

Multiobjective EA Approach for Improved Quality of
Solutions for Spanning Tree Problem


Rajeev Kumar, P. K. Singh, and P. P. Chakrabarti


Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur


Kharagpur, WB 721 302, India�
rkumar,pksingh,ppchak � @cse.iitkgp.ernet.in


Abstract. The problem of computing spanning trees along with specific con-
straints is mostly NP-hard. Many approximation and stochastic algorithms which
yield a single solution, have been proposed. In this paper, we formulate the generic
multi-objective spanning tree (MOST) problem and consider edge-cost and di-
ameter as the two objectives. Since the problem is hard, and the Pareto-front is
unknown, the main issue in such problem-instances is how to assess the conver-
gence. We use a multiobjective evolutionary algorithm (MOEA) that produces di-
verse solutions without needing a priori knowledge of the solution space, and gen-
erate solutions from multiple tribes in order to assess movement of the solution
front. Since no experimental results are available for MOST, we consider three
well known diameter-constrained minimum spanning tree (dc-MST) algorithms
including randomized greedy heuristics (RGH) which represents the current state
of the art on the dc-MST, and modify them to yield a (near-) optimal solution-
fronts. We quantify the obtained solution fronts for comparison. We observe that
MOEA provides superior solutions in the entire-range of the Pareto-front, which
none of the existing algorithms could individually do.


1 Introduction


Computing a minimum spanning tree (MST) from a connected graph is a well-studied
problem and many fast algorithms and analytical analyses are available [1–8]. How-
ever, many real-life network optimization problems require the spanning tree to satisfy
additional constraints along with minimum edge-cost. For example, communication
network design problem for multicast routing of multimedia communication requires
constructing a minimal cost spanning/Steiner tree with given constraints on diameter.
VLSI circuit design problems aim at finding minimum cost spanning/Steiner trees given
delay bound constraints on source-sink connections. Analogously, there exists the prob-
lem of degree/diameter-constrained minimum cost networks in many other engineering
applications too (see [3] and the references therein).


Many such MST problem instances having a bound on the degree, a bound on the
diameter, capacitated trees or bounds for two parameters to be satisfied simultaneously
are listed in [3]. Finding spanning trees of sufficient generality and of minimal cost sub-
ject to satisfaction of additional constraints is often NP-hard [3, 4]. Many such design
problems have been attempted and approximate solutions obtained using heuristics.







For example, the research groups of Deo et al. [5–8] and Ravi et al. [3, 4] have pre-
sented approximation algorithms by optimizing one criterion subject to a budget on the
other. In recent years, evolutionary algorithms (EAs) have emerged as powerful tools
to approximate solutions of such NP-hard problems. For example, Raidl & Julstrom [9,
10] and Knowles & Corne [11, 12] attempted to solve diameter and degree constrained
minimum spanning tree problems, respectively using EAs. All such approximation and
evolutionary algorithms yield a single optimized solution subject to satisfaction of the
constraint(s). Moreover, researchers have demonstrated superiority of one algorithm
over other algorithms for a particular value of a constraint and did not assess the per-
formance over entire range of the values.


We argue that such constrained MST problems are essentially multiobjective in na-
ture. A multiobjective optimizer yields a set of all representative equivalent and di-
verse solutions; the set of all optimal solutions is the Pareto-front. Secondly, extend-
ing this constraint-optimization approach to multi-criteria problems (involving two or
more than two objectives/constraints) the techniques require improving upon more than
one constraints. Thirdly and more importantly, such approaches may not yield all the
representative optimal solutions. For example, most conventional approaches to solve
network design problems start with a minimum spanning tree (MST), and thus effec-
tively minimize the cost. With some variations induced by � -constraint method, most
other solutions obtained are located near the minimal-cost region of the Pareto-front,
and thus do not form the complete (approximated) Pareto-front.


In this work, we try to overcome the disadvantages of conventional techniques and
single objective EAs. We use multiobjective EA to obtain a (near-optimal) Pareto-front.
For a wide-ranging review, a critical analysis of evolutionary approaches to multiob-
jective optimization and many implementations of multiobjective EAs, see [13, 14] for
algorithms and implementations, and [15] for various applications.


