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Abstract-
A developed version of Generalized Differential Evo-

lution, GDE3, is proposed. GDE3 is an extension of Dif-
ferential Evolution (DE) for global optimization with an
arbitrary number of objectives and constraints. In the
case of a problem with a single objective and without
constraints GDE3 falls back to the original DE. GDE3
improves earlier GDE versions in the case of multi-
objective problems by giving a better distributed solu-
tion. Performance of GDE3 is demonstrated with a set
of test problems and the results are compared with other
methods.

1 Introduction

During the last 15 years, Evolutionary Algorithms (EAs)
have gained popularity in solving difficult multi-objective
optimization problems (MOOPs) since EAs are capable
of dealing with objective functions, which are not mathe-
matically well behaving, e.g., discontinuous, non-convex,
multi-modal, and non-differentiable. Multi-objective EAs
(MOEAs) are also capable of providing multiple solution
candidates in a single run, which is desirable with MOOPs.

Differential Evolution (DE) is a relatively new EA and
it has been gaining popularity during previous years. Sev-
eral extensions of DE for multi-objective optimization have
already been proposed. Some basic approaches just con-
vert MOOPs to single-objective forms and use DE to solve
these [3, 5, 36].

The first method extending DE for multi-objective op-
timization using the Pareto approach was Pareto-based
DE approach [6]. Pareto Differential Evolution [4] was
also mentioned about the same time, unfortunately with-
out an explicit description of the method. After these,
the Pareto(-frontier) Differential Evolution (PDE) algo-
rithm [2] and a first version of Generalized Differential Evo-
lution (GDE) [22] were introduced. Later on, Self-adaptive
PDE (SPDE) [1], the Pareto DE Approach (PDEA) [26],
Adaptive Pareto DE (APDE) [37], Multi-Objective DE
(MODE) [13], and Vector Evaluated DE (VEDE) [29] have
been proposed. The latest proposals are a second ver-
sion of GDE [21] and DE for Multiobjective Optimization
(DEMO) [32]. Research demonstrating the performance of
PDEA over the elitist Non-Dominated Sorting Genetic Al-
gorithm (NSGA-II) [9] with rotated MOOPs has also been
reported [17].

Besides solving problems with multiple objectives, DE
has also been modified for handling problems with con-
straints [7, 23, 25, 27, 33, 35]. Most of these are based on
applying penalty functions.

Earlier GDE versions had already the ability to handle

any number of objectives and constraints. The latest ver-
sion, GDE3, introduced in this paper is an attempt to im-
prove earlier versions in the case of multiple objectives.

2 Multi-Objective Optimization with Con-
straints

Many practical problems have multiple objectives and sev-
eral aspects cause multiple constraints to problems. For ex-
ample, mechanical design problems have several objectives
such as obtained performance and manufacturing costs, and
available resources may cause limitations. Constraints can
be divided into boundary constraints and constraint func-
tions. Boundary constraints are used when the value of a
decision variable is limited to some range, and constraint
functions represent more complicated constraints, which are
expressed as functions.

A mathematically constrained MOOP can be presented
in the form:

minimize {f1(~x), f2(~x), . . . , fM (~x)}

subject to (g1(~x), g2(~x), . . . , gK(~x))T ≤ ~0.
(1)

Thus, there are M functions to be optimized and K con-
straint functions. Maximization problems can be easily
transformed to minimization problems and different con-
straints can be converted to form gj(~x) ≤ 0, Thereby the
formulation in Eq. 1 is without loss of generality.

Typically, MOOPs are often converted to single-
objective optimization problems by predefining weighting
factors for different objectives, expressing the relative im-
portance of each objective. Optimizing several objec-
tives simultaneously without articulating the relative im-
portance of each objective a priori, is often called Pareto-
optimization. An obtained solution is Pareto-optimal if
none of the objectives can be improved without impairing at
least one other objective [28, p. 11]. If the obtained solution
can be improved in such a way that at least one objective im-
proves and the other objectives do not decline, then the new
solution dominates the original solution. The objective of
Pareto-optimization is to find a set of solutions that are not
dominated by any other solution.

A set of Pareto-optimal solutions form a Pareto front,
and an approximation of the Pareto front is called a set of
non-dominated solutions. From the set of non-dominated
solutions the decision-maker may pick a solution, which
provides a suitable compromise between the objectives.
This can be viewed as a posteriori articulation of the
decision-makers preferences concerning the relative impor-
tance of each objective.

