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Abstract. In this paper, we revisit a general class of multi-criteria
multi-constrained network design problems and attempt to solve, in
a novel way, with Evolutionary Algorithms (EAs). A major challenge
to solving such problems is to capture possibly all the (representative)
equivalent and diverse solutions. In this work, we formulate, without loss
of generality, a bi-criteria bi- constrained communication network topo-
logical design problem. Two of the primary objectives to be optimized
are network delay and cost subject to satisfaction of reliability and flow-
constraints. This is a NP-hard problem so we use a hybrid approach (for
initialization of the population) along with EA. Furthermore, the two-
objective optimal solution front is not known a priori. Therefore, we use
a multiobjective EA which produces diverse solution space and monitors
convergence; the EA has been demonstrated to work effectively across
complex problems of unknown nature. We tested this approach for de-
signing networks of different sizes and found that the approach scales well
with larger networks. Results thus obtained are compared with those ob-
tained by two traditional approaches namely, the exhaustive search and
branch exchange heuristics.

1 Introduction

Network design problems where even a single cost function or objective value
(e.g., minimal spanning tree or shortest path problem) is optimized, are often
NP-hard [1]. Many such uni-criterion network design problems are well studied
and many heuristics/methods exist for obtaining exact/approximate solutions in
polynomial-time [2]. But, in most real-life applications, network design problems
generally require simultaneous optimization of multiple and often conflicting
objectives, subject to satisfaction of some constraints. For example, topologi-
cal design of communication networks, particularly mesh/wide area networks
is a typical multiobjective problem involving simultaneous optimization of cost
of the network and various performance criteria such as average delay of the
network, throughput subject to some reliability measures and bandwidth/flow-
constraints. The problem can be stated as: given a set of node locations and the
traffic between the nodes, it is required to design the layout of links between the
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nodes while optimizing certain criteria e.g., overall cost, average per packet delay,
reliability and provision for expansion. This requires optimization of conflicting
factors, subject to various constraints. For example, reducing the packet delay
could mean an increase in the link capacities, which will result in an increase in
the network cost. Exploring the whole solution space for such a design problem
is an NP hard problem [3]. Similar design problems exist for multicast routing
of multimedia communication in constructing a minimal cost spanning/Steiner
tree with given constraints on diameters [4].

Such multicriteria network design problems occur in many other engineer-
ing applications too. In VLSI design, the interconnect resistance increases sig-
nificantly with deep micron technology. An increase in interconnect resistance
increases interconnect delays thus making a dominant factor in timing analysis
of VLSI circuits. The VLSI circuit design aims at finding minimum cost span-
ning/Steiner tree given delay bound constraints on source-sink connections [5].
Analogously, there exists the problem of degree/diameter- constrained minimum
cost networks [6].

Many NP-hard bicriteria network design problems have been attempted and
approximate solutions obtained using heuristics/methods, and verified in poly-
nomial time, see - [6], [7] and [8]. For example, Ravi et al. [8] and Deo et al. [6]
presented approximation algorithm by optimizing one criterion subject to a bud-
get on the other. We argue that the use of heuristics may yield single optimized
solutions in each objective-space, and may not yield many other equivalent so-
lutions. Secondly, extending this approach to multi-criteria problems (involving
more than two objectives/constraints) the techniques require improving upon
more than one constraints. Thirdly and more importantly, such approaches may
not yield all the representative optimal solutions. Most conventional approaches
to solve network design problems start with a Minimum Spanning Tree (MST),
and thus effectively minimizes the cost. With some variations induced by ε-
constraint method, most other solutions obtained are located near the minimal-
cost region of the Pareto-front, and thus do not form the complete Pareto-front.