We use Pareto Converging Genetic Algorithm (PCGA) [16] which has been demon-
strated to work effectively across complex problems and achieves diversity without
needing a priori knowledge of the solution space. PCGA excludes any explicit mecha-
nism to preserve diversity and allows a natural selection process to maintain diversity.
Thus multiple, equally good solutions to the problem, are provided. Another major
challenge to solving unknown problems is how to ensure convergence. Some multiob-
jective problems have a tendency to get stuck at local Pareto-front [16], therefore, we
generate solutions using multiple tribes and merge them to ensure convergence. PCGA
assesses convergence to the Pareto-front which, by definition, is unknown in most real
search problems of multi-dimensionality, by use of rank-histograms [17]. We consider,
without loss of generality, edge-cost and tree-diameter as the two objectives to be min-
imized, though the framework presented here is generic enough to include any number
of objectives to be optimized. Initial results of this work were presented in other confer-
ences [18, 19]. In this paper, we extend the work for larger problem instances, present
a systematic approach to assess the convergence, and compare qualitatively and quan-
titatively the obtained solution-fronts from three well-known techniques, namely, One-
Time-Tree Construction (OTTC) [7], Iterative Refinement (IR) [7], and Randomized
Greedy Heuristics (RGH) [9] algorithms.







The rest of the paper is organized as follows. In Section 2, we include a brief review
of the issues to be addressed for achieving quality solutions in the context of a MOEA.
We describe, in Section 3, the representation scheme for the spanning tree and its imple-
mentation using PCGA. Then, we present results in Section 4 along with a comparison
with other approaches. Finally, we draw conclusions in Section 5.


2 Multiobjective Evolutionary Algorithms : Issues & Challenges


EAs have emerged as powerful black-box optimization tools to approximate solutions
for NP-hard combinatorial optimization problems. In the multiobjective scenario, EAs
often find effectively a set of mutually competitive solutions without applying much
problem-specific information. However, achieving proper diversity in the solution-set
while approaching convergence is a challenge in multiobjective optimization, especially
for unknown problems.


There exist many algorithms/implementations which have been demonstrated to
achieve diverse and equivalent solutions [13, 14]. For diversity, some of the algorithms
make explicit use of parameterized sharing, mating restriction and/or some other di-
versity preserving operator. Apart from its heuristic nature, the selection of the domain
in which to perform sharing (variable (genotype) or objective (phenotype)) is also de-
batable. Any explicit diversity preserving mechanism method needs prior knowledge
of many parameters and the efficacy of such a mechanism depends on successful fine-
tuning of these parameters. Purshouse & Fleming [20] extensively studied the effect
of sharing, along with elitism and ranking, and concluded that while sharing can be
beneficial, it can also prove surprisingly ineffective if the parameters are not carefully
tuned. Also, it is the experience of almost all researchers that proper tuning of sharing
parameters is necessary for effective performance.


In particular to MOST problem where we use a special encoding [10], incorpo-
ration of such knowledge is not an easy task. There exist some other MOEAs, e.g.,
NSGA-II [21] and SPEA2 [22], which have now dispensed away with parameters for
explicit niching. However, almost all the multiobjective evolutionary algorithms and
implementations have ignored the issue of convergence and use some pre-determined
metrics (e..g, number of generational runs) as the stopping criterion. Other common
metric used is the distance metric which finds distance of the obtained solution front
from the true Pareto front; this is trivially done for known problems. Such a metric is
based on a reference and, a true reference is not known for unknown problems. A com-
monly practiced approach to determine the reference for unknown problems is to extract
the reference from the best-solutions obtained so far, and the reference is incrementally
updated with every generation in iterative refinement based algorithms.


Kumar & Rockett [17] proposed use of rank-histograms for monitoring convergence
of Pareto-front while maintaining diversity without any explicit diversity preserving op-
erator. Their algorithm is demonstrated to work for problems of unknown nature. Sec-
ondly, assessing convergence does not need a priori knowledge for monitoring move-
ment of Pareto-front using rank-histograms. Some other studies have been done on com-
bining convergence with diversity. Laumanns et al. [23] proposed an � -dominance for
getting an � -approximate Pareto-front for problems whose optimal Pareto-set is known.







Many metrics have been proposed for quantitative evaluation of the quality of solu-
tions [13, 14]. Essentially, these metric are divided into two classes:


– Diversity : Coverage and sampling of the obtained solutions across the front, and
– Convergence : Distance of the obtained solution-front from the reference front.