Later on in this paper, the obtained non-dominated set is
referred to as a solution, and a member of a non-dominated



set or a population is referred to as a vector to distinguish
these.

Weak dominance relation � between two vectors is de-
fined such that ~x1 weakly dominates ~x2, i.e., ~x1 � ~x2 iff ∀i :
fi(~x1) ≤ fi(~x2). Dominance relation ≺ between two vec-
tors is defined such that ~x1 dominates ~x2, i.e., ~x1 ≺ ~x2 iff
~x1 � ~x2 ∧ ∃i : fi(~x1) < fi(~x2). The dominance relation-
ship can be extended to take into consideration constraint
values besides objective values. A constraint-domination
≺c is defined here so that ~x1 constraint-dominates ~x2, i.e.,
~x1 ≺c ~x2 iff any of the following conditions is true [22]:

• ~x1 is feasible and ~x2 is not.

• ~x1 and ~x2 are infeasible and ~x1 dominates ~x2 in con-
straint function space.

• ~x1 and ~x2 are feasible and ~x1 dominates ~x2 in objec-
tive function space.

The definition for weak constraint-domination �c is analo-
gous. This constraint-domination definition differs from the
approach presented in [8, pp. 301–302] in the case of two
infeasible vectors and was developed independently.

3 Differential Evolution

The DE algorithm [31, 34] was introduced by Storn and
Price in 1995. Design principles in DE were simplicity, ef-
ficiency, and the use of floating-point encoding instead of
binary numbers. Like a typical EA, DE has some random
initial population, which is then improved using selection,
mutation, and crossover operations. Several methods ex-
ist to determine a stopping criterion for EAs but usually
a predefined upper limit for the number of generations or
function evaluations to be computed provides an appropri-
ate stopping condition.

In each generation DE goes through each decision vec-
tor ~xi,G of the population and creates a corresponding trial
vector ~ui,G. Here, i is an index of the vector in the pop-
ulation and G is a generation index. Creation of the trial
vector is done as follows in the most common DE version,
DE/rand/1/bin [30]:

r1, r2, r3 ∈ {1, 2, . . . , NP} , (randomly selected,
except mutually different and different from i)

jrand = floor (rand i[0, 1) · D) + 1
for(j = 1; j ≤ D; j = j + 1)
{

if(rand j [0, 1) < CR ∨ j = jrand)
uj,i,G = xj,r3,G + F · (xj,r1,G − xj,r2,G)

else
uj,i,G = xj,i,G

}
(2)

The scaled difference between two randomly chosen vec-
tors, F · (~xr1,G − ~xr2,G), defines magnitude and direction
of the mutation. When the difference is added to a third ran-
domly chosen vector ~xr3,G, this corresponds to the mutation
of the third vector.

Both CR and F are user defined control parameters for
the DE algorithm and they remain fixed during the whole

execution of the algorithm. Parameter CR, controlling the
crossover operation, represents the probability that an ele-
ment for the trial vector is chosen from a linear combination
of three randomly chosen vectors instead of from the old
vector ~xi,G. The condition “j = jrand” is to make sure that
at least one element is different compared to elements of the
old vector. Parameter F is a scaling factor for mutation and
its value is typically (0, 1+]. In practice, CR controls the
rotational invariance of the search, and its small value (e.g.
0.1) is practicable with separable problems while larger val-
ues (e.g. 0.9) are for non-separable problems. Control pa-
rameter F controls the speed and robustness of the search,
i.e., a lower value for F increases the convergence rate but
also the risk of stacking into a local optimum.

The basic idea of DE is that the mutation is self-adaptive
to the objective function surface and to the current popu-
lation in the same way as in Covariance Matrix Adapta-
tion Evolutionary Strategies (CMA-ES) [16] but without the
computational burden of covariance matrix calculations that
are scaling unfavorably with the dimensionality of the prob-
lem. At the beginning of generations the magnitude of the
mutation is large because vectors in the population are far
away in the search space. When evolution proceeds and the
population converges, the magnitude of the mutation gets
smaller. The self-adaptability of DE permits a global search

A trial vector ~ui,G created by mutation and crossover op-
erations is compared to an old vector ~xi,G. If the trial vector
has an equal or better objective value, then it replaces the
old vector in the next generation. Therefore, the average
objective value of the population will never worsen making
DE an elitist method.

