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Abstract- Designing an optimal network requires
careful optimization of conflicting requirements. It
is an NP hard problem. Traditional approaches to
this problem have been based either on heuristics
or on rigorous mathematical programming,
queuing theory and network flow concepts. In this
work we describe the use of the multi-objective
genetic optimization technique to obtain a Pareto
front - a set of solutions which are optimal with
respect to a set of constraints and non-inferior to
each other - for the network design problem. A
prototype is developed and is the simulator is
currently being tested on different sets of inputs.

I. INTRODUCTION

Computer and telecommunication network topology
design is affected by various factors like network cost,
average packet delay, reliability of the network and the
maximum link capacities. Optimization of one or more
of such factors, which makes the network efficient, is
the main objective of design in most cases. Cost and
average packet delay are two factors that are often
considered. However, reliability and maximum
possible traffic in a link should also be kept in mind
[1}.12).[3]. This requires optimization of conflicting
factors, subject to various constraints, For example,
reducing the packet delay could mean an increase in
the link capacities, which will result in an increase in
the network cost. Exploring the whole solution space
for such a design problem is NP hard [4]. Practical
applications will thus benefit from an efficient way to
optimize these conflicting factors.

Traditional techniques like using spanning tree and
queuing can typically be used for single objective
optimization [1],[4], but have some disadvantages. A
spanning tree network connecting the nodes (with no
additional links) minimizes network cost but it fails to
ensure reliability [S]. Conventional genetic algorithm
solutions have optimized a single objective, subject to
a single constraint. For example, Abudali e al. [6]
assigned terminal nodes to concentrator sites to

0-7803-5812-0/00/$10.00©2000IEEE

515

‘minimize costs while considering maximum capacities,

using GA. However, reliability was not considered.

Reliability is a very important consideration in real
networks. So we have included, a reliability constraint
for the topological design of an optimal
communication network. Two-connectivity repair
algorithm [4] can be used for this purpose. But it is the
presence of articulation points that makes the network
unreliable. A two-connected network can have
articulation points and hence be unreliable. So, we
consider the number of articulation points in the
network as the indicator of reliability and penalize any
solution that has articulation points [11].

In this work we try to overcome some of the
disadvantages of conventional techniques by using
genetic algorithms [7]. We do not combine the
objectives into one by assigning weights to them as
weights are situation specific. Instead, we use PCGA
[9] to optimize multiple objectives simultaneously. In
our framework, we provide multiple, equally good
solutions to the problem. The user can then choose a
solution based on how much average packet delay or
network cost can be afforded, in addition to other
engineering considerations. A static routing scheme is
also developed for the topology designed to get a
comprehensive solution to the problem.

Esserttially, given the node locations, peak hour traffic
and the maximum link capacities, we attempt to
minirnize the network cost and the average packet
delay while ensuring that the network is reliable and
the traffic in any given link is within the maximum

capacity.

In this paper, we first discuss a mathematical model to
represent the problem. Then we discuss Pareto
converging genetic algorithms and the implementation
of the solution framework in the subsequent sections.
We present the results in the penultimate section and
briefly discuss them in the last section.



II. COMPUTER NETWORK DESIGN

The design problem has to be modeled mathematically
before we can proceed. The following relations are
used to obtain a mathematical model of the network
design objectives and convert it into a format suitable
for application of genetic algorithms for multi-
objective optimization. This problem is an adaptation
of the problem considered by Gerla and Kleinrock [1]
for which they developed a heuristic topological design
procedure.

The problem can be framed as follows:

Given :

1. Node locations (distances between the nodes.)

2. Peak hour traffic requirements (in MBPS) between
the nodes.

3. The maximum permissible time delay.

A. Objectives

To design the network, we choose the optimal set of
links connecting the given nodes and the capacities of
these links so as to minimize the following :

1. The total cost of the network:

Min D(c) = Z; f{ d(i)*<(i))
where d(i) is the length of the i link and c(i) is its
capacity.

