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Abstract. This paper studies the fuzzification of the Pareto dominance
relation and its application to the design of Evolutionary Multi-Objective
Optimization algorithms. A generic ranking scheme is presented that as-
signs dominance degrees to any set of vectors in a scale-independent, non-
symmetric and set-dependent manner. Based on such a ranking scheme,
the vector fitness values of a population can be replaced by the computed
ranking values (representing the ”dominating strength” of an individual
against all other individuals in the population) and used to perform stan-
dard single-objective genetic operators. The corresponding extension of
the Standard Genetic Algorithm, so-called Fuzzy-Dominance-Driven GA
(FDD-GA), will be presented as well. To verify the usefulness of such
an approach, an analytic study of the Pareto-Box problem is provided,
showing the characteristical parameters of a random search for the Pareto
front in a unit hypercube in arbitrary dimension. The basic problem here
is the loss of dominated points with increasing problem dimension, which
can be successfully resolved by basing the search procedure on the fuzzy
dominance degrees.


1 Introduction


In multiobjective optimization, the optimization goal is given by more than one
objective to be extreme. Formally, given a domain as subset of Rn, there are
assigned m functions f1(x1, . . . , xn), . . . , fm(x1, . . . , xn). Usually, there is not a
single optimum but rather the so-called Pareto set of non-dominated solutions.


Evolutionary Computation (EC) has been shown to be a powerful technique
for multi-objective optimization [1][2][3] (EMO - Evolutionary Multi-Objective
Optimization). This biologically inspired methodology offers both flexibility in
goal specification and good performance in multimodal, nonlinear search spaces.


If we want to solve a highly complex multi-objective optimization problem,
we might select one of the best ranked evolutionary approaches reviewed in the
literature, like NSGA-II [4] or SPEA2 [5] and hopefully start reaching good
results quickly. However, all these algorithms need dominated individuals in the
population, to perform the corresponding genetic operators. For a higher number
of objectives, this might become a problem, since the probability of having a
dominated individual in the population will rapidly go to zero.







The need for a revision of the Pareto dominance relation for also handling
a larger number of objectives was already pointed out in a few studies, esp.
given by Farina and Amato [6]. There, we also find the suggestion to use fuzzy
membership degrees for the degree of a point belonging to the Pareto set (so-
called fuzzy optimality). Authors design their revised dominance measure in a
way that the approach to the Pareto front can be registered more early in the
search. The approach was shown to work successfully in the domain of more
than three objectives. It came out that the use of fuzzy concepts is fruitful in
this regard. However, the approach did not provide a direct means to formulate
corresponding EMO algorithms. So, the limitation is that still only the relation
between two points is considered.


In this paper, we are going to use concepts from fuzzy fusion theory to achieve
a more far reaching goal. Instead of introducing only a degree of dominance for
two points, we are going to fuse the mutual degrees of dominance within a set
of points and assign a ranking value to each point within this set of points. The
circumstances now allow for using these ranking values in the same fashion as
single objectives, e.g. to rank individuals within a population and thus easily
expanding the application field of a Standard Genetic Algorithm to the multi-
objective domain. Note that this is not the same as reducing multiple objectives
into a single objective (as it is done e.g. with the weighted sum aproach): the
ranking values are only fixed for a point within a given set of points. Once the
set changes, the ranking values can vary as well.


In [7] this approach was already shown to handle search problems with sep-
arated Pareto fronts. However, for a better understanding of such an approach,
suitable test problems are also needed, what has been a long-termed research
issue in EMO as well. Usually, the different algorithms are compared by measur-
ing their performance indices in difficult test searches [1][2][3][8]. However, these
problems are hard to analyze, and the characteristics of a random or genetic
search can not be provided. This prevents us from keeping track of the popula-
tions dynamics unambiguously (as already stated by Coello in [2]). Thus, we also
introduce an ”easy” multi-objective test function that allows us to observe the
search progress and that is yet easily scalable to higher number of objectives as
well. The Pareto-Box Problem, which will be presented and studied in this pa-
per as well, unifies these crucial properties. It will help us to know more about
how the Pareto-front is searched for in EMO, and to measure the progress
of the novel Fuzzy Pareto Dominance-Driven Genetic Algorithm (FDD-GA)
approach in search problems with higher number of objectives.