4 Generalized Differential Evolution

The first version of a Generalized Differential Evolution
(GDE) extended DE for constrained multi-objective opti-
mization and was obtained by modifying the selection rule
of the basic DE [22]. The basic idea in the selection rule
was that the trial vector was selected to replace the old vec-
tor in the next generation if it weakly constraint-dominated
the old vector. There was no sorting of non-dominated vec-
tors during the optimization process or any mechanism for
maintaining the distribution and extent of the solution. Also,
there was no extra repository for non-dominated vectors.
Still, GDE was able to provide a surprisingly good solu-
tion but was too sensitive for the selection of the control
parameters [20].

Later on GDE was modified to make a decision based on
the crowdedness when the trial and old vector were feasi-
ble and non-dominating each other in the objective function
space [21]. This improved the extent and distribution of
the solution but slowed down the convergence of the overall
population because it favored isolated vectors far from the
Pareto front before all the vectors were converged near the
Pareto front. This version, GDE2, was still too sensitive for
the selection of the control parameters.

The third version of GDE proposed in this paper extend-
ing the DE/rand/1/bin method to problems with M objec-
tives and K constraint functions formally presented in Eq. 3.



Input :D, Gmax, NP ≥ 4, F ∈ (0, 1+], CR ∈ [0, 1], and initial bounds: ~x(lo), ~x(hi)

Initialize :

{

∀i ≤ NP ∧ ∀j ≤ D : xj,i,G=0 = x
(lo)
j + rand j [0, 1] ·

(

x
(hi)
j − x

(lo)
j

)

i = {1, 2, . . . , NP} , j = {1, 2, . . . , D} , G = 0, m = 0, rand j [0, 1) ∈ [0, 1),







































































































































































































































































While G < Gmax

∀i ≤ NP















































































































































Mutate and recombine:
r1, r2, r3 ∈ {1, 2, . . . , NP} , randomly selected,

except mutually different and different from i
jrand ∈ {1, 2, . . . , D} , randomly selected for each i

∀j ≤ D, uj,i,G =







xj,r3,G + F · (xj,r1,G − xj,r2,G)
if rand j [0, 1) < CR ∨ j = jrand

xj,i,G otherwise
Select :

~xi,G+1 =

{

~ui,G if ~ui,G �c ~xi,G

~xi,G otherwise

Set :

m = m + 1
~xNP+m,G+1 = ~ui,G

if























∀j : gj(~ui,G) ≤ 0
∧
~xi,G+1 == ~xi,G

∧
~xi,G ⊀ ~ui,G















































While m > 0

Select ~x ∈ {~x1,G+1, ~x2,G+1, . . . , ~xNP+m,G+1} :






∀i ~x ⊀c ~xi,G+1

∧
∀(~xi,G+1 : ~xi,G+1 ⊀c ~x) CD (~x) ≤ CD (~xi,G+1)

Remove ~x
m = m − 1

G = G + 1

(3)

Notation CD means Crowding Distance [9], which approxi-
mates the crowdedness of a vector in its non-dominated set.
Also, some other distance measure for crowdedness could
be used. The parts that are new compared to previous GDE
versions are framed in Eq. 3. Without these parts, the algo-
rithm is identical to the first GDE version. Later on in this
paper the proposed method given in Eq. 3 is called the Gen-
eralized Differential Evolution 3 (GDE3). It handles any
number of M objectives and any number of K constraints,
including the cases where M = 0 (constraint satisfaction
problem) and K = 0 (unconstrained problem), and the orig-
inal DE is a special case of GDE3. GDE3 can been seen as
a combination of earlier GDE versions and PDEA [26]. A
similar approach was also proposed in DEMO [32] without
constraint handling, and DEMO does not fall back to the
original DE in the case of single objective as GDE3 does.

Selection in GDE3 is based on the following rules:

• In the case of infeasible vectors, the trial vector is se-
lected if it weakly dominates the old vector in con-
straint violation space, otherwise the old vector is se-
lected.

• In the case of the feasible and infeasible vectors, the
feasible vector is selected.

• If both vectors are feasible, then the trial is selected
if it weakly dominates the old vector in the objec-
tive function space. If the old vector dominates the
trial vector, then the old vector is selected. If neither
vector dominates each other in the objective function
space, then both vectors are selected for the next gen-
eration.

