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Abstract Many problems in engineering and related areas require the simultaneous optimisation of multiple objectives
and to this end, rank-based genetic algorithms have proved very successful. The key issue of convergence of vector
optimisations, however, has not hitherto been explicitly addressed. In this paper we introduce rank histograms to both
assess convergence of a given single genetic optimisation and to combine results from multiple runs to test for the
adequacy of the individual optimisations. Results are presented on two analytic benchmark multiobjective problems
where the optimal solution set is known a priori, and on a problem in partitioning a pattern recognition task.

1 - Introduction

Many problems in engineering and related areas require
the simultaneous genetic optimisation of a number of,
possibly competing, objectives. One method which has
been employed in the past to tackle this problem has
been to combine the multiple objectives into a single
scalar by some linear combination. The combining
coefficients, however, are usually based on heuristics or
guesswork and can exert an unknown influence on the
outcome of the optimisation. A more satisfactory
approach is to use the notion of Pareto optimality first
proposed by Goldberg [1] in which an optimal set of
solutions prescribes some surface - the Pareto front - in
the vector space of the objectives. For a solution on the
Pareto front no objective can be improved without
simultaneously degrading at least one other. Key to
Pareto optimality is the concept of domination where one
vector solution in m-elements is defined as dominating
another:
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Although a npumber of important results have been
reported for multiple objective GAs [2..4], one issue that
has been largely ignored has been that of convergence.
For a single objective GA gauging convergence is almost
trivial. For multiple objectives, however, this is no
simple matter. Horn et al [3] observed that they were in
no position to appreciate whether their obtained solution
set was indeed a true optimal solution. For objective
spaces of dimensionalities equal to or less than three
some visualisation of the solution space could possibly be
employed but for higher dimensionality this is not
feasible. The approaches adopted in the past have been
either to run the GA for some fixed number of iterations,
or to terminate the optimisation when some fraction of
the population has become non-dominated. The first of
these is unsatisfactory since either a large amount of
CPU time could be wasted producing further generations
for an optimisation which has already converged;
alternatively there is no way of knowing that a
particularly stubborn problem is still far from
convergence. The second option is ill-conceived since
solutions are non-dominated relative to the population
sample not its universe; just because a solution
dominates all others in the current population does not
imply that it lies on the (desired) Pareto front. In the
course of a multiobjective optimisation, it is completely

normal for solutions which are non-dominated at some
stage in the computation to become dominated by a
superior solution at some later stage.

In this paper we present a straightforward method for
gauging the convergence of a rank-based multiobjective
GA which makes principled comparison of the
population states at points in the computation. In the
following sections the rationale behind the method is set-
out and results presented on both well-known benchmark
analytic problems and a real optimisation.

2 - Rationale

If we consider a multiobjective GA with a set of
N-objectives, the Pareto front is some general surface in
the N-dimensional space of the objectives. For the
general case of real-valued objectives the Pareto front
comprises an infinite set of points over which the GA
performs a search with a finite population. Due to the
finite size of the population, from any inijtialisation of the
population there is a finite set of genetic material to be
permuted and combined. Towards the end of the GA run
most of the chromosomes will become rather similar and
so crossover becomes a weak driver for population
advancement; most of the gains will effectively be made
by random walk due to mutation, albeit ‘walking’ from a
set of promising solutions. At some stage, the rate at
which the population improves slows and few further
gains of significance are achieved. Hopefully, here the
GA will have converged to the Pareto front but
conceivably it has got ‘stuck’ at some sub-optimal point -
either way there is little point in continuing the
optimisation and it should be terminated. Detecting the
corresponding point in a single objective GA is fairly
obvious and a number of convergence criteria can be
formulated - for example, the scalar score of the best
performer in the population being unchanged over some
number of iterations. For a multiobjective GA, we need
to formulate some comparison over the sets of vector
solutions at two stages in the optimisation and to this end
we introduce the use of rank histograms.

3 - Rank Histograms

Supposing at two points, (¢-1) and ¢ in the optimisation
we have two populations, Pop,.; and Pop,. Solely for the
purpose of gauging the state of convergence, we combine
the two populations to form Pop,_ | U Pop, and rank the

resulting union. Taking each rank in turn, we can
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Figure 1: Rank-ratio histogram of a population. (a) The population consists of both dominated and non-dominated
individuals and is in an unconverged state. (b) Rank ration histogram for a converged population state .

generate a histogram of the fraction of the members from
Pop, in Pop,_, wPop,. If the optimisation has
progressed to perfect convergence, this rank ratio
histogram will have a single non-zero entry of 0.5
(Figure 1(b)) in the bin corresponding to unity rank
indicating that no solutions superior to those
in Pop,  have been generated in evolving the later

generation, Pop,. Clearly the computation can be stopped
at this point. On the other hand, if the optimisation is
still far from its converged state then the rank ratio
histogram will possess a significant tail of non-zero
entries for ranks higher than unity (Figure 1(a)). Thus
the emergence of a rank ratio histogram of the required
form dictates the earliest useful stopping point for the
computation. (In practice the stopping point is judged on
the size of the tail above unity rank.)