In the following section, we will consider the Fuzzy-Pareto Dominance rela-
tion, and base a EMO algorithm on it in section 3. Then, section 4 defines the
Pareto-Box problem and its analysis for random search. These results will be
used in an exemplary manner to study the dynamics of EMOs in section 5. The
paper ends with the conclusion and the reference.







2 Fuzzification of Pareto Dominance Relation


In this section, we are going to study the fuzzification of the Pareto dominance
relation. The goal is to yield a ”softer” and practically usable numerical repre-
sentation of the dominance relation between two vectors that can be employed
in EMO. The issue was studied in more detail in [9]. This work showed the prin-
cipal problems related to the specification of such a degree of dominance. Fuzzy
dominance degrees can be computed once the following two conditions are taken
into account:


1. The measure is not symmetric, and between two vectors a and b the two
measures ”a dominates b by degree α” and ”a is dominated by b to degree
α” have to be distinguished. Moreover, if a dominates b, either one measure
is numerically 0 and the other lower-or-equal to 1, or one is greater-or-equal
to 0 and the other 11.


2. The dominance degrees are set-dependent and can not be assigned in an
absolute manner to single vectors alone.


A generic fuzzy ranking scheme for a set S of multivariate data (vectors) ai with
real-valued components aij and 1 ≤ i ≤ N can be based on the provision of a
comparison function fx(y) : R × R → [0, 1] and a T-norm. Then, the following
two steps are performed:


1. We compute the comparison values for any two vectors ai = (aik) and
aj = (ajk) by cai(aj) = T (faik


(ajk) | k = 1, . . . , N) with N the number of
components of each vector.


2. We compute the ranking values for any element ai of S by


rS(ai) = max[cai
(aj)|j 6= i].


Then, we consider vectors with lower numerical ranking values to be on a higher
ranking position. For step 2, instead of max the min operator can be used as
well, depending on the ranking to be favoured in increasing or decreasing order.


When using the comparison function bounded division and the algebraic (or
product) norm as T-norm, the ranking scheme fulfills several useful properties
like scale-independency in the data. The fuzzification of Pareto dominance
relation can be written then as follows: It is said that vector a dominates vector
b by degree µa with


µa(a, b) =
∏


i min(ai, bi)∏
i ai


(1)


and that vector a is dominated by vector b at degree µp with


µp(a, b) =
∏


i min(ai, bi)∏
i bi


(2)


1 In [9] it was demonstrated that otherwise the complexity of the corresponding func-
tion specification would grow exponentially, as well as the number of discontinuities.







For a Pareto-dominating b, µa(a, b) = 1 and µp(b,a) = 1, but µp(a, b) < 1
and µa(b,a) < 1. Figure 1 gives a numerical example for the fuzzy Pareto
dominance considered here. Note that the case of having an ai or bi equal to 0
is handled by the exclusion of the corresponding index in the products in the
numerator and denominator.
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Fig. 1. Definition of Fuzzy-Pareto-Dominance. Here, u dominates v by degree 0.1 ·
0.2/0.1 · 0.9 = 0.2̄ and is dominated by v by degree 0.1 · 0.2/0.7 · 0.2 ≈ 0.143.


3 Fuzzy-Pareto Dominance Driven Genetic Algorithm


In this section, we will show how the fuzzy ranking scheme easily extends a
standard genetic algorithm to the multi-objective case.


We may use the dominance degrees of eq. (2) to rank the set M of multivari-
ate data (vectors) given by the fitness values of a multiobjective optimization
problem. Each element of M is assigned the maximum degree of being domi-
nated by any other element of M , and the elements of M are sorted according
to the ranking values in increasing order:


rM (a) = max
b∈M\{a}


µp(a, b) (3)


Note again that this definiton is related to a set. A ranking value of a within M
can only be assigned with reference to a set M containing a.


By sorting the elements of M according to the ranking values in increasing
order (FPD ranking, FPD for Fuzzy-Pareto-Dominance), we obtain a partial
ranking of the elements of M .


From the definition of the ranking scheme, it can be seen that an individual
has two ways to reduce its comparison values: by increasing the objectives (thus
increasing the denominator in the comparison values), or/and by being larger
in some components than other vectors, i.e. being diverse from other vectors.
Thus, both goals of evolutionary multi-objective optimization can be met by
using such a measure: to approach the Pareto front, and to maintain a diverse
population.