Some of the commonly used metrics are R-measure [24], S-measure (hyper-volume)
[25], Generational distance (GD) [26], Spread measure [14, 27], and Convergence mea-
sure [28]. Some of these metrics (e.g., generational distance, volume of space covered,
error ratio measures of closeness of the Pareto-front to the true Pareto front) are only
applicable where the solution is known. In case of unknown nature, the metrics are
sensitive to the choice of the reference. Other metrics (e.g. ratio of non-dominated indi-
viduals, uniform distribution) quantify the Pareto-front and can only be used to assess
diversity. Knowles & Corne gave a detailed critical review of these measures in his pa-
per [29], and recommended use of some of the metrics as stable measures. They have
also shown the sensitivity of some of the metrics with respect to the arbitrary choice of
the reference point/front.


The MOST problem is an NP-hard problem, the actual Pareto-front is not known.
In Section 4, we will show that different algorithms give different shapes of the solution
front; and interpretation of convergence and diversity from the metrics extracted from
different shapes to be done meaningfully is not a straight forward task.


3 Design & Implementation


Evolutionary algorithm operators, namely, mutation and crossover imitate the process
of natural evolution, and are instrumental in exploring the search space. The efficiency
of the evolutionary search depends how a problem (in this case, a spanning tree) is rep-
resented in a chromosome and the reproduction operators are defined. There are many
encoding schemes to represent spanning trees – see [10] for a detailed review and com-
parison. For example, one classic representation scheme is Pr


�� fer encoding which is
used by Zhou & Gen [30]. Raidl & Julstrom [10] and Knowles & Corne [12] have
pointed out that Pr


�� fer numbers have poor locality and heritability and are thus unsuit-
able for evolutionary search. Deo et al. suggested use of other variants of Pr


�� fer map-
pings [8]. Recently, Raidl & Julstrom [10] proposed spanning trees to be represented
directly as sets of the edges and have shown locality, heritability and computational
efficiency of the edge sets for evolutionary search. (While writing this paper, we have
come across a newer encoding scheme [31] for tree-based combinatorial optimization
problems, which is shown to give superior performance on larger instances of dc-MST;
we are currently using this encoding scheme for MOST and the results will be pub-
lished elsewhere.) In all the results reported in this paper, we use edge-set scheme for
representing spanning trees to exploring the search space.


Initial Population : We generate initial population based on random generation of span-
ning trees. We do not choose the cheapest edge from the currently eligible list of edges
(as per Prim’s algorithm) rather we select a random edge from the eligible list; this is
done to un-bias the randomly generated population from the links found in MST. The







other variants of generating initial trees could be based on One-Time-Tree Construction
(OTTC) [7] and Randomized Greedy Heuristics (RGH) [9] algorithms.


Fitness Evaluation : We use Pareto-rank based EA implementation. The Pareto-rank
of each individual is equal to one more than the number of individuals dominating it
in the multiobjective vector space. All the non-dominated individuals are assigned rank
one. The values of the two objectives to be minimized (cost and diameter) are used to
calculate rank of the individual. Based on the two objectives rank of the individual is
calculated. In this work, we calculate fitness of an individual by an inverse quadratic
function of the Pareto-rank.


Other Genetic Operator : We select crossover operator to provide strong habitability
such that the generated trees consist of the parental edges as far as possible. For gener-
ating valid trees, we include non-parental edges into the offspring tree. The crossover
operator used in this work is a variant of the operator used by Raidl & Julstrom [9].
Raidl & Julstrom used the diameter information to know the center of the tree. Since
we do not generate trees for a specific value of a constrained diameter, we do not have
the diameter information to be embedded in the crossover. We start with an edge which
is common in both parents as the start edge.


The mutation operators used in this work are again the variants of the operators used
by Raidl & Julstrom and designed for edge-set encoding [9]. They designed all the four
mutation operators based on the diameter information. In our case, we do not know
diameter value, therefore, we adapted their mutation operators to work for diameter-
independent values.


Ensuring Convergence : We compute Intra-island rank-ratio histogram for each epoch
of the evolutionary evolution and monitor the movement of the Pareto-front. Since, this
is a hard problem, it is likely that the improvement may get trapped in local minima.
To ensure a global (near-) optimal Pareto-front, we use a multi-tribal/island approach
and monitor the Pareto-front using Inter-island rank histogram. Our multi-island/tribal
approach is essentially a test on convergence rather parallelizing the computational ef-
forts as done by others, e.g., Cantu-Paz [32]. For details of computation of Intra-island
rank-ratio and Inter-island rank histograms, see [16].