Continuing the optimisation beyond the point when the
rank ratio histogram contains a single non-zero entry
results - in our experience - of a redistribution of non-
dominated solutions along the Pareto front, usually
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leading to a more even sampling [5].

We emphasise that the above stopping criterion does not
necessarily imply that the solutions are on the Pareto
front. Conceivably the GA has got ‘stuck’ due to the
finite nature of its initial genetic material and the
stopping criterion merely denotes the point beyond
which further appreciable gain is rather unlikely. We can
acquire more substantial evidence as to whether or not
the Pareto front has been located by re-running the GA
with other randomly initialised states, again stopping
using the rank ratio histogram. This leads to a series of
populations: Pop,, Pop, ..., Pop,,. If we consider only

the non-dominated solutions from Pop,, Pop, ..., Pop,,

and rank them we can again generate a frequency
distribution of ranks (Figure 2(a)); if all the component
GAs have been run to proper convergence then this
inter-population rank histogram should contain only one
non-zero entry at unity rank meaning that all the non-
dominated solutions are equivalent (Figure 2(b)).
Although not proof-positive this greatly strengthens the
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Figure 2: Inter-population rank histograms: (a) Some non-dominated solutions are demoted to dominated, and (b) none
of the non-dominated solution is demoted thus the population appears to be in a converged state .
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Figure 3:Progression of the rank-ratio histogram for function FI at different stages of population evolution. In (a) and
(b) the population is in an unconverged state. At iteration 105, the population has ‘converged’. (The down arrow

indicates the highest rank of the combined population.)

hypothesis that the true Pareto front has been located.
(Again, in practice we seek an inter-population rank
histogram with an insignificant tail; any solutions which
are not of unity rank are clearly dominated and can be
discarded.)

4 - Results

We have investigated the application of rank ratio and
inter-population rank histograms to a number of
multiobjective genetic optimisations. Firstly, we report
the results on two, much-studied analytic multiobjective
functions which have the advantage that the location of
the Pareto front is known a priori. We also give the
results from a ‘real’ optimisation involving an NP-
complete partitioning problem in pattern recognition.

Throughout we have used the Pareto Converging Genetic
Algorithm (PCGA) [5] although since the present results
deal only with convergence, they are applicable to any
search procedure which eventually converges. The
encodings and other parameters used are identical to
those previously used in the literature. For a population
size of N, we have calculated the rank ratio histograms at
successive points (N/2) individual breeding cycles apart.

An important point for comparing the number of
iterations required for convergence is that PCGA is a

steady-state not a generational GA.
4.1 - Vincent & Grantham’s F1 Function [6]

This well-known two objective function in a single
variable is fairly straightforward and has been studied
previously [3,7]. The progression of the rank ratio
histograms for a population size of 30 is shown in Figure
3 in which the downward arrow represents the highest
tied rank in the combined population. At iteration 45
there is a significant range of ranks. By iteration 90 (at
which point comparison is made with the population at
iteration 75) there are only non-dominated individuals
present although, as indicated by the down-arrow in
Figure 3(b), the union comparison set contains members
up to a rank of three. By iteration 105, no new non-
dominated solutions have been generated relative to
iteration 90 and so the optimisation can be assumed to
have reached a logical stopping point. Detailed
examination of the populations at each iteration stage
confirmed the expected behaviour and that by iteration
105 all the solutions lay on the (known) Pareto front.
Continuing the GA run up to 450 iterations produced no
change in the rank ratio histogram and served only to
redistribute points over the Pareto front producing a
more uniformly spaced sampling.
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Figure 4:The rank-ratio histograms for function F2 at various stages in the GA. The population has not quite
converged after 5000 iterations. (Up arrow indicates a division by null entry.)
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Figure 5:Inter-population rank histogram for function
F2 formed by combining the non-dominated solutions of
two independent runs. The histogram shows that some of
the non-dominated individuals are demoted io
dominated as indicated by histogram tail.