2. The average packet delay:

Min T(£, €)= (1/R) * Zi i) / (e(i) - 1))
© KT * (flD)- (i)

Where,

f(i) is the flow along link i.

Tomax 1S the maximum permissible packet delay.
K=0 if f{i) < ¢(i) ; no penalty because the flow is
less than the capacity.

K=1 if f(i) >= c(i); flow exceeds capacity and
hence a penalty has to be imposed on the
individual. '

R is the sum of all average packet rates flowing
between every pair of nodes. Packet rate is the
traffic between j and k got from the traffic matrix
(bits/sec) divided by the packet size ( bits/packet)
[4].

B. Constraints

While optimizing these target variables, we keep
certain constraints in mind.

516

1. Flow constraint : Flow along a link should not
exceed capacity c. This, is imposed by applying a
quadratic penalty on the objective function for
delay, if the constraint is violated.

2. Reliability constraint : The number of articulation
points is determined and this constraint is imposed
on the rank.

Rank = Rank + penalty

Where,

Penalty = ceil ( number of articulation points *
(maximum Rank /2) )

The design variables are network topology and the

routing policy.

C. Routing Policy and link flows

Static routing allows direct calculation of the channel
flows and the average packet delay. Adaptive routing
requires complex simulation since it is in response to
current network traffic and link failures. Network
configurations optimized for fixed routing are also near
optimal for adaptive routing operations [1]. So we
chose to use static routing over dynamic routing. The
flow along each link is calculated by using the
superposition principle. A summation of the traffic
between the source and the destination nodes of all
paths using a link gives the total flow through that
particular link.

I1I. MULTI-OBJECTIVE GENETIC
OPTIMIZATION

Mathematically, a general multi-objective optimization
problem containing a number of objectives to be
maximized or minimized along with constraints for
satisfaction of achievable goal vectors can be written
as:

Minimize/Maximize objective f(X) ; m=1,2,....M

Subject to constraint
gk(X <= k=192’~-~9K‘

where, : ) ]

X = {x1, x2, ..., xN) is an N-tuple vector of variables;

F=(f1, £2, ..., M} is an M-tuple vector of objectives.

Goldberg's condition of Pareto-optimality [7] is stated
as : in a minimization problem, if an individual
objective vector F; is partially less than another
individual objective vector F; (symbolically F; < F) iff

(F; <F) & (V) fui <= ) A G fosi < ) -

then the individual F; dominates the individual F; If
any other in the population does not dominate an
individual, it is said to be non-dominated.



In this work we have used Pareto Converging Genetic
Algorithm (PCGA) [9] which is based on tied Pareto
ranking [8]. The Pareto rank of each individual is equal
to the number of individuals dominating him in the
multi-objective vector space. All the non-dominated
individuals are assigned rank one. If Pi(t) individuals
in the current population dominate an individual ai at
generation or epoch t, the current position of the
individual is given by:

Rank(a;, t) = 1 + P(t)

The population is selectively moved towards
convergence by discarding the lowest ranked
individuals in each evolution. In doing so, there is no
consideration of the size of sub-population or
involvement of the other parameters related to
sharing/mating. Additionally we remove all subjective
decisions about prioritizing the objectives.

Initially, the whole set of population (N) is ranked and
the fitness, which is a simple linear function, is used to
map the individuals onto a conventional roulette
wheel. The selected individuals are crossed-over to
produce offspring. Mutation is applied to the
population to introduce random variation. The
offspring are inserted into the population according to
their ranks against the whole set of individuals. At this
stage, the whole population set includes the parents
also. Now the population consists of N+2 members.
So, the lowest ranked two individuals are eliminated
and the population size is restored to N. The process is
iterated until a convergence criterion [9] is satisfied.
This selection strategy means that we do not, at any
stage, lose non-dominated solution(s).