The foregoing discussion leads to the (Fuzzy-Dominance-Driven) FDD-GA
algorithm, a Genetic Algorithm (GA) variant that employs the fuzzy ranking
values of the fitness values (represented as vectors in case of multiobjective op-
timization) for defining selection operators. The algorithm and its components
can be seen in fig. 2.
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Fig. 2. Schematic view of FDD-GA algorithm.


FDD-GA maintains four pools of individuals:


– Population: contains n individuals as in standard GA.
– Mating Pool: Contains individual pairs that were selected for crossover op-


eration.
– Habitat: This pool is composed of individuals from other pools and used to


replace the population of generation n by generation n + 1.
– α-Set (or archive): In this pool, all non-dominated individuals are collected.


This pool also gives the output of the FDD-GA algorithm.


After random initialization of the population, the FDD-GA algorithm itera-
tively repeats the following steps until a stopping criteria (number of generations,
size of α-Set) is met:


1. Rank population by FPD ordering of fitness vectors of the individuals in the
population (see section 2).


2. Select best individual a from the ranked population (one individual with
lowest ranking value) and conditionally add it to the α-set. Adding a to the
α-set is only possible, when fitness of a is not dominated by the fitness of
any individual already in the α-set, and if fitness of a is not equal to any
individual’s fitness there. In case a is added, all individuals in the α-set with
fitness values dominated by fitness of a are removed from the α-set.


3. Add best pn of population individuals, according to FPD ordering ranking
values, to the habitat (0 ≤ p ≤ 1).







4. Select (1− p)n pairs from population by roulette-wheel selection, using the
negated logarithms of the ranking values of the ranked population for selec-
tion (lower ranking value counts better), and put these pairs into the mating
pool.


5. Apply crossover and mutation to the individuals of the mating pool, and
add these newly created individuals to the habitat as well.


6. Replace population by habitat.


The FDD-GA algorithm acquires non-dominated (with respect to their fitness
values) individuals in the α-set. In an evolutionary sense, those ”FDD Pareto
Set” approaches the Pareto front of the multiobjective optimization problem
under study.


4 The Pareto-Box Problem


The advantages of basing the genetic operators on relative dominance degrees
can be seen if the number of objectives is increasing. The following discussion will
show how the chances of having a true dominance case in the population rapidly
goes to 0. This problem can be clearly circumvented by the use of dominace
degrees.


We are going to study a multi-objective optimization problem for arbitrary
number of objectives where one can still provide a complete numerical analysis.
The problem is referred to as Pareto-Box problem.


Given are m uniformly randomly selected n-dimensional points Pi in the n-
dimensional unit hypercube (1 ≤ i ≤ m), with coordinates Pij (1 ≤ j ≤ n).
Thus, for each Pij we have 0 ≤ Pij ≤ 1. The problem we state is:


Pareto-Box Problem: What is the expectation value for the size of the
Pareto set of these points?


Here, we use the minimum version of Pareto dominance, so for two n-
dimensional vectors a = (ai) and b = (bi) it is said that a dominates b (written
as a ≺ b) if and only if


∀ i : ai ≤ bi, ∧ ∃ j : aj < bj (1 ≤ i, j ≤ n) (4)


For a set M of points, its Pareto set P (M) is the subset for which none of its el-
ements is dominated by any element of M . The Pareto set of the complete unit
hypercube contains only one element, the point 0. The random sampling repre-
sents a random search in the unit hypercube, thus we are also going to answer
the question if random search can find the Pareto set of the unit hypercube.


Obviously, the Pareto set of this problem is not hard to find, and there is
also no conflict in the objectives. However, the following analysis will show that
it is a hard problem for multi-objective optimization, once the dimension n of
the problem is increased. Moreover, this problems allows for a precise analysis of
the progress of algorithmic search, including the approach to the Pareto front
and the entering of concave regions of the Pareto front.







In the following, em(n) denotes the expectation value for the size of the
Pareto set of m randomly selected points in the n-dimensional unit hypercube.
Then, the following theorems hold:


Theorem 1. Given are m randomly selected points in the n-dimensional hyper-
cube. For the expectation value of the size of the Pareto set of these m points
we have the recursive relation:


e1(n) = 1 (5)
em(1) = 1


em(n) = em−1(n) +
1
m


em(n− 1) (n, m ≥ 2)


Theorem 2. The expectation value for the size of the Pareto set of m ≥ 1
randomly selected points in the n-dimensional hypercube (n ≥ 1) is


em(n) =
m∑


k=1


(−1)k+1


kn−1


(
m


k


)
(6)


Due to space limitations, the proofs of these theorems can not be given here.
The appendix will give a sketch on how to derive these expressions.