4.2 - F2 Function [8]

The F2 function is an another analytic n-variable
minimisation problem in two symmetrical objectives [8]
and is a much harder task than F.I. For comparison with
Fonseca & Fleming [8] we have taken n = §; identical
parameters have been used except our PCGA method
does not use mating restrictions or sharing. The rank
ratio histograms are shown in Figure 4 at iterations: 500,
2500 and 5000. Initially there is a large spread of ranks
(Figure 4(a)) but by the time 2500 new individuals (~50
new generations) have been evolved (Figure 4(b)) the
range of ranks has been greatly reduced. At iteration
5000 (~100 new generations) the population is still not
quite converged as can be seen from Figure 4(c) and also
more directly from viewing the disposition of points in
objective space. We have selected this stopping point for
direct comparison with the results from Fonseca &
Fleming’s MOGA technique [8] showing that this
optimisation has not quite run to completion; ranks up to
six are still present.
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Further evidence that 5000 iterations are insufficient can
be gleaned from the inter-population rank histograms for
the F2 problem in Figure 5. By combining the non-
dominated solutions from two independent GA runs and
ranking these, it is apparent from the tail in this
histogram that solutions that would have been adjudged
non-dominated on the basis of a single GA run have
been downgraded to dominated status. Thus inter-
population rank histograms act an additional check on
the sufficiency of the stopping criteria.

4.3 - Pattern Space Partitioning Problem

The multiobjective problem examined here is an NP-
complete partitioning of a pattern recognition space into
an arbitrary number of hyperspheres subject to a number
of criteria such as: (1) minimising the hypersphere
overlap, (2) minimising the intrinsic dimensionality of
each hypersphere, (3) maximising inclusion of data
points, (4) maximising the classification rate within
hyperspheres, (5) producing the most compact
partitioning, and (6) minimising the maximum fraction
of included patterns in a single hypersphere. Details of
this work will be published elsewhere [9] but it
constitutes a rather difficult optimisation. The rank ratio
histograms for this problem are shown in Figure 6 For a
population size of 200, the population converged in 1000
iterations equivalent to ~10 generations of a generational
GA. Running the evolution for a further 1000 iterations
produced an alternative but rank-equivalent set of non-
dominated solutions indicating that the rank-ratio
histogram has correctly identified the earliest reasonable
stopping point. The inter-population rank histogram is
shown in Figure 7 for the combination of the non-
dominated individuals from two independent runs of the
GA. A significant number of non-dominated individuals
are demoted to being dominated during this combination
as evidenced by the histogram tail stretching down to
rank 27. This forcibly illustrates the point that the rank-
ratio histogram test has found only a sensible stopping
point, not the whole Pareto front itself.

4 — ] Iteration 100 4 — Iteration 500 4 — Iteration 1000
1 ¢ 7 7 7 7
o k= ©
51— g1 g1 —
& o &
0 T 1 0 [ 0 I
0 5 10 15 0 s 10 15 0 5 10 15
Rank Rank Rank
(a) (b) (©)

Figure 6:The rank-ratio histograms for an NP-complete pattern space partitioning problem. The population reaches
convergence after 1000 iterations. Running for a further 1000 iterations produces the same number of alternative non-

dominated solutions.



5 - Discussion

The notion of convergence of any iterative algorithm can
be simply stated as: that at some point no further
improvement is obtained. For optimising on a single
objective this concept is trivial. This paper has presented
a generalisation of this notion to vector optimisation
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across any arbitrary number of objectives; in this context

it is quite natural to employ the concepts Pareto ranking.
The use of histograms has a particular purpose in that a
complex situation is summarised in a very simple
manner. Moreover, the development of the histograms
has a straightforward form - from a wide spread of ranks
down to (hopefully) a single non-zero entry
corresponding to the non-dominated individuals.
Although we have not explored the possibility in the
present work, it is conceivable that our histogramming
approach could be extended to determining if a GA was
moving towards convergence in a satisfactory manner on
a particularly difficult problem. Insofar as successive
histograms represent the rate of convergence, the present
methodology could potentially be used to maximise the
rate of the evolutionary progress on a given problem with
respect to GA-internal parameters such as crossover and
mutation rates.

6 - Conclusions

In this paper we have introduced rank histograms both
for assessing the state of convergence of a rank-based
multiobjective GA and combining evidence about the
satisfactory convergence of a series of GA runs.
Convergence of a given GA optimisation can be
determined from a rank ratio histogram’s progression to
baving a single non-zero entry at unity rank. The
equivalence of this condition with locating the Pareto
front has been demonstrated for two analytic
multiobjective problems although, in general, this
condition must be interpreted as the point beyond which
little evolutionary gain is likely.

Inter-population rank histograms have been shown to
combine the results from a number of GA runs and act as
measure of adequacy of the individual contributing
optimisations as well as providing additional evidence
that the Pareto front for the problem has indeed been
located successfully.
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