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1. Abstract

Research on optimality criteria is founded on the underlying notion of "efficiency" which
allows us to model the real world in an overly simple way than it really is. The concepts are
good enough for research, but in the real world inefficient solutions may be preferred over
theoretically more efficient ones, as they are more stable. When using well known
optimization methods, we make intuitive assumptions that the model from which the solution
is derived is absolutely error free. These assumptions, project the obtained solution as much
more efficient than what they actually are - had we taken model errors into account. A
pragmatic engineering definition of stability would be - "The likelihood for an optimal
solution to degenerate into a dominated one, as the bounds get more optimistic". Thus, if one
defines the minimal acceptable performance of a solution as Pmin, then a solution that is most
likely to degrade to Pmin , as constraints are progressively relaxed, should be considered as the
least stable of all. In the Multi Criteria Optimization (MCO) scenario, it is a common
experience that many Pareto optimal solutions easily degrade to dominated (non Pareto)
solutions, for very small changes in the constraints or boundary conditions. The reason that
theoretical optimal solutions are often unstable compared to sub-optimal or partially
dominated solutions is that they often occur on the boundary of the feasible region, that is
when most of the equality and inequality constraints are active. Thus a small perturbation in
any direction pushes the solution into infeasibility. In this paper a Genetic Algorithm (GA)
based method is proposed that evaluates the fitness value of an individual considering the
stability of the solution. Here a GA based multicriteria optimization method is presented
where a Pareto solution is awarded a fitness value according to its stability criterion; together
with its ability to dominate other previously found Pareto Solutions while constraints are
relaxed.
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2. Problem Formulation

The general nonlinear multicriteria optimization problem is formulated as follows:

under the inequality constraints

and equality constraints

where x = [x1,x2,…xN]T  is a column vector of N real-valued decision variables and

is a  vector of K objective functions. For the f(x) vector, the problem is multicriteria, whereas for
an  f(x) scalar, the problem is single criterion. The notation x0 for starting point, x* for optimum,
and xp for the (current) point at pth iteration will be generally used throughout this paper. The
solution of the multicriteria optimization problem is to find the set of Pareto optimal solutions
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(non dominated solutions). If X is a set of feasible solutions, i.e., set of solutions which satisfy
constraint conditions  given above, the Pareto optimum will be defined as : A solution x* ∈ X is
Pareto optimal if and only if there exists no x ∈ X such that fk (x) ≤ fk (x*) for all k, k = 1,2,...,K
with fk (x) < fk (x*)for at least one k, 1≤ k ≤ K . The proposed genetic algorithm based method
generates a solution and compares the objective functions considering the above Pareto
optimality condition. The objective functions φk for k = 1,2,...,K, are evaluated using the
following formula:

where Gj is the Heaveside operator such that Gj = 0 for hj(x) ≤ 0 and Gj=1 for hj(x) > 0 and r
is a positive multiplier which controls the magnitude of the penalty terms, or the penalty
multiplier. α and β are the contraint relaxation terms which are used to check the stability of a
Pareto solution under progressive relaxation of constraints. More on α and β will be explained
later in the paper.

3. Solution Method: Pareto Set Updating

Throughout each generation of the GA a set of Pareto optimal solutions is maintained
(updated each time after the fitness value of a solution is evaluated), all of which share a
common single fitness value.  All members of a Pareto set has the same shared fitness value.
A new solution in a certain generation of the GA can fall in any of the three mutually
exclusive and exhaustive categories:

[a.] It is a new Pareto optimal solution, and it dominates some  (or all) of the Pareto optimal
solutions found up till the immediately preceding GA evaluation run.
[b.] Although it is a new Pareto optimal solution it does not dominate any of the Pareto
optimal solutions found up till the immediately preceding GA evaluation run.
[c.] It is not a Pareto optimal solution.

For every new solution in a certain generation, first a fitness value is assigned according to
the method described in [Osyczka and Kundu, 1995]. Then we deal with the three different
categories mentioned above in three separate ways, whereby a fitness value is returned for the
GA selection to be implemented. In this research, tournament selection is implemented.

• For category [a] solutions the raw fitness value (stage 1) is first calculated by adding the
distance value, to the shared common fitness value of the Pareto optimal solutions found
till the immediately preceding GA evaluation runs and the Pareto set is updated by
removing  those old solutions that this new Pareto solution dominates. At this point the
the values of the terms α and β are progressively changed to relax the constriants and then
the newly found solution is again evaluated and compared with the old Pareto set to see if
it still dominates some or all of solutions in the old Pareto set. Ranges and steps for α and
β are predetermined and amount of constraint relaxation is preset. If the new solution still
dominates some or all of the old Pareto solutions, it is taken to be a stable solution and a
proportionate final fitness value (stage 2) is returned to the GA.

• For category [b] solutions the raw fitness value (stage 1) is first calculated by adding the
distance value to the shared common fitness value of the Pareto optimal solutions found
till the immediately preceding GA evaluation run and the Pareto set is updated by adding
this new solution to it. At this point the the values of the terms α and β are changed to
relax the constraints and then the newly found solution is again evaluated and compared
with the old Pareto set to check if it is still a Pareto solution (that is member of the set).
Ranges and steps for α and β are predetermined and the amount of constraint relaxation is
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preset. If the new solution is still a Pareto solution, it is taken to be a stable solution and a
proportionate final fitness value (stage 2) is returned to the GA. This fitness value is then
assigned to all the members of the updated Pareto set.

• For category [c] solutions the fitness returned is simply the distance value  subtracted
from the shared common fitness value of the Pareto Optimal solutions found till the
immediately preceding GA evaluation run. The constraint relaxation stability check is not
performed in this case.

4. Numerical Examples

An optimization problem of a multiple disc brake and a network optimization problem has
been solved with the method outlined in this paper. Due to space restrictions, detail
implementation and solutions will be presented in the full paper.

5. Conclusions

In real world optimization, for implementing real solutions, stability is one of the most
essential aspect of the solution. The stability of a system is defined here as the likelihood of a
theoretical optimal solution with most or all of the constraints being active - that is when
solution is on boundary of feasible region - to fall into infeasible region for some stochastic
changes in real values of the variables in the real world. For example, let us take a simple case
from [Ignizio, 1998] where original model is: Max(z1); Max(z2), subject to: x+y ≤ 10, 2x-y ≤
0 and y ≥ 3. The real world model could be something like: Max(z1); Max(z2), subject to:
1.08x+0.9537y ≤ 10.3, 1.6x-0.8y ≤ -0.8 and 0.95y ≥ 3.325. The assumed versus actual
solution space will then be represented by the following figure.

Assuming that the boundary of the solution space in the first quadrant, represents the efficient
solutions (efficient frontier), it is clear that the solutions are not efficient in the actual model.
Some points in the original efficient frontier are actually dominated while others are actually
infeasible.  This example clearly illustrates that efficient solutions (Pareto solutions in case of
Multicriteria problems and optimal solution in case of Single criteria problems) are invariably
least stable  of the solutions as generated by either conventional or unconventional methods.
[Ignizio, 1998] . Thus the Genetic Algorithm based method outlined in this paper, with
stability checking, attempts to yield real world solutions rather than producing only
theoretically correct optimal solutions.
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