In PCGA, at every stage, the population is evaluated in
the most general sense. There is no subjective
prioritization of the objectives nor are they randomly
picked. In the absence of true scalar fitness, the only
way to compare a parent and its offspring is a rank-
based metric. In a pair-wise comparison, if the
offspring are compared only against their parents, the
situation will result in a tie in most practical situations,
as is the case with Horn er al [10] and the additional
safeguards of mating/sharing restrictions have to be
employed for resolving the tie.

IV. IMPLENTATION

In our solution, every chromosome codes a possible
topology for interconnecting the given nodes including
the link capacities and the routing vector that gives the
path between every pair of nodes. An initial population
is randomly generated and it is ensured that the
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individuals are bi-connected [4].This is done to ensure
that the initial population does not contain excessively
inferior individuals. The chromosome of an individual
is also randomly generated. Each iteration consists of
evaluating the population at hand on the basis of the
optimization variables and assigning ranks to them.
Two parents are selected for a crossover. The.
crossover point is randomly chosen. Mutations are also
randomly introduced. Two new offspring are formed.
The fitness of all these individuals is calculated and the
worst two are eliminated. Now this population
becomes the initial population for the next iteration.
Several such iterations are needed before an optimal
solution can be obtained. The idea is to get an optimal
topological design and a static routing scheme for this
network.

A. Data Structures

1) Chromosome: Every chromosome codes the

following -

e Possible topologies for interconnecting the given
nodes including the capacity (in MBPS) if the
links are present. This section of the chromosome
is of length N(N-1)/2).

e A routing vector that gives the path between every
pair of nodes for the topology represented by the
individual. This section of the chromosome is of
variable length.

The link numbers are assigned in the fully connected
graph. For the particular individual, this graph is
represented as:

CoC1 ... Crntinks
Where,
maxlinks =n(n-1}/2

Each C,; is an unsigned integer between 2 and 150
C; = a finite number ; if the link is present
=0 ; if a link is absent.

2) Path: Every path is of variable length and a path-list
representation is used. The paths are represented such
that the source and destination are implicit, i.e. path 0
is a path from node 0 to node 1, path 1 is from node 0
to node 2, and so on. If path i is {1} it implies that the
full path is {0,1,2}. The source and destination are not
explicitly specified.

3) Individual: The characteristics that describe an
individual are the chromosome, the fitness, the size of
the chromosome, an array of path lengths, the rank, the
age, the cost, the average packet delay and the matrix
for representing the flow along every path of the
individual's network topology.



B. Algorithm

The inputs are the traffic matrix, the distances between
nodes and other parameters like crossover and
mutation probabilities, number of individuals needed
in the population, number of nodes, maximum number
of epochs and distances between all pairs of nodes.

First, the initial population is generated as explained in
the next paragraph. The flow along each link is
calculated using the super-position principle. Next, the
objective functions for the N individuals are
calculated. This is required to rank the population in
the next step. The fitness of an individual is the inverse
of its rank. By roulette wheel selection, two parents are
selected for mating. The two parent chromosomes are
crossed-over at a random site based on a crossover
probability. Then the chromosomes of a few randomly
chosen individuals are mutated based on a mutation
probability. Paths for the new population of size N+2
are then validated. The flows along all links are
calculated for all the individuals. The objective
functions are then evaluated and the population is
ranked. The individuals with the lowest two ranks are
eliminated to restore the population size to N. This is
performed till the convergence criterion is satisfied.
Then, the individuals with rank one constitute the set
of optimal solutions. ‘

C. Generation of the Initial Population

The links of an individual are randomly generated.
Then, it is ensured that the graph is connected, by
doing a depth first search on the graph and checking if
there is only one spanning tree. If not, random
generation is done again till the graph obtained is
connected. Now that we have a connected network, we
take care of the reliability constraint by ensuring that
each node has a degree of at least two. If not two-
connectivity repair algorithm described by Dengiz et
al. [4] is used. Then, the capacities of the links present
are randomly chosen. The paths between every pair of
nodes- and the lengths of these paths are randomly
generated. This decides the sizes of the chromosomes.