In this work, we try to overcome the disadvantages of conventional techniques
and single objective EAs. We use multiobjective EA to obtain a Pareto-front.
For a wide-ranging review and a critical analysis of evolutionary approaches to
multiobjective optimization - see [9] and [10]. There are many implementation
of multiobjective EAs, for example, MOGA [11], NSGA [12], SPEA [13]) and
PEAS [14]. These implementations achieve diverse and equivalent solutions by
some diversity preserving mechanism, they do not talk about convergence. Any
explicit diversity preserving method needs prior knowledge of many parameters
and the efficacy of such a mechanism depends on successful fine-tuning of these
parameters. In a recent study, Purshouse & Fleming [17] extensively studied the
effect of sharing, along with elitism and ranking, and concluded that while shar-
ing can be beneficial, it can also prove surprisingly ineffective if the parameters
are not carefully tuned.

Some other recent studies have been done on combining convergence with
diversity. Laumanns et al. [15] proposed an ε-dominance for getting an ε-
approximate Pareto-front for problems whose optimal Pareto-set is known. Ku-
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mar & Rockett [16] proposed use of Rank-histograms for monitoring convergence
of Pareto-front while maintaining diversity without any explicit diversity preserv-
ing operator. Their algorithm is demonstrated to work for problems of unknown
nature. Secondly, assessing convergence does not need any a priori knowledge
for monitoring movement of Pareto-front using rank-histograms.

In this work, we use their Pareto Converging Genetic Algorithm (PCGA)
[16] which has been demonstrated to work effectively across complex problems
and achieves diversity without needing a priori knowledge of the solution space.
PCGA excludes any explicit mechanism to preserve diversity and allows a natural
selection process to maintain diversity. Thus multiple, equally good solutions
to the problem, are provided. PCGA assesses convergence to the Pareto-front
which, by definition, is unknown in most real search problems, by use of rank-
histograms.

We select topological design of communication network as a sample network
problem domain. We present a novel approach to design a network with two
minimization objectives of cost and delay subject to satisfaction of reliability
and flow constraints. (In the past, EAs have been extensively used in single ob-
jective optimization for various communication network related design problems
- we give a brief survey of such work in the next section.) The remainder of the
paper is organized as follows. In section 2, we present the related work done for
communication network design problem. We describe, in section 3, a suitable
model for the representation of a communication network and its implementa-
tion. Then, we present results in section 4 along with a comparison with the
conventional methods. Finally, we draw conclusions in section 5.

2 Related Work

Since Network Design Optimization is an NP-hard problem, heuristic techniques
have been used widely for such design. Heuristic methods that have been used
include techniques, such as branch exchange, cut saturation etc. For example Jan
et al. developed a branch and bound based technique to optimize network cost
subject to a reliability constraint [18]. Ersoy and Panwar developed a technique
for the design of interconnected LAN and MAN networks to optimize average
network delay [19]. Clarke and Anandalingam used a heuristic to design minimal
cost and reliable network [20]. However, these being heuristics, they do not ensure
that the solutions obtained are optimal. Some of these heuristics evaluate trees
and thus a large number of possible solutions are left unexplored.

Linear and Integer Programming has been used to a limited extent for net-
work optimization since the number of equations varies exponentially with the
number of nodes [21]. Also, greedy randomized search procedures [22] and other
meta heuristics have been used for combinatorial optimization.

EAs have been extensively used in single objective optimization for many
communication network related optimization problems. For example, Baran and
Laufer [23] presented an Asynchronous Team Algorithms (A-Team) implemen-
tation, in a parallel heterogeneous asynchronous environment, to optimize the
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design of reliable communication networks given the set of nodes and possible
links. The proposed Team combines parallel GAs, with different reliability cal-
culation approaches in a network of personal computers. Abuali et al. assigned
terminal nodes to concentrator sites to minimize costs while considering max-
imum capacity [24]. Ko et al. used GA for design of mesh networks but the
optimization was limited to optimizing the single objective of cost while keeping
minimum network delay as a constraint [25]. Elbaum and Sidi used GA to design
a LAN with the single objective of minimizing network delay [26]. Kumar et al.
used GA for the expansion of computer networks while optimizing the single
objective of reliability [27]. White et al. used GA to design Ring Networks opti-
mizing the single objective of network cost [28]. Dengiz et. al [29] presented a EA
with specialized encoding, initialization, and local search operators to optimize
the design of communication network topologies.