Algorithm : The PCGA algorithm [16] used in this work is a steady-state algorithm
and can be seen as an example of ( � + 2) – Evolutionary Strategy (ES) in terms of its
selection mechanism [13, 14]. In this algorithm, individuals are compared against the
total population set according to a tied Pareto-ranking scheme and the population is
selectively moved towards convergence by discarding the lowest ranked individuals in
each evolution. In doing so, we require no parameters such as size of the sub-population
in tournament selection or sharing/niching parameters. Initially, the whole population
of size � is ranked and fitness is assigned by interpolating from the best individual
(rank = 1) to the lowest (rank ��� ) according to some simple monotonic function. A
pair of mates is randomly chosen biased in the sizes of the roulette wheel segments
and crossed-over and/or mutated to produce offspring. The offspring are inserted into
the population set according to their ranks against the whole population and the lowest







ranked two individuals are eliminated to restore the population size to � . The process
is iterated until a convergence criterion based on Intra-island rank-ratio and Inter-island
rank histogram is achieved [16, 17]. A brief Pseudocode of the PCGA is included in
Algorithm 1.


Algorithm 1 : Pareto Converging GA
1: Input: � - size of initial population and GA parameters
2: Output: a set of (near-) optimal solutions
3: Algorithm:
4: Generate an initial population of size �
5: Compute individual’s objective vector
6: Pareto-rank the population and generate rank-ratio histogram
7: while Intra-island rank-ratio histogram does not satisfy stopping criterion do
8: Select two parents using a selection scheme
9: Perform crossover and mutation to generate two offsprings


10: Compute objective vectors of offsprings
11: Pareto-rank the population including offsprings
12: Remove the two least fit individuals to keep the size �
13: Generate rank-ratio histogram
14: end while
15: One while-loop for Inter-island rank-histogram satisfying stopping criterion
16: Output set of solutions


If two individuals have the same objective vector, we lower the rank of one of the
individual by one; this way, we are able to remove the duplicates from the set of non-
dominated solutions without loss of generality. For a meaningful comparison of two
real numbers during ranking, we restrict the floating-point precision of the objective
values to a few units of precision; this is problem dependent and can be tuned by trial-
and-error during few initial runs of the algorithm. Otherwise, this algorithm does not
explicitly use any other diversity preserving mechanism. However, lowering the rank of
the individual having the identical objective vector (with restricted units of precision)
is analogous in some way to a sort of sharing/niching mechanism (in objective space)
which effectively controls the selection pressure and thus partly contributes to diversity
(For other factors that contribute to diversity, see [16]).


4 Results


We tested generation of dual objective spanning tree using our MOEA framework and
selected benchmark data taken from Beasley’s OR library1. The OR-Library is a collec-
tion of test data sets for a variety of Operations Research (OR) problems. We considered
the Euclidean Steiner problem data which was used by previous researchers, e.g., Raidl-
SAC. We considered datasets of up to 250 nodes for this work, and few representative
results are included in rest of this Section.


1 http://mscmga.ms.ic.ac.uk/info.html
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Fig. 1. Pareto front generated from evolutionary algorithm for a 50 node data. Initial population
and other fronts generated from OTTC, IR and RGH algorithms are also shown in the plot.


For comparison, we also include results obtained from three well-known diameter
constrained algorithms, namely, One-Time Tree Construction (OTTC) [7], Iterative Re-
finement (IR) [7] and Randomized Greedy Heuristics (RGH) [9] algorithms. All the
three algorithms have been demonstrated for Beasley’s OR data and few results in-
cluded in their respective papers. All three algorithms are single objective single con-
straint algorithms and generate a single tree subject to the diameter constraint. Our
MOST algorithm simultaneously optimizes both the objectives and generates a (near-
optimal) Pareto-front which comprises a set of solutions. Therefore, we iteratively run
all the three - OTTC, IR and RGH - algorithms by varying the value of the diameter
constraint and generate sets of solutions to form the respective Pareto-fronts, for com-
parison with the Pareto-front obtained from the proposed multiobjective evolutionary
algorithm. For randomized algorithms, evolutionary and RGH, we have repeated ex-
periments ten times to observe the variability due to randomization, and include here a
single set of representative results obtained from the runs.