After a generation, the size of the population may have
been increased. If this is the case it is then decreased back to
the original size based on a similar selection approach used



in NSGA-II. Vectors are sorted based on non-dominance
and crowdedness. The worst population members according
to these measurements are removed to decrease the size of
the population to the original size. Non-dominated sorting
is modified to take into consideration also constraints, and
selection based on Crowding Distance is improved over the
original method of NSGA-II to provide a better distributed
set of vectors [19].

When M = 1 and K = 0, there are no constraints to be
evaluated and the selection is simply

~xi,G+1 =

{

~ui,G if f(~ui,G) ≤ f(~xi,G)
~xi,G otherwise

, (4)

which is same as for the original DE. The population is not
increased because this requires that ~ui,G and ~xi,G do not
weakly dominate each other, which cannot be true in the
case of a single objective. Since the population is not in-
creased, there is no need to remove elements. Therefore,
GDE3 is identical to the original DE in this case. This
makes it possible to change DE/rand/1/bin strategy to any
other DE strategy such as presented in [14,37] or, generally,
to any method where a child vector is compared against a
parent vector and a better one is preserved.

In NSGA-II and PDEA, the size of the population af-
ter a generation is 2NP , which is then decreased to size
NP . In GDE3 and DEMO, the size of the population af-
ter a generation is between NP and 2NP because the size
of the population is increased only if the trial and the old
vector are feasible and do not dominate each other.1 De-
creasing the size of the population at the end of a gen-
eration is the most complex operation in the algorithm.
This needs non-dominated sorting, which in GDE3 uses
the concept of constraint-domination defined in 2. Non-
dominated sorting can be implemented to run in time

O
(

N logM−1 N
)

[18]. Also, niching is done for non-

dominated members of the population, which is a complex
operation if clustering techniques are applied. Instead of
clustering, niching is performed using an approximate dis-
tance measure, Crowding Distance, which can be calcu-
lated in time O (MN log N) [18]. Overall running time for

GDE3 in Eq. 3 is O
(

GmaxN logM−1 N
)

for large N .

GDE3 can be implemented in such a way that the num-
ber of function evaluations is reduced because not always
all the constraints and objectives need to be evaluated, e.g.,
inspecting constraint violations (even one constraint) is of-
ten enough to determine, which vector to select for the next
generation [23,31]. However, in the case of feasible vectors
all the objectives need to be evaluated.

5 Experiments

GDE3 was evaluated with a set of test problems available
from the literature [8, 10, 11]. The idea was to select known
representative problems from different problem type cate-
gories. In repeated tests, a standard two-sample t-test was

1GDE3 could be modified to preserve the old and the trial vector in
the case of constrained-non-domination, but this would increase number
of function evaluations needed and slow down convergence.

used to evaluate the significance of the obtained numerical
results. Suitable control parameter values of GDE3 for each
problem were found based on problem characteristics and
by trying out a couple of different control parameter values.

5.1 Singe-Objective Optimization

The performance of GDE3 in the case of single-objective
optimization is illustrated with two classical multi-modal
test problems, Rastrigin’s and Schwefel’s functions with 20
variables. Since both problems are separable, a low value
for CR was used. The control parameter value F was set as
low as possible while still obtaining a global optimum. The
control parameters were CR = 0.0, F = 0.5 for Rastrigin’s
function and CR = 0.2, F = 0.4 for Schwefel’s function.

The test functions, initialization ranges, used population
sizes, desired target values, and a number of needed func-
tion evaluations as shown in Table 1. A minimum, mean,
and maximum number of function evaluations after 100 in-
dependent runs are reported. The number of needed func-
tion evaluations were significantly smaller than with the
Omni-Optimizer reported in [12].

5.2 Bi-Objective Test Problem

Improved selection based on the Crowding Distance is
demonstrated with a simple bi-objective optimization prob-
lem, which is defined as [8, p. 176]:

Minimize f1(~x) = x1

Minimize f2(~x) = 1+x2

x1

subject to x1 ∈ [0.1, 1], x2 ∈ [0, 5]
(5)

This problem is relatively easy to solve for MOEAs, and
GDE3 finds a solution converged to the Pareto front in about
20 generations. The problem was solved with GDE3 and
NSGA-II having a population size of 100 and 500 genera-
tions. Control parameters for GDE3 were CR = 0.2 and
F = 0.2, and for NSGA-II pc = 0.9, pm = 1/D, ηc = 20,
and ηm = 20 [9]. A large number of generations were
used to make sure that the obtained solution converged to
the Pareto front and only the diversity of the solution was
measured. Results after one run are shown in Figure 1. A
better distribution obtained for the solution for GDE3 than
NSGA-II can be observed with a careful view.