Most approaches attempted to optimize just one objective. For some ap-
proaches, the problem is broken down into a number of subproblems, solved in
sequence using some heuristics thereby possibly leading to locally optimal design.
Ravi et al. [8] and Deo et al. [6] presented approximation algorithm by optimizing
one criterion subject to a budget on the other. Since then, many polynomial-
time algorithm have been developed for several NP-hard optimization problems
arising in network design. Different connectivity requirements such as spanning
trees, Steiner trees, generalized Steiner forests, and 2-connected networks have
been considered.

However, a practical multiobjective optimization approach should simultane-
ously optimize multiple objectives subject to satisfiability of multiple constraints.
In this work, we present a framework using EAs that simultaneously optimize
multiple objectives and produces a set of non-dominated equivalent solutions
that lie on (near-) optimal Pareto- front.

3 Design and Implementation

Problem Definition: Topological design of WANs involves determining the layout
of links between nodes given the mean/peak inter node traffic such that certain
parameters of the network are optimized. In the solution developed, the total
network cost and average delay on links is minimized simultaneously to obtain
a Pareto front of optimal non-dominated solutions.

Design Parameters: For design, we use the following network parameters: the
total number of nodes in the network N , the distance matrix Dij which gives the
physical distance between nodes i and j in kms, the traffic matrix Tij which gives
the expected peak network traffic between nodes i and j in packets per second,
the number of types of network equipment slabs available K, and the number
of types of link slabs available M along with the link cost per unit distance and
link capacity.

Objective Functions: We use two objective functions - cost and delay - each of
which is approximated by the following formulation:
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1. Cost:
Cost = Costnodes+ Costlinks+ Costamps
where,
Costnodes =

∑
i Ci; Ci = cost of the network equipment placed at node i

Costlinks =
∑

i

∑
j Cij ; Cij = cost of the link between node i and node j

Costamp =
∑

i

∑
j

Dij×A

L ; L = maximum distance for which the signal is
sustained without amplification, and A = cost of each amplifier unit.

2. Average Delay:

AvgDelay =

∑
i

∑
j(Delayij × LinkF lowij)
∑

i

∑
j LinkF lowij

LinkF lowij =
∑

k

∑
l Traffickl ∀ k, l nodes in the network such that the

route from node k to node l includes the link (i, j). From queuing theory,

Delayij =
1

Capij − LinkF lowij

Delayij is the link delay for packets flowing through link (i, j), and Capij

is the capacity of link (i, j). LinkF lowij and Delayij are 0 if there is no
link between nodes i and j. AvgDelay is ∞ if the network cannot handle
the required traffic pattern with the existing capacities of the links and the
routing policy adopted.

Constraints: Optimization of cost and delay functions are done subject to the
following constraints:

1. Flow Constraint: Flow along a link (i, j) should not exceed the capacity of
the link. Checking whether the total traffic along a link exceeds the capacity
imposes this constraint. If it does, then the network is penalized.

2. Reliability Constraint: The network generated has to be reliable. The
number of articulation points is a measure of the unreliability of the network.
An articulation point of a graph is a vertex whose removal disconnects the
graph. The number of articulation points is determined, and this constraint
is imposed penalizing the network proportional to their number.

Routing Policy: To calculate the traffic through a particular link the routes
between the nodes have to be known so that by superposition principle the total
traffic on a link can be calculated. Routing is dynamic in real life and at any
point the delays on the various links calculated from the traffic flowing through
them gives the best route to be evaluated from the traffic matrix. For solving
the design problem at least a rough static route has to be obtained. Dijsktra’s
shortest path algorithm is used for routing. The metric used for this purpose is
the length of the link.
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Encoding: In the encoding scheme chosen, every chromosome encodes a possible
topology for interconnecting the given nodes; i.e., a chromosome represents a
network, which is an individual in a set of potential solutions of the problem. This
set of potential solutions constitutes a population. A constant length bit string
representation was used to represent the chromosome. The chromosome consists
of two portions; the first portion containing details of the network equipments at
the nodes and the second portion consisting of details of the links. For instance,
if there are T types of nodes, then �log2T � bits are needed to encode a node.
Thus the first portion of the chromosome consists of �log2T � ×N bits. If a link
is present between nodes 1 and 2 then the first bit position in the link portion
is set to 1. Thus, the second portion of the chromosome consists of N×(N−1)