First, we include results obtained for 50 node data from all the four - OTTC, IR,
RGH and our proposed MOEA - algorithms in Fig. 1. Initial population for the proposed
MOEA is also shown in Fig. 1, and the corresponding intra rank-ratio histogram is
shown in Fig. 2. The rank-ratio histogram after one iteration (epoch) is included in
Fig. 3. The reduction in the size of the tail of the histogram indicates movement of
the Pareto-front towards convergence which is substantial in this case. At convergence,
the final rank-ratio histogram is depicted in Fig. 4. At this stage, all the entries are
non-dominated and status of none of the individual was changed from non-dominated
to dominated one in the past iteration/epoch. However, this necessarily does not mean
that the Pareto-front as shown in Fig. 1 is necessarily optimal. Second, we also do not
have a priori knowledge of the solution space, therefore, we are not in any position
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Fig. 2. Rank-ratio histogram computed from the initial population for 50 node data.
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Fig. 3. Rank-ratio histogram computed from the population after first iteration/epoch for 50 node
data. Movement of the solution-front can easily be seen with reduction of the histogram tail in
comparison with Fig. 2
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Fig. 4. Rank-ratio histogram at convergence for 50 node data.


to know about the distance between the actual Pareto-front and the obtained solution-
front. Therefore, we run MOEA for another run with another set of randomly initialized
population, and get a solution set which was marginally superior to the previous one.
On merging these two sets, we could get little improvement in the Pareto-front. We may
also run MOEA for the third run, and we may again get improvement. The movement
of the Pareto-front with each additional run can be monitored on Inter-island rank-
histogram (Fig. 7).


Next, we experimented for 100 node data. Results obtained from all the four algo-
rithms are included in Fig. 5. The solutions obtained by MOEA are improved by running
the algorithm again, and merging the obtained solutions to form a single Pareto-front.
Results obtained from two randomly initialized runs of evolutionary algorithm for 100
node data to form an improved Pareto-front are included in Fig. 6. It can be seen from
Fig. 6 that the solutions are improved in the lower and higher ranges of diameters. We
plot the Inter-tribal rank-histogram for these two runs of the algorithms and include in
Fig. 7. The movement of the solution front by merging the second set of solutions can
easily be seen by the long-tail of the rank-histogram in Fig. 7. Otherwise, in a converged
state, the rank-histogram should ideally have a single peak of normalized value one at
rank one. This indicates that the solution quality is marginally improved by merging two
tribes. This is possible because some of the solution points obtained from two tribes of
MOEA were distinct and diverse in lower and higher ranges of diameter. This is the
clear advantage of using the multi-tribal approach; the results could still be improved
with a few more tribes. Such a multi-island/tribal approach is a test on convergence too.


We also collected results from 250 node data; results are included in Fig. 8. Solu-
tions obtained from MOEA are marginally sub-optimal compared to RGH algorithm in
very low-range of diameter; this is obvious because MOEA is generic for any diameter
values while RGH is tuned to the specific values. The quality of solutions can be fur-
ther improved by merging solutions obtained from few more tribes, and having a test
on convergence. Moreover, if genetic operators of MOEA are tuned to a specific value
of diameter like RGH, it will give superior solutions.
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Fig. 5. Pareto front generated from evolutionary algorithm for a 100 node data. Initial population
is also shown. Other fronts from OTTC, IR and RGH algorithms are also shown in the plot.
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Fig. 6. Improved Pareto front generated from two tribes of evolutionary algorithm for the 100
node data; improvement in the lower and higher ranges of diameters are clearly visible. Initial
population of one single tribe is shown. Other fronts from OTTC, IR and RGH algorithms are
also shown in the plot.
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Fig. 7. Inter-Island Rank-histogram computed from two independent runs of the population for
100 node data. A peak value of one located at rank one indicates a no-movement state. In this
case, a shift in the Pareto-front is indicated by non-zero population at rank higher than one.
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Fig. 8. Pareto front generated from evolutionary algorithm for a 250 node data. Initial population
is also shown. Other fronts from OTTC, IR and RGH algorithms are also shown in the plot.
Results could be improved by adding solutions from few more tribes.







Finally, we quantitatively evaluate the solution fronts obtained from each of the
algorithms. We compute R-measure [24], S-measure [25], Spread [14] and Convergence
measures [28], and include representative results for 100 node dataset in Table 1.


