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Abstract 
 
In High Dose Rate (HDR) brachytherapy the conventional dose optimization algorithms consider 
the multiple objectives in form of an aggregate function which combines individual objectives into 
a single utility value. As a result, the optimization problem becomes single objective, prior to 
optimization. Up to 300 parameters must be optimized satisfying objectives which are often 
competing. We use multiobjective dose optimization methods where the objectives are 
expressed in terms of quantities derived from dose-volume histograms or in terms of statistical 
parameters of dose distributions from a small number of sampling points. For the last approach 
we compare the optimization results of evolutionary multiobjective algorithms with deterministic 
optimization methods. The deterministic algorithms are very efficient and produce the best 
results. The performance of the multiobjective evolutionary algorithms is improved if a small part 
of the population is initialized by deterministic algorithms. 
 
 
1 Introduction 
 
High dose rate brachytherapy is a treatment method for cancer where empty catheters are 
inserted within the tumor volume. Once the correct position of these catheters is verified, a 
single 192Ir source is moved inside the catheters at discrete positions (dwell positions) using a 
computer controlled machine. The problem that we consider is the determination of the  n  dwell 
times (which sometimes are called as well dwell position weights or simply weights) for which 
the source is at rest and delivers radiation at each of the  n  dwell positions, resulting in a three-
dimensional dose distribution which fulfills the defined quality criteria. In modern brachytherapy, 
the dose distribution has to be evaluated with respect to the irradiated normal tissues and the 
Planning Target Volume (PTV) which includes besides the Gross Tumor Volume (GTV) an 
additional margin accounting for position inaccuracies, patient movements, etc. Additionally, for 
all critical structures, either located within the PTV or in its immediate vicinity or otherwise within 
the body contour, the dose should be smaller than a critical dose Dcrit. In practice it is difficult, if 
not impossible to meet all these objectives. Usually, the above mentioned objectives are 
mathematically quantified separately, using different objective functions and then added together 
in various proportions to define the overall treatment objective function [1],[2]. 
 
The number of source positions varies from 20 to 300. It is therefore a high dimensional problem 
with competing objectives. The use of a single weighted sum leads to information loss and is not 
generally to be recommended, especially for non convex problems and for those cases where 



objectives have not the same dimensions and in addition maybe competing. An understanding of 
which objectives are competing or non-competing is valuable information. We therefore use 
multiobjective evolutionary algorithms in HDR brachytherapy. One algorithm is based on the 
optimization of dose-volume histograms (DVH), which describes the distribution of the dose 
within an object, or from these derived distributions. These distributions are evaluated for the 
PTV, the surrounding tissue and organs at risk from a set of up to 100000 sampling points [3]. 
The calculation of the DVH requires a considerable amount of time and for implants with 300 
sources the optimization requires a few hours. Another limitation of this method is that a 
comparison with deterministic algorithms is not possible. We have therefore considered the 
optimization of the dose distribution using as objectives the variance of the dose distribution on 
the PTV surface and within the PTV obtained from a set of 1500-4000 sampling points. These 
functions are convex and a unique global minimum exists. 
 
In the past comparisons of the effectiveness of evolutionary algorithms have been made with 
either other evolutionary algorithms [4] or with manually optimized plans [1],[2]. We have 
compared the Pareto fronts obtained by multiobjective evolutionary algorithms with the Pareto 
fronts obtained by a weighted sum approach using deterministic optimization methods such as 
quasi-Newton algorithms and Powells modified conjugate gradient algorithm which does not 
requires derivatives of the objective function  [5]. 
 
 
2  Methods  
 
2.1  Calculation of the Dose Rate  
 
The dose rate around each of the small cylindrical shaped sources is dominated by the  1/r2  
term with modifications due to absorption and scattering in the surrounding material. The dose 
value  d(r)  at  r=(x, y, z)  is: 
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In (1) ri is the position of the  ith source and  N_s  the total number of sources. K(r-ri)  is the 
dosimetric kernel describing the dose rate per unit source strength at r  from a source positioned 
at ri. The dwell position weight  wi = Sk·ti  is proportional to the strength  Sk  of the of the single 
stepping source, where  ti  is the dwell time of the ith  source dwell position [6]. Because of  the 
high dose gradients a dose specification at a single point inside the PTV is not possible in 
interstitial brachytherapy. For this reason we use as a reference dose Dref the average dose 
value at the PTV surface. 
 
2.2  Dose-Volume Histogram Based Optimization Using the Conformal Index  
 
 
In the paper of Baltas et al. [7] a conformal Index (COIN) was proposed as a measure of implant 
quality and dose specification in brachytherapy. This index takes into account patient anatomy, 
both of the tumor and normal tissues and organs, see Fig. 1. 
 