D. Simulation Using PCGA

The initial generation of the routing vectors was done
randomly. Hence, there is a possibility that a path may
be infeasible. So, we find out if any path contains an
adjacent pair of nodes, which are not directly
connected. If there is any such pair, we use Dijkstra's
algorithm, to find the shortest path between the two
nodes (greedy choice) and the pair is replaced by the
resultant path. Any cycles in the resultant path are
eliminated. This is essential because it is not possible
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to represent paths with cycles in a routing table. Every
routing table has an entry indexed by the packet’s
source and destination addresses and the entry
indicates which node the packet is to be forwarded to.
The existence of cycles in a path means that there may
be more than one such entry per (source node,
destination node) tuple, which makes the network non-
functional. '

Then the flow along each link is calculated using the
super-position principle. A summation of flows
between the source and destination nodes of all paths
using a link gives the total flow through that link. The
objective functions for cost and delay are calculated
using the relations discussed earlier. If the flow along a
link exceeds the link capacity, a penalty is imposed on
the objective function for average packet delay.

The individuals are ranked using tied Pareto ranking. A
penalty is imposed on individuals that have articulation
points, in order to ensure reliability of the network.
The rank is used to calculate the fitness of each
individual. Roulette wheel selection, using the fitness
of the individuals, is done to select the two parents for
mating. This ensures that fitter individuals have a
better chance of selection as parents.

The crossover point is generated randomly. If the
crossover point happens to be in the part representing
the capacities, parts of the chromosome strings of the
two parents are interchanged. The path length arrays of
the two individuals are swapped. If the crossover point
is in the part representing the paths, the viability of all
the paths in the resultant chromosomes is to be taken
into account. So, we use the crossover point to
interchange parts of the path-length arrays of the
individuals first. Then we calculate the crossover point
(for the actual chromosomes) by adding the path
lengths in the path-length arrays till the crossover
point. Using this, we interchange the chromosome
strings to get two new, viable chromosome strings.

Mutations may randomly change the capacities or the
paths of certain individuals. This introduces random
changes in the topology and/or in the routing scheme.
Again, the paths have to be made valid for these new
individuals. The flows through their links and the
objective functions are calculated. Then, all the N+2
individuals are ranked and the two most inferior are
eliminated. This process is repeated for successive
epochs. '

V. RESULTS

The initial population contains a large number of snb-
optimal solutions (Figure 1.) But as the iterations



progress, it can be seen that the set of non-dominated
solutions moves towards the Pareto front (Figure 2 and
Figure3 - please note that the graphs differ in the
- ranges of the co-ordinates.) The population can thus be
seen to improve in terms of the objectives - network
cost and average packet delay. The non-dominated
individuals also represent reliable networks as it has
been ensured that they do not contain articulation
points. In addition, the final optimal set contains a
number of such alternative solutions. Detailed results
and analysis will be presented during the conference.
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Figure 1: Population at the beginning (randomly
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VI. DISCUSSION AND CONCLUSIONS

The outcome of the simulation is that we have a set of
optimal network topologies that are non-inferior with
respect to each other. We have avoided combining the
multiple objectives into one based on weights in order
to retain the general nature of the solution. A network
designer having a range for network cost and packet
delay in mind can examine several optimal topologies
simultaneously and choose one based on these
requirements and other engineering considerations.
These topologies are reliable in case of single node
failures and it is guaranteed that the maximum packet
load on any link will not exceed the link capacity.
Additionally, a static routing scheme is developed for
each of the above networks.

We have thus provided a framework for developing a
tool for communication network topology design using
Pareto converging genetic algorithm. We are currently
testing the simulator with different sets of inputs and
tuning the genetic algorithm parameters for getting
(near-) optimal sets of the solutions with minimal
computational efforts. We will then analyze the
solutions so obtained with those obtained with
conventional approaches. The simulation can also be
extended to develop a scheme for dynamic routing,
which takes into account the network congestion and
changes in network configuration due to node or link
failures.
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