The problem was solved 100 times and diversity was
measured using spacing (S) [8, pp. 327–328], which mea-
sures the standard deviation of the distances from each vec-
tor to the nearest vector in the obtained non-dominated set.
A small value for S is better, and S = 0 for ideal dis-
tribution. Mean and standard deviations for spacing are
0.0030±0.0003 and 0.0074±0.0007 for GDE3 and NSGA-
II, respectively. GDE3 has more than double the lower spac-
ing value than NSGA-II has, i.e., GDE3 obtains a better dis-
tributed solution than NSGA-II in the case of this problem.

5.3 Bi-Objective Mechanical Design Problem

A bi-objective spring design problem [8, pp. 453–455] was
selected to demonstrate the GDE3’s ability to handle several



Function f (~x) D Range N f∗ Min Mean Max
Rastrigin

∑D

i=1 xi
2 + 10 (1 − cos(2πxi)) 20 [-10, 10] 20 0.01 8029

(19260)
9085
(24660)

10184
(29120)

Schwefel 418.982887D−
∑D

i=1 xi sin
(

√

|xi|
)

20 [-500, 500] 50 0.01 14996
(54950)

16540
(69650)

18479
(103350)

Table 1: Single-objective optimization problems, initialization ranges, population size, desired target value, and the needed
number of function evaluations for GDE3. Results reported in [12] for the Omni-Optimizer are in parenthesis.
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Figure 1: A simple bi-objective optimization problem
solved with GDE3 and NSGA-II.

constraints and different types of decision variables. GDE3
uses real-coded variables as genotypes, which are converted
to corresponding phenotypes before evaluation of the objec-
tive and constraint functions [31].

The problem is to design a helical compression spring,
which has a minimum volume and minimal stress. Objec-
tive functions are nonlinear and the problem has three vari-
ables: the number of spring coils x1 (integer), the wire di-
ameter x2 (discrete having 42 non-equispaced values), and
the mean coil diameter x3 (real). Besides the boundary con-
straints, the problem has eight inequality constraint func-
tions from which most are nonlinear.

Results for the different GDE versions and NSGA-II af-
ter a single run are shown in Figure 2. The size of the popu-
lation and the number of generations were 100 for the meth-
ods. Control parameter values for GDEs were CR = 0.9
and F = 0.5. The control parameters for NSGA-II were
pc = 1.0, pm = 1/D, ηc = 10, and ηm = 500 used in [8,
pp. 450]. The number of needed function evaluations for
the GDEs are reported in Table 2. NSGA-II needed 10000
function evaluations for each objective and constraint func-
tion.

In preliminary tests GDE3 was found to be more stable
than earlier GDE versions for the selection of the control
parameters. In these tests, GDE and GDE2 also performed
poorer compared to GDE3 and therefore they were excluded
from further comparison in this paper.
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Figure 2: The spring design problem solved with GDE,
GDE2, GDE3 and NSGA-II.

5.4 Constrained Bi-Objective Test Problems

Constrained bi-objective test problems CTP1 and
CTP2 [10] having D = 6, xi ∈ [0, 1], and function
g (~x) = 1 +

∑D

j=2 xj
2 controlling difficulty to converge to

the Pareto front were used. These problems were solved
100 times. The size of the population was 100 and the
number of generations was 50. Control parameters for
GDE3 were CR = 0.9 and F = 0.1, and for NSGA-II
pc = 0.9, pm = 1/D, ηc = 20, and ηm = 20 used in [10].

Results were compared using spacing and binary met-
rics set coverage C metric [8, pp. 325–326] and a V mea-
sure [15, 24]. The C(A, B) metric measures the fraction of
members of B that are dominated by members of A. The
V(A, B) measures the fraction of the volume of the mini-
mal hypercube containing both fronts that is dominated by
the members of A but is not dominated by the members of
B. Greater values for C and the V metrics are desirable.