Theorems 1 and 2 allow for the specification of the limiting behaviour of the
expectation values for increasing number of points and increasing dimensions.
This is stated in the following central theorem.


Theorem 3. For fixed dimension n > 1 and the number of points m →∞, the
expectation value em(n) →∞, the ratio of the non-dominated points em(n)/m →
0 and for fixed m > 1 and dimension n →∞ it holds em(n) → m.


Proof. We see that


em(2) =
m∑


k=1


1
k


= 1 +
1
2


+
1
3


+
1
4


+ . . . +
1
m


(7)


which is the harmonic series and known to be divergent. Now, eq. (6) shows that
for n > 2 always em(n) ≥ em(n− 1) ≥ . . . ≥ em(2), so for m →∞ em(n) →∞
as well. From the corresponding property of the harmonic series, em(n)/m → 0
for m →∞ can be seen in a similar manner.


On the other hand, if m > 1 is fixed, all terms in eq. (6) but the one for
k = 1 will go to 0 for n →∞, and the term for k = 1 itself computes to m. So,
it is easy to see that em(n) → m for n →∞.


We can express this result as follows: for increasing number of sample points
in the hypercube, the number of non-dominated points will also increase, and
never ”shrink” to the Pareto set of the hypercube, which only contains the







point 0. So, random search will not solve the problem to find the Pareto set of
the hypercube in any dimension.


For increasing dimension, it will become more and more unlikely to find
any dominated point in a population of random sampling points. In fact, the
probability falls exponentially. The Pareto set of m points will contain nearly
all m points.


We conclude this section by providing some special results:


(m, 2) : em(2) =
∑m


k=1
1
k


(2, n) : e2(n) = 2− 1
2n−1


(3, n) : e3(n) = 3− 3
2n−1 + 1


3n−1


(4, n) : e4(n) = 4− 6
2n−1 + 4


3n−1 − 1
4n−1


5 EMO Analysis


The remarkable point on the Pareto-Box problem is that it establishes the fact
that the probability of finding dominated points in higher dimensions (i.e. in-
creasing number of objectives) is falling exponentially with the dimension of the
problem. Having a look on most prominent EMO algorithms like NSGA-II [5],
SPEA2 [4] or PESA [10], it can be seen that they all need dominated points to
perform their processing steps. For still yielding dominated points in the domain
of higher number of objectives, these algorithms need an exponetially increasing
search effort, be it by increasing the population size, or be it by increasing the
number of generations.


The advantage of the FPD is that the problem of missing dominated points
does not matter. This will be demonstrated by using the Pareto-Box problem.


Figure 3 compares the performance of comparable set-ups of NSGA-II and
FDD-GA on the Pareto-Box problem for dimension n = 20. The NSGA-II im-
plementation strictly followed [4]. For both algorithms, the population size was
10, and 200 generations were performed. Both algorithm used the same mutation
probability and strength of 0.1. The selection scheme of FDD-GA was adapted
due to having a known co-domain of the ranking values (aka fitness values).
Roulette-wheel selection was performed using − ln ri (with ri the ranking val-
ues) as shared fitness values, and it was only selected among the non-dominated
individuals. If all individuals got the same ranking values, it was randomly se-
lected. The plot shows the size of the archive over the number of sample points
(i.e. calls of the objective functions). Also given is the (numerically estimated)
size of the Pareto-set for random sampling, and the total number of individu-
als (dominated and non-dominated). As established by Theorem 3, for random
search the size of the Pareto set is close to the total number of points. How-
ever, also NSGA-II runs close to this curve, qualifying this search as more or
less random as well. This is obvious from the fact that the probability of finding
a dominated individual by applying randomized operators (mutation, crossover)
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Fig. 3. Performances of NSGA-II and FDD-GA for the Pareto-Box problem.


is low. The performance will increase when using a larger population, however,
the results from the foregoing section give that the population size has to be
increased exponentially, in order to achieve such a goal.