Table 1. Diversity and Convergence metrics for 100 node dataset


Algorithm R-measure S-measure Spread Convergence


OTTC 0.961 8788 0.489 0.072
IR 0.971 8730 0.818 0.050
RGH 0.977 8819 0.864 0.021
MOEA - 1 tribe 0.979 8950 0.769 0.011
MOEA - 2 tribes 0.980 8960 0.671 0.003


It can be observed from Figures 1, 5, 6 and 8, that this is indeed difficult to find
the solutions in the higher range of diameter. In fact, RGH algorithm could not find
any solution in higher range of diameter; we generated multiple sets of solutions with
multiple runs of RGH algorithm with different initial values but none of the run could
generate any solution in this range of diameter. It can also be observed from the figures
that the solutions obtained form OTTC algorithm are good in lower and higher range
of diameter, however, the results obtained from RGH are good only in the lower range
of the diameter. Contrary to this, MOEA is able to locate solutions in the higher range
of the diameter with almost comparable quality of the solutions obtained by OTTC.
The solutions obtained by OTTC in the middle range are much sub-optimal and are
inferior to the solutions obtained by MOEA. In the upper-middle range of diameters,
RGH could not locate solutions at all, and the solutions located in this range by OTTC
are much inferior to the solutions obtained by MOEA. Thus, quality of the solutions
obtained by MOEA is much superior in this range, and comparable in higher range to
those of OTTC. To reflect this by rank-histogram, we include, for example, in Fig. 9
the rank-histogram of two solution-sets taken from MOEA and OTTC respectively; a
long-tail reflects the inferior quality of solutions obtained from OTTC.


These are interesting observations, and are partly contrary to those reported by Raidl
& Julstrom [9]. Raidl & Julstrom have shown that their technique works the best over
all the other such techniques including OTTC. On looking from the plots in Figures 1,
5, 6 and 8, it can be observed that IR results are very close to RGH results in lower-
diameter region, and little inferior in higher-diameter range to those of RGH. Moreover,
IR could find competitive solutions in the entire range of the diameter which no other
algorithm (barring MOEA) could do, is a significant achievement. However, since pre-
vious researchers could not visualize the solutions in the entire range of the diameter,
their observations were biased. We reiterate that their conclusions were based on the
experiments which they did for a particular value of the diameter and they could not
evaluate the results over the entire range of diameter. In this work, since we could si-
multaneously obtain solutions for the entire range of the diameter, we could have a
meaningful comparison of the existing algorithms too.
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Fig. 9. Rank-histogram computed from OTTC and MOEA solution sets for 100 node data.


The above arguments are well supported by the metrics shown in Table 1. We are
currently investigating the empirical behavior shown by these four algorithms, and how
this knowledge can be used to further improve the solution-set by fine-tuning the evo-
lutionary operators for the MOST problem.


5 Discussion & Conclusions


In this work, we demonstrated generating spanning trees subject to their satisfying the
twin objectives of minimum cost and diameter. The obtained solution is a set of (near-
optimal) spanning trees that are non-inferior with respect to each other. A network
designer having a range of network cost and diameter in mind, can examine several
optimal trees simultaneously and choose one based on these requirements and other
engineering considerations.


To the best of our knowledge, this is the first work which attempts obtaining the
complete Pareto front. Zhou & Gen [30] also obtained a set of solutions, they did not
experiment on any benchmark data and, therefore, could not compare the quality of
the solutions. It is shown by Knowles & Corne [12] that the front obtained by Zhou
& Gen [30], was sub-optimal. We attribute the sub-optimality due to their use of an
EA implementation which was unable to assess convergence. Knowles & Corne [12]
used a weighted sum approach and could get comparable solutions but their approach
is sensitive to the selection of weight values.


The work presented in this paper presents a generic framework which can be used
to optimize any number of objectives simultaneously for spanning tree problems. The
simultaneous optimization of objectives approach has merits over the constrained-based
approaches, e.g., OTTC, IR and RGH algorithms. It is shown that the constrained-based
approaches are unable to produce quality solutions over the entire range of the Pareto-
front. For example, the best known algorithm of diameter-constrained spanning tree is
RGH which is shown to be good for smaller values of diameters only, and is unable to
produce solutions in the higher range. Similarly, the other well-known OTTC algorithm
produces sub-optimal solutions in the middle range of the diameter. MOEA could obtain







superior solutions in the entire range of the objective-values. The solutions obtained by
MOEA may further be improved marginally by proper tuning of evolutionary operators
for the specific values of the objectives by introducing problem specific knowledge
while designing evolutionary operators; such type of improvement, is however, difficult
with an approximation algorithm.
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