The results shown in Table 3. With CTP1, spacing (S)
shows strongly and V metric slightly that GDE3 performs
better but C metric shows strongly opposite implying that
NSGA-II has converged closer to the Pareto front. With
CTP2, there is no significant difference between obtained
S values and the binary metrics show contradicting results.
Contradicting results for binary metrics are due to the fact
that the C metric emphasizes convergence over diversity
whereas the V metric considers both issues.



g1 g2 g3 g4 g5 g6 g7 g8 f1 f2

GDE 10100 8990 8901 8778 8115 8115 5704 5529 5515 2920
GDE2 10100 8504 8419 8008 7741 7741 6348 5874 5846 5846
GDE3 10100 8961 8879 8548 8319 8317 4885 4587 4566 4566

Table 2: Number of needed constraint (gj) and objective (fi) function evaluations needed by GDE, GDE2, and GDE3 for
the spring design problem.

S(G) S(N) C(G, N) C(N, G) V(G, N) V(N, G)
CTP1 0.0048±

0.0039

0.0075 ±
0.0026

0.1303 ±
0.0415

0.2023±
0.0904

0.0034±
0.0015

0.0027 ±
0.0016

CTP2 0.0092±
0.0073

0.0113 ±
0.0085

0.2655 ±
0.0742

0.3588±
0.0685

0.0031±
0.0011

0.0022 ±
0.0006

DTLZ1 0.0179±
0.0007

0.0274 ±
0.0171

0.3842±
0.1449

0.0021 ±
0.0100

0.0046±
0.0033

0.0012 ±
0.0011

DTLZ4 0.0214±
0.0010

0.0238 ±
0.0009

0.0948±
0.0240

0.0123 ±
0.0066

0.0085±
0.0007

0.0059 ±
0.0008

Table 3: Spacing (S), C, and V metrics for the CTP and DTLZ problems (G = GDE3 and N = NSGA-II).

5.5 Tri-Objective Test Problems

Finally, GDE3 was used to solve problems with more than
two objectives. Tri-objective test problems DTLZ1 and
DTLZ4 [11] were selected for this purpose. The size of
the population was 500 and the number of generations was
150 for DTLZ1 and 50 for DTLZ4. Control parameters for
GDE3 were CR = 0.2 and F = 0.2, and for NSGA-II
pc = 1.0, pm = 1/D, ηc = 15, and ηm = 20 used in [11].
Results after a single run are shown in Figures 3–5. Tests
were repeated 100 times and the same metrics were mea-
sured as for the CTP problems earlier.2 Obtained values are
reported in Table 3. GDE3 outperforms NSGA-II with these
problems according to metrics.

00.20.4
0 0.2 0.4

0

0.1

0.2

0.3

0.4

0.5

f
1

DTLZ1, GDE3

f
2

f 3

0 0.2 0.4 0 0.2 0.4
0

0.1

0.2

0.3

0.4

0.5

f
2

DTLZ1, GDE3

f
1

f 3

Figure 3: Two projections of the result for the DTLZ1 prob-
lem solved with GDE3.

6 Conclusions and Future Research

The third evolution version of Generalized Differential Evo-
lution, GDE3, is proposed. GDE3 is designed for any num-
ber of objectives and constraints without introducing any
extra control parameters to the original DE. In the case

2Even thought spacing might not give reliable result when the number
of objectives is greater that two [11].
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Figure 4: Two projections of the result for the DTLZ1 prob-
lem solved with NSGA-II.

Figure 5: The DTLZ4 problem solved with GDE3 and
NSGA-II.



of unconstrained single-objective optimization problems,
GDE3 is exactly the same as the original DE.

GDE3 modifies earlier GDE versions using a growing
population and non-dominated sorting with pruning of non-
dominated solutions to decrease the population size at the
end of each generation. This improves obtained diversity
and makes the method more stable for the selection of con-
trol parameter values. The constraint handling method used
in GDEs reduces the number of needed function evalua-
tions.

GDE3 was tested with a set of different types of test
problems and results show an improved diversity of the so-
lution over the NSGA-II method as well as demonstrating
a reduction in the number of needed function evaluations.
In some test problems, GDE3 found also a better converged
solution. However, results are based on limited tests with a
limited number of test problems and they are mainly indica-
tive.

A more extensive comparison of GDE3 with other multi-
objective DE methods, latest multi-objective evolutionary
algorithms and test problems, parallelization of the algo-
rithm, and applying GDE3 for practical constrained multi-
objective problems remains as future work.
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