2
bits. For example, we take 4 bits to encode up to 16 types of nodes. So, the first
part of the chromosome contains 4 × 4 = 16 bits and the second part of the
chromosome contains 4×(4−1)

2 = 6 bits.
The capacity of the link is then the first capacity value in the link slab that

is greater than the minimum of the capacities of the NE s at the two node ends.

Initial Population: We use hybridization of EAs and conventional algorithm in
generating the initial population. The following steps are used to generate the
initial population. The network equipments (NE) at the nodes are randomly
assigned and maintained in the chromosome. Assuming that the individual is
fully connected, a minimal spanning tree is generated using Prim’s algorithm. All
co-tree links are then removed. A random number of links is then added from the
co-tree set to the spanning tree. The number of links added is a random number
in between one-third of the total number of links to half of the total number
of links. This is done so that the initial population is not limited to spanning
trees. This way we adopt a hybrid approach so that the time for exploitation
and exploration of the search space is significantly reduced, and the number of
lethals produced for large nets is minimized.

Fitness Evaluation: We use Pareto-rank based EA implementation. The Pareto
rank [11] of each individual is equal to one more than the number of individuals
dominating it in the multiobjective vector space. All the non-dominated indi-
viduals are assigned rank one. The values of the two objectives to be minimized
(cost and average delay) are used to calculate the rank of the individual. Using
the superposition principle the traffic on each individual node is calculated and
hence the average delay for the network is calculated. Based on these two objec-
tives the rank of the individual is calculated. In this work, we calculate fitness
of an individual by Fitness = 1

(Rank)2 .

Other Genetic Operators: We use Roulette wheel selection for selecting the par-
ents. We divide chromosome in two parts for crossover. In the first part of the
chromosome, initially the crossover point would lie at any position in the chro-
mosome irrespective of the boundaries of the bits encoding. Node type values
are not preserved to ensure maximum exploration. As the algorithm proceeds
the probability of getting a crossover point within a node’s NE boundary in
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the chromosome is constantly reduced so as to exploit the collected experience
regarding optimal values of NE types so far. In this case only the existing NE
types in the parents can be present in the children. In the link portion of the
chromosome, since a single bit is used to code the presence or absence of the link,
such considerations regarding tradeoff between exploration and exploitation do
not arise. As a result, the crossover point is purely random. We use multi-point
crossover; the number of crossover points depends on the problem-size. We use
a simple bit-flipping mutation to further increase the exploration of the solution
space.

Presence of Unconnected Components: As a result of the crossover and muta-
tion operations, unconnected networks are generated as offspring. We do not
completely eliminate the unconnected networks from further consideration. We
maintain a pool of unconnected networks. This may give rise to fitter and con-
nected components after further evolutions. This approach of maintaining un-
connected, unfit individuals separately in the population is in accordance with
the philosophy that unfit individuals can produce fit children.

Ensuring Convergence: For this we compute Intra-Island Rank-Histogram for
each epoch of the genetic evolution and monitor the movement of Pareto-front.
Since, this is a hard problem, it is likely that the problem may get trapped in local
optima. To ensure a global (near-) optimal Pareto-front, we use a multi-island
approach and monitors the Pareto-front using Inter-Island Rank histogram. The
computation of Rank-histogram is analogous to that given in [16].

4 Results

We collected data of mass communication networks of different cities to carry
out the simulation. We used the data which was used by the researchers in
their previous work. We tested the algorithm for networks with up to 36 nodes,
and convergence to an optimal Pareto front was observed. We conducted the
experiments with many sets of random populations, and analyzed many sets of
results. We also compared results with those obtained from other approaches
namely exhaustive search and the Branch Exchange heuristic. In the following
subsections, we include a few representative results.

