAES[98] and SPEA over30 runs are plotted for function T1 over a small region of the front (for clarity only). In Figure 2 the medianand best attainment surfaces of PAES[98] and SPEA are shown for function T6. The Pareto optimal lines arealso shown. In both plots the extent of PAES's superiority is clear to see.3The on-line version of PAES has an archive population of 100.4
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Figure 2: Median and best attainment surfaces achieved by PAES and SPEA to test function T6Mutation rate tuningThe results presented above were generated with no tuning of the mutation rate of PAES. On the multimodaltest function T4, where SPEA was found to be superior to PAES using a mutation rate of 1 bit per chromosome,increasing the mutation rate was found to improve the performance of PAES. A mutation rate of 8 bits perchromosome or about 3% was found to give the following statistics [96.8, 0] when comparing PAES with SPEA,in favour of PAES. Improvements in performance were also found on T5 with increased mutation rates. Theseare discussed below. On the other test functions using a mutation rate of more than about 1% was found tobe extremely detrimental to the performance of PAES, however. This leads us to the conclusion that PAES isrelatively sensitive to the mutation rate which is chosen and this can be problem dependent. We return to thispoint in the conclusion. On function T4 we also performed a number of longer runs. These show that PAEScontinues to �nd better solutions even after 500000 evaluations. A plot showing this is given in Figure 3, where5 runs of PAES for 25000 evaluations are compared with 5 runs of PAES for 500000 evaluations. The mutationrate was 8 bits per chromosome or 2.67% in both sets of runs.The deceptive function T5Test function T5 is a deceptive problem made up of 10 deceptive subproblems of 5 bits each, and a 30-bitnon-deceptive problem. The 5-bit subproblems are all fully deceptive [Whi91] i.e. all schema of order four or lesslead towards a sub-optimum which is the genotypic complement of the optimum. The performance of PAESon this problem compared to SPEA at a mutation rate of 1 bit chromosome (=1.25%) is shown in Table 1,and indicates that the distribution achieved by SPEA is better than PAES in 100% of the space. However,the degree to which SPEA is better than PAES is not known. To investigate this, PAES was compared withthe other algorithms tested in [ZDT99]. It was found to generate poorer distributions of solutions than SOEA,NSGA, HLGA [HL92] and VEGA but was slightly better than NPGA [HNG94] with a statistic of [39.1, 27.4].We can conclude that with the initial mutation rate tried, PAES is signi�cantly outperformed by SPEA on thistest function, and does not compare favourably with other population-based EAs either. However, increasingthe mutation rate to 4 bits per chromosome (=5.0%) increases the performance of PAES on this problem. Atthis mutation rate comparisons with VEGA and HLGA favour PAES - [100, 0.0] and [90.7, 0.0] respectively- while it is still beaten by NSGA and SPEA. With long runs of up to 5 million evaluations, the solutionsfound by PAES continue to improve, indicating that with this mutation rate at least, PAES does not convergeprematurely. However, even with runs of this length PAES does not approach the performance of SPEA orNSGA using just 25000 evaluations; a statistic of [0.0, 37.9] resulted from comparing the solutions generatedby 30 runs of PAES, for 5 million evaluations each, to the original data from SPEA running for just 25000evaluations.5 SummaryIn this study, a local search optimizer, PAES, has been compared with a modern, proven, population-basedEA, SPEA, on a suite of six di�cult test functions. With no tuning of the PAES algorithm to any of thetest functions, and in several di�erent operating modes, it was found that PAES generated solutions that were5



012
345
67

0 0:2 0:4 0:6 0:8 1
f2

f1

PAES{25000 evaluations 333 3 3 333 3333333 3 3 3 33333 3
33 33 33 33333333 33 333 3 33 333 33 333333333 33 3333333 3 33 33333 333 3333 3 333333
333 333 3 3 333333 333333333333 3 33333333
33 3 3 33 3 3 3333 33 3 3333 33 333 3 33333333 33 3333333333333333 33333 33333 3333 33 33 3 333333333
3 3 3 33 3 333 3 3 3 33 33 3 3333333333333 33 33 333 333333 333 3333333333333 33 PAES{500000 evaluations +

++++ ++ +++ ++++ + +++ ++ + ++++ + + ++++++ + + ++++++ + + +++++ +++ +++++++++ +++ +++++ +++ ++++++++++++++ + ++++++ +++++++ ++ +++++++++++++ ++++++++ ++ ++ ++++++ ++++++++++ +++++++ +++++ ++++++++ +++++++++++++++++++++++++++++++++++++ + ++ ++ + ++ + ++ ++++++++++ + + ++ ++ +++++ +++ ++++++++ +++++++ ++ ++++ +++ ++ ++++ +
+