For FDD-GA, we clearly see that even for dimension 20, and a rather small
population size of 10 individuals, it is able to find the single optimum of the
Pareto-Box problem, and also stays strongly below the curve of random search
all the time. To make this behaviour more clear, we considered the p.d.f. of the
ranking values within a randomly created population (see fig. 4). This plot was
obtained by 100 times creating a set of 20 random vector with 100 components
from [0, 1]. Then, among these 20 vectors the ranking values ri were computed,
and the intervall frequencies for − ln ri were derived. Thus, we can model the
handling of randomly selected points by the FPD ranking scheme (as it happens
when applied to the Pareto-Box problem). The distribution has a tail at the
sider of smaller ranking values, so roulette-wheel selection will acknowledge the
fact that such individuals gradually perform better (with respect to Pareto-
dominance). Such a behaviour can not be achieved when an EMO is relying on
the presence of dominated individuals alone.


It has to be noted (but will not be detailed here) that nevertheless NSGA-II,
in this set-up, is also finding the optimum up to a problem dimension of 8. In
low dimensions (2-3) the FDD-GA is also outperformed by NSGA-II.
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Fig. 4. Distribution of ranking values in FDD-GA algorithm.


6 Conclusions


In this paper, issues related to the fuzzification of Pareto dominance were con-
sidered. A ranking scheme was presented that assigns dominance degrees to any
set of vectors in a scale-independent, non-symmetric and set-dependent man-
ner. Based on such a ranking scheme, the vector fitness values of a population
can be replaced by the computed ranking values (representing the ”dominating
strength” of an individual against all other individuals in the population) and
used to perform standard single-objective genetic operators. The correspond-
ing extension of the Standard Genetic Algorithm, the FDD-GA, was presented
as well. To verify the usefulness of such an approach, an analytic study of the
Pareto-Box problem was provided, showing the characteristical parameters of a
random search for the Pareto front in a unit hypercube in arbitrary dimension.
The basic problem here is the loss of dominated points with increasing problem
dimension, which can be successfully resolved by founding the search procedure
on the fuzzy dominance degrees.
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Appendix


Derivation of Theorems 1 and 2


Here, we shortly sketch the derivation of Theorems 1 and 2. For general dimen-
sions n we assign ranking vectors to all m point. We indicate the coordinate







directions with x1, x2, . . . , xn. If a point Pi gets assigned the ranking vector
(i1, i2, . . . , in) with ik ∈ {1, 2, . . . ,m} this means that the x1 coordinate of this
point is the i1-th smallest among all the m x1-coordinates of the m points, the
x2-coordinate is the i2-th smallest among all x2-coordinates of the m points and
so forth. For all m points and all 1 ≤ k ≤ n, the ranking vectors at position
k form a permutation of the set {1, 2, . . . ,m}. So, a set of n permutations of
the set {1, 2, . . . ,m} may be derived from any selection of m points. However, a
ranking scheme is already sorted into one dimension, e.g. the x1-dimension, so
only (n−1) permutations are independent. As a result, there are m!n−1 different
ranking schemes for m points in n dimensions.


Among the m points there is one point Pl with the largest x1-coordinate
value. We consider the projection of all m points into the (n − 1)-dimensional
ranking scheme, spanned by the coordinates x2, x3, . . . , xn and x1 = n. There are
m!n−2 such ranking schemes, and each of them will be obtained by the projection
of m! different n-dimensional ranking schemes (since m!n−1/m!m−2 = m!).


Fig. 5. Entering the three points (0.1, 0.3, 0.6), (0.3, 0.4, 0.1) and (0.5, 0.5, 0.3) into one
of the 3!2 = 36 ranking schemes for 3 points in 3 dimensions, together with the projec-
tions into 2-dimensional ranking schemes of 3 points. Two of the projections specify the
ranking scheme completely, since the points are already sorted in the third dimension.
The analysis is based on the fact that the Pareto set size of this ranking scheme is
the Pareto set size of the two points with the lowest x-coordinate plus 1 in case the
point with the largest x-coordinate is projected onto a point of the Pareto set of the
projected ranking scheme, which is parallel to the (y, z)-plane.


Now, a moment of reasoning gives that the point Pl will belong to the Pareto
set of the n-dimensional ranking scheme if and only if its projection belongs to







the Pareto set of the (n − 1)-dimensional projected ranking scheme: We are
considering whether the point P , onto which Pl is projected, belongs to the
Pareto set of the (n − 1)-dimensional projected ranking scheme or not. If it
belongs to the Pareto set of the (n−1)-dimensional ranking scheme, this means
that there is no other point having lower ranking positions than P in all the
dimensions x2, x3, . . . , xn simultaneously. But this means that there is also no
point in the n-dimensional ranking scheme having lower ranking positions than
Pl in all the dimensions x1, x2, x3, . . . , xn simultaneously as well. Thus, if Pl is
projected onto an element of the Pareto set of the (n−1)-dimensional ranking
scheme, it belongs to the Pareto set of the n-dimensional ranking scheme.