Network of 10 Chinese Cities: The GA was run for the same problem as solved by
Ko et al. [25]. In brief, the problem consisted of designing a packet switched mesh
communication network among 10 major Chinese cities with realistic topology
and traffic requirements. The design assumed a cost structure proportional to
the distance among nodes and accounted for three different line rates: 6, 45 and
150 Mbps.

For a set of initial population of size 100, the solution space was found to
improve very quickly up to the 40th epoch. Then the improvement was marginal.
We carried the evolutions up to the 100th epoch. The rate of improvement was
observed to be very slow; this was monitored by a rank-ratio histogram [16]. We
include the initial population and the population at 60th epoch in Fig. 1.
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Fig. 1. 10 node network : (a) Initial population, (b)the converging Pareto-front ob-
tained from EA and (c) the optimal Pareto-front obtained from exhaustive search.
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Fig. 2. A converging Pareto-front for a 21-node network. The population of size 100
is converging slowly to the Pareto-front during the later stages of evolution.

Network of 21 US Cities: Next, we tested our algorithm on a problem with
larger number of nodes. This is a more complex than the earlier problem, so the
improvement with epochs was slower.

Figure 2 shows the initial population and the non-dominated points obtained
at epochs 40, 60 and 80. As seen from the plots, the movement of the Pareto
Front is very-very marginal after the 40th epochs. However, a few new solutions
were being added to the Pareto-front with evolutions in low-cost and high-delay
region. We observed that finding unformly distributed diverse solution in this
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non-linear region was a difficult task. However, we obtained diversity in this
region by running EA for longer epochs. Alternately, this could be done by
adopting the multi-island approach and by assessing convergence using inter-
island rank histogram [16].

Network of 36 European Cities: Finally, we ran EA for a problem with 36 nodes.
This is much more complex than the previous two problems. It took much more
computational resources; we started with a population of 250 size and we could
get nearly converged solution space at some 60th epochs. This is shown in Fig. 3.
The improvement was significant but with slower rate. The behavior of the pop-
ulation dynamics was quite analogous to the earlier results obtained with smaller
and medium sized networks.
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Fig. 3. A 36-node network: Comparison of solutions obtained by EA with the clusters
obtained from Branch Exchange Heuristics.

Comparison: In order to show the relative merits of the EA approach we com-
pared the results with those obtained by two of the commonly used conventional
methods, namely, Exhaustive Search and Branch Exchange Heuristic.

An exhaustive search was done for all possible networks of size N = 10
nodes. All the possible networks were generated and evaluated, then all the non-
dominated solutions in a given range were plotted against the results obtained
with the Genetic Algorithm in Fig. 1. Since the problem is NP hard, the exhaus-
tive search is of exponential complexity and is completely unfit for networks
with more than 10 nodes. The complexity of the exhaustive search was found to
be O(2N2

). This is because there are 2
N C2 graphs possible with N nodes. The

deterministic solution is slightly superior to the results obtained by EA. This is
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expected because the deterministic Algorithm exhaustively searches all possible
topologies. But it is also observed that the difference between the results ob-
tained by Exhaustive Search and Genetic Algorithm is quite close. This gap is
specific to a solution space which was obtained by a random sampling of the ini-
tial population; secondly this was not run to a total convergence. A multi-island
approach as suggested in [16] is one of the possible solution to obtain a superior
convergence. This is an area of further investigation.

The price paid for this marginal improvement obtained by Exhaustive Search
over a single island Genetic Algorithm is the computation time involved. It was
observed that for N = 10 node network the Exhaustive Search took more than
10 hours on a typical Intel Pentium P-IV, 1.7 MHz machine, whereas, the GA
took a couple of minutes only. We could not compute the results for N > 10
nodes because of the exponential nature of the problem.