Pareto front

Figure 3: Solutions found to test function T4 from 5 runs of PAES with 25000 evaluations per run and 500000evaluations per runstatistically signi�cantly better than those generated by SPEA on four of the test functions. These functionsare T1 and T2 with convex and non-convex Pareto fronts respectively, T3 with a discontinuous Pareto-optimalfront, and T6 with both non-uniform density of the search-space and Pareto optimal solutions non-uniformlydistributed along the global Pareto front; all 900 bit problems.On the two remaining functions T4 and T5, SPEA was found to generate solutions signi�cantly better thanthose generated by PAES. These two test problems are di�cult examples of multimodality and deception,respectively. The function T4 has 219 local optima and consists of 300 bits, and T5 has 10 fully deceptive 5-bitsubproblems. Although, PAES was not competitive with SPEA on these two functions it was still better thanNPGA and FFGA [FF93]Furthermore, with tuning of the mutation rate of PAES, on T4 the performance of SPEA was bettered.With longer runs at this mutation rate PAES was shown to evolve solutions to the global Pareto optimum.This result showed that on long runs, PAES has comparable performance to an elitist version of NSGA testedin [ZDT99]. On test function T5 the performance of PAES was again improved with an increase in the mutationrate. However, the performance of SPEA on T5 was not bettered even with runs of up to 5 million evaluations.Nonetheless, PAES does outperform all the other multiobjective EAs in [ZDT99] except for NSGA with theincreased mutation rate, running for the same 25000 evaluations.Experiments in which the mutation rate was changed showed PAES is sensitive to this parameter, and thebest setting of it depends on problem type. Unfortunately, in this study it was not possible to experiment withthe parameters of the other algorithms PAES was compared against. Therefore, we can't be sure that PAESwould outperform tuned versions of SPEA and the other EAs on problems like T4, where it was initially worsebefore tuning of the mutation rate. However, on T4, we were able to replicate very similar levels of performanceto experiments in [ZDT99] with long runs of NSGA using elitism and very large population sizes. This indicatesthat even in this highly multimodal function, PAES is probably competitive with most MOEAS, given the rightmutation rate.The use of Gray coding on function T4 also caused a great improvement in the performance of PAES.Whitley [Whi99] has shown using NFL arguments that Gray coding induces fewer local optima than Binary overthe set of all functions with fewer than 2L� 1 optima. For a hillclimbing algorithm this may help substantiallywhen the number of local optima is large, as in T4. However, when Gray was applied to the other problemsin the test suite the performance of PAES was substantially reduced. In fact using Gray codes had much thesame e�ect as increasing mutation rates. At present, the authors do not have a satisfying explanation of thisphenomenon, but simply note that when tackling multimodal functions, employing Gray coding and increasingmutation rates may be fruitful adjustments to experiment with.6 Conclusions and Future WorkThe results summarised above lead us to the conclusion that tackling multiobjective problems, even those withspeci�c features known to cause problems in proceeding to the Pareto front, or maintaining a diversity ofsolutions along that front, should not be the exclusive preserve of population-based evolutionary algorithms. Infact a simple hillclimbing or (1+1) selection strategy is su�cient to tackle even the di�cult problems used in6
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Figure 4: Illustrating how solutions of lower �tness using a linear aggregation of objectives may be of equal�tness when judged using a multiobjective approach with a comparison set of solutionsthis paper. Nonetheless, our conclusion cannot be as straight forward as this. It appears from our experimentsthat certain of the problems in the test suite did cause PAES more di�culty than some EAs, particularly SPEA.On others PAES was substantially better. From this study it appears that PAES cannot be placed into thehierarchy put forward by Zitzler et al., then. Rather, PAES seems to have di�culty with deceptive problemsand perhaps multimodality. Other than this, it dominates all the algorithms in the Zitzler et al. study.The empirical �ndings of this paper, together with previous work where PAES has been used to tackle real-world problems [KC99a] lead us to conclude that local search may often prove a powerful heuristic to be usedin multiobjective spaces. We postulate that this is because assessing the quality of solutions using the notionof Pareto dominance leads to fewer local optima than when �tness is assigned using an aggregated objectivefunction. To see why this might be true, consider Figure 4. The diagram shows a solution x in a two-objectivespace. A line l of equal �tness solutions under a linear objective-aggregating function is shown passing throughx. In addition, a set CS of solutions which are non-dominated with respect to x and representing a comparisonset against which candidate solutions are compared is also shown. The CS de�nes a surface S (shown witha dotted line) which divides the space into two regions, the dominated region and the non-dominated region.The dominated region can be considered here as comprising solutions which are less �t than x. It can be seenthat there is a greater `volume' of solutions which are non-dominated with respect to x than there is a volumeof �tter or equally �t solutions under the objective aggregating function. If any of the neighbours of x fellinto the region between l and S and none of the neighbours of x were �tter, then x would be a local optimumunder the aggregating function but not when judged using the multiobjective comparison set. This merelyillustrates that using multiobjective comparison of solutions can lead to situations where there are fewer localoptima. However, it is simple to construct a counter-example in which there is less volume for solutions of equalor greater �tness under a multiobjective comparison set than under a linear aggregating function. To showstatistically that, overall, fewer local optima are induced when multiobjective selection is employed than usingobjective aggregation is the subject of future work.There are several other avenues for future research. It seems that PAES is sensitive to the mutation ratechosen and that the best setting is dependent on the type of problem. Some form of adaptive mutation ratemay be examined to counteract this behaviour. The problems PAES exhibited with the deceptive function mayindicate that large populations and crossover do have an important role to play in these kind of problems. Thissuggests that a memetic version of PAES that employs local search much of the time but which occasionallyemploys crossover, may be a direction worth investigating. In addition to these further developments of PAES,ways of improving the means of assessing and comparing the performance of multiobjective optimizers shouldbe examined. To this end we are building on the techniques used in this paper to make steps towards being ableto 1. Establish how much better one algorithm is than another, and 2. Indicate the proportion of runs that anoptimizer generates an entire attainment surface which completely covers a given attainment surface e.g. themedian attainment surface.AcknowledgmentsJoshua Knowles thanks BT Labs Plc. for sponsorship of his Ph.D. He would also like to express his gratitudeto Eckart Zitzler who provided valuable information regarding details of his experimental methods and advisedon how these could be best replicated. 7
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