If P does not belong to the Pareto set of the (n − 1)-dimensional pro-
jected ranking scheme, there is another point P1 in the projected (n − 1)-
dimensional ranking scheme having lower ranking positions than P in all di-
mensions x2, x3, . . . , xn simultaneously. Once Pl is projected onto this point, it
has to be taken into account that Pl is the point with the highest x1-coordinate
value, so each other point in the n-dimensional ranking scheme will have a lower
x1-coordinate value, including the point from which P1 originated. So, there is a
point in the n-dimensional ranking scheme dominating Pl and Pl will not belong
to the Pareto set of the n-dimensional ranking scheme.


The Pareto set of the (m− 1) points different from Pl is not influenced by
Pl, since Pl can never dominate any of these points (it fails already to dominate
in the x1-coordinate). So, the size of the Pareto set of the m points is either
Ps or Ps + 1, with Ps being the size of the Pareto set of the (m − 1) points
that are different from Pl. It is Ps + 1 if Pl belongs to the Pareto set of the n-
dimensional ranking scheme, Ps otherwise. But we have just seen that Pl belongs
to the Pareto set of the n-dimensional ranking scheme if and only if it belongs
to the Pareto set of the (n− 1)-dimensional projected ranking scheme.
Putting it all together:


– There are m!n−1 different ranking schemes for m points in the n-dimensional
hypercube. We denote them by R1, R2, . . . , RN .


– Each of these ranking schemes Ri can be related to a ranking scheme Sj of
(m−1) points in n dimensions by removing the point Pl with the largest x1-
coordinate (j = 1, . . . , (m−1)!n−1). Given any ranking scheme Sj for (m−1)
points in the n-dimensional hypercube, it can be made a ranking scheme of
m points in n dimensions by adding a ”last” point Pl to it. The number of
ways to add the m-th point to a ranking scheme Sj does not depend on the
ranking scheme itself, so any Sj can generate the same number of Ri, say l.
It follows l = m!n−1/(m− 1)!n−1 = mn−1.


– Each Ri can be projected into a ranking scheme si of m points in the
(n − 1)-dimensional hypercube by removing the ranking according to the
x1-coordinate (i = 1, . . . ,m!n−2). There are always m! ranking schemes Ri


that are projected into the same sj .
– The size of the Pareto set of a ranking scheme Ri will be denoted by ri,


the size of the Pareto set of a ranking scheme Si by pi and the size of the
Pareto set of a ranking scheme si by qi.







– From the m! cases that a ranking scheme Ri is projected onto a ranking
scheme sj with Pareto set size qj , in exactly m! · qj/m = (m− 1)! · qj cases
its point Pl with the largest x1-coordinate will be projected into an element
of the Pareto set of sj , thus belong to the Pareto set of Ri in addition to
the ri points that comprise the Pareto set of the (m − 1) points different
from Pl.


Now we sum the Pareto set sizes over all Ri and divide by the number of
Ri to get the expectation value em(n). We can decompose this sum into two
contributions: the contributions coming from the reduced ranking schemes Si


with Pareto set sizes pi and the contribution coming from the Pareto sets of
the projected ranking schemes si with Pareto set sizes qi:


em(n) =
1


m!n−1


m!n−1∑
k=1


rk (8)


=
1


m!n−1


mn−1


(m−1)!n−1∑
k=1


pk + (m− 1)!
m!n−2∑
k=1


qk



=


1
m!n−1


[
mn−1 · em−1(n) · (m− 1)!n−1 + (m− 1)! · em(n− 1) ·m!n−2


]
= em−1(n) +


1
m


em(n− 1)


by using that the sum of all pi equals the expectation value for (m − 1) points
in the n-dimensional hypercube times the number (m− 1)!n−1 of their ranking
schemes Si, and the sum of all qi equals the expectation value for m points in
(n− 1) dimensions times the number m!n−2 of their ranking schemes si.


When adding the obvious relations e1(n) = em(1) = 1 this will give Theorem
1. By showing that the expression in eq. (6) fulfills the recursive equation in
Theorem 1, Theorem 2 can be established as well. The proof goes via complete
induction over n and m.