Another conventional method widely used for network optimization problems
is Branch Exchange Heuristic. Many authors have used this heuristics to com-
pare the results obtained by their algorithms. So we also compare the results
obtained by EA with the clusters obtained by the Branch Exchange method.
Here, we use an ε-constraint Branch Exchange to extend its use to multiob-
jective optimization. Different constraints have been put on any one objective
function to obtain the solution in different regions of the Pareto-front. A few
clusters are depicted in Fig. 3. As observed in Fig. 3 the results obtained by the
Branch Exchange algorithm are comparable to a subset of the solutions obtained
by EA but the diversity of the branch exchange is much less compared to that
of EA. This is due to the fact that the branch exchange method considers only
those network topologies that are spanning trees. However, such heuristics are
unable to obtain most regions of the Pareto-front. This is a distinct advantage
of EA in solving such hard problem.

5 Discussion and Conclusions

In this work, we demonstrated the solution of optimizing topologies of communi-
cation networks subject to their satisfying the twin objectives of minimum cost
and delay along with two constraints. The solution to the network design prob-
lem is a set of optimal network topologies that are non-inferior with respect to
each other. The multiple objectives to be optimized have not been combined into
one and hence the general nature of the solution is maintained. These topologies
are reliable in case of single link failures and it is guaranteed that the maximum
packet load on any link will not exceed the link capacity. Thus the network is
two edge connected and satisfies the constraints.

The algorithm has been test run on small as well as large networks. The initial
population used in EA was taken from some hybridization of spanning tree and
random topologies. The initial population and the final front were located far
apart (Figs. 1 and 2). As a result much of the optimization was done by EA.

In most optimization problems like network design, it is crucial for the fi-
nal solution-space to be diverse. As is observed from the results, EA achieves
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greater diversity in polynomial time as compared to other methods considered.
A network designer having a range of network cost and packet delay in mind,
can examine several optimal topologies simultaneously and choose one based on
these requirements and other engineering considerations. The solutions obtained
by traditional approaches do not show diversity. This is the primary advantage
of using Pareto-rank based techniques to solve multiobjective optimization prob-
lems of such a hard nature.

Acknowledgements. This research is supported by Ministry of Human Re-
source Development(MHRD), Government of India project grant.

References

1. M. R. Garey and D. S. Johnson. Computers and Interactability: A Guide to the
Theory of NP-Completeness, 1979. San Francisco, LA: Freeman.

2. D. Hochbaum (Ed.). Approximation Algorithms for NP-Hard problems, 1997.
Boston, MA: PWS.

3. M. Gerla and L. Kleinrock. On the topological design of distributed computer
networks. IEEE Trans. Communications, 25(1): 48–60, 1977.

4. V. P. Kompella, J. C. Pasquale, and G. C. Polyzos. Multicast routing for multi-
media communication. IEEE/ACM Trans. Networking, 286–292, 1993.

5. M. Borah, R. M. Owens, and M. J. Irwin. An edge-based heuristic for Steiner
routing. IEEE Trans. Computer Aided Design of Integrated Circuits and Systems,
13(12): 1563–1568, 1995.

6. N. Boldon, N. Deo, and N. Kumar. Minimum-weight degree-constrained spanning
tree problem: Heuristics and implementation on an SIMD parallel machine. Parallel
Computing, 22(3): 369–382, 1996.

7. M. V. Marathe, R. Ravi, R. Sundaram, S. S. Ravi, D. J. Rosenkrantz, and H. B.
Hunt. Bicriteria network design problems. J. Algorithms, 28(1): 142–171, 1998.

8. R. Ravi, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, and H. B. Hunt. Approxi-
mation algorithms for degree-constrained minimum-cost network design problems.
Algorithmica, 31(1): 58–78, 2001.

9. C. A. C. Coello, D. A. Van Veldhuizen, and G. B. Lamont. Evolutionary Algorithms
for Solving Multi-Objective Problems, 2002. Boston, MA: Kluwer.

10. K. Deb. Multiobjective Optimization Using Evolutionary Algorithms, 2001. Chich-
ester, UK: Wiley.

11. C. M. Fonseca and P. J. Fleming. Multiobjective optimization and multiple con-
straint handling with evolutionary algorithms – Part I: a unified formulation. IEEE
Transactions on Systems, Man and Cybernetics-Part A: Systems and Humans,
28(1): 26–37, 1998. 26–37.

12. K. Deb et al. A fast non-dominated sorting genetic algorithm for multiobjective
optimization: NSGA-II. Parallel Problem Solving from Nature, PPSN-VI: 849–858,
2000.

13. E. Zitzler, M. Laumanns and and L. Thiele. SPEA2: Improving the strength Pareto
evolutionary algorithm. EUROGEN 2001.

14. Knowles, J. D. and Corne, D. W. Approximating. Evolutionary Computation, 8(2):
149–172, 2000.



2190 R. Kumar and N. Banerjee

15. M. Laumanns, L. Thiele, K. Deo and E. Zitzler. Combining convergence and diver-
sity in evolutionary multiobjective optimization. Evolutionary Computation, 10(3):
263–182, 2002.

16. R. Kumar and P. I. Rockett. Improved sampling of the Pareto-front in multiobjec-
tive genetic optimizations by steady-state evolution : a Pareto converging genetic
algorithm. Evolutionary Computation, 10(3): 283–314, 2002.

17. R. C. Purshouse and P. J. Fleming. Elitism, sharing and ranking choices in evolu-
tionary multi-criterion optimization. Research Report No. 815, Dept. Automatic
Control & Systems Engineering, University of Sheffield, Jan. 2002.

18. R. H. Jan, F. J. Hwang, and S. T. Cheng. Topological optimization of a communi-
cation network subject to a reliability constraint. IEEE Trans. Reliability, 42(1):
63–69, 1993.

19. C. Ersoy and S. S. Panwar. Topological design of interconnected LAN/MAN Net-
works. IEEE J. Select. Areas Communication, 11(8): 1172–1182, 1993.

20. L. W. Clarke and G. Anandalingam. An integrated system for designing mini-
mum cost survivable telecommunication networks. IEEE. Trans. Systems, Man
and Cybernetics- Part A, 26(6): 856–862, 1996.

21. A. Atamturk and D. Rajan. Survivable network design: simultaneous routing of
flows and slacks. Research Report, IEOR, University of California at Berkeley.

22. T. A. Feo and M. G. C. Resende. Greedy randomized adaptive search procedures.
Journal of Global Optimization, 1995.

23. B. Baran and F. Laufer. Topological optimization of reliable networks using A-
Teams. National Computer Center, National University of Asuncion, University
Campus of San Lorenzo – Paraguay.

24. F. N. Abuali, D. A. Schnoenefeld, and R. L. Wainwright. Designing telecommu-
nication networks using genetic algorithms and probabilistic minimum spanning
Trees. In Proc. 1994 ACM Symp. Applied Computing, pp. 242–246, 1994.

25. K. T. Ko, K. S. Tang, C.Y. Chan, K. F. Man and S. Kwong. Using genetic algo-
rithms to design mesh networks. IEEE Computer, 6–58, 1997.

26. R. Elbaum and M. Sidi. Topological design of local-area networks using genetic
algorithms. IEEE/ACM Trans. Networking, 4(5): 766–777, 1996.

27. A. Kumar, R. M. Pathak, and Y.P. Gupta. Genetic-algorithm based reliability
optimization for computer network expansion. IEEE Trans. Reliability, 44(1): 63–
72, 1995.

28. A. R. P White, J. W. Mann, and G. D. Smith. Genetic algorithms and network
ring design. Annals of Operational Research, 86: 347–371, 1999.

29. B. Dengiz, F. Altiparmak, and A. E. Smith. Local search genetic algorithm for
optimal design of reliable networks. IEEE Trans. Evolutionary Computation, 1(3):
179–188, 1997.


	Introduction 
	Related Work 
	Design and Implementation 
	Results 
	Discussion and Conclusions 