COIN is defined as: 
 

COIN =c1c2                   (2) 
 



where c1 =  Vref
PTV/V PTV  and  c2 = Vref

PTV / Vref. The coefficient c1 is the fraction of the PTV, V ref
PTV, 

that is enclosed by Dref and is a measure of how accurately the PTV is covered by  Dref. The 
coefficient c2 is the fraction of the volume of the reference dose,  Vref, that is covered by PTV. It 
is also a measure of how much normal tissue outside the PTV is covered by Dref. COIN can be 
calculated from the cumulative DVHs of the PTV and the body at the reference dose Dref  i.e. 
DVHPTV(Dref)  and DVHbody (Dref)  respectively: 
 

COIN  = VPTV * DVHPTV(Dref)2   / 100 Vbody*DVHbody (Dref)        (3) 
 
Vbody, VPTV are the volumes of the body and the PTV, respectively. We describe the dependence 
of the conformal index COIN on the choice of the reference dose value as the COIN distribution, 
see Fig. 2(b). Usually the dose values are normalized to Dref and are given either as fractions or 
percentages of Dref.  
 
The ''ideal'' dose distribution is characterized by the following: 
 

• c1=c2=1 i.e. COIN=1 at D=Dref, which means that the reference dose value isodose 3D 
envelope is identical with the PTV. 

 
• For  D < Dref, an extremely rapid fall-off of the COIN value which corresponds to a rapid 

fall-off of the dose outside the PTV (normal tissues). 
 

• COIN ≈0  for D > Dref, that means that there are negligible volumes with dose values 
higher than D < Dref. 

 
The cumulative dose volume histograms of the PTV and the body for a rib implant is shown in 
Fig. 2(a). Due the rapid decrease of the DVH of the body a large number of sampling points is 
necessary in order to calculate with a high accuracy the DVH, the COIN distribution and the 
COIN integral at dose values close to the reference dose value and above. The COIN 
distribution from the DVHs of Fig. 2(a) and the COIN integral is shown in Fig. 2(b). 
 
 
 
2.3 Dose Statistics Based Optimization  
  
 
 
The DVH based optimization method requires a large number of sampling points for the 
computation of the histograms and the COIN distribution and therefore is computational 
expensive. We have developed a stratified sampling approach where the sampling points are 
non uniform distributed and which reduces the number of required sampling points by a factor of 
5-10. Even then for implants with 200-300 sources the optimization time can reach 1-2 hours. A 
comparison of the performance with deterministic and gradient based algorithms is not practical 
or not even possible. Therefore we consider another set of two objectives:  For the conformity 
objective we use the variance fS of the dose distribution of sampling points uniformly distributed 
on the PTV. In order to avoid excessive high dose values inside the PTV we require a small as 
possible dose distribution variance fV  inside the PTV. Due to the source characteristics these 
two objectives are competing. We use normalized variances for the two objectives:  
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Where  m  is the average dose value and  N  the corresponding number of sampling points. 
 
 
2.4  Multiobjective Optimization with Deterministic Algorithms  
 
 
These objectives allow us to use deterministic gradient based algorithms. We use a weighted 
sum approach for the multiobjective optimization, where for a set of weights for the volume and 
surface variance we perform a single objective optimization of  f_w : 
 

VVSSW fwfwf +=        (5) 
 
where wS, wV  ≥ 0  are the surface and volume importance factors, respectively and wS + wV = 1. 
We used 21 optimization runs where  wS  varied from 0 to 1 in steps of 0.05 to determine the 
shape of the trade-off curve. A problem in using deterministic optimization methods is that the 
solution contains a large number of dwell weights with negative values. This is a non physical 
solution. In the past either constrained optimization methods were used or a correction was 
applied by setting to 0 all negative weights in each optimization step. A constrained optimization 
method increases the number of parameters by a factor of two. The correction method for the 
negative weights reduces the quality of the optimization results. We use a simple technique by 
replacing the decision variables, the weights wk, with the parameters w'k = wk

1/2. Using this 
mapping technique we avoid non feasible solutions. For this  unconstrained optimization we use 
the Polak-Ribiere variant of Fletcher-Reeves algorithm or the Broyden-Fletcher-Goldfarb-
Shanno quasi-Newton based algorithm [5]. These require the first derivative of the objective 
function with respect to the decision variables to be calculated. The derivative of the normalized 
variance  f  used by the gradient based optimization methods is: 
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As a gradient free method we used the modified Powell method of Numerical Recipes [5] . 
 
  
2.5  Multiobjective Optimization with evolutionary Algorithms  
  
 
The population of our multiobjective evolutionary algorithm consists of strings storing a set of 
weights for each source dwell position. The weights are initially produced randomly distributed in 
the interval [0, 1]. A part of the population can be initialized, if this is possible, by solutions of 
deterministic algorithms. 
 
Three selection mechanism can be used. The niched Pareto algorithm (NPGA) proposed by 
Horn and Nafpliotis  [8], the strength evolutionary approach algorithm (SPEA) by Zitzler and 
Thiele  [9] and the non dominated ranking algorithm (NRGA) by Fonseca and Fleming [10],[11] . 
 
After a new population is formed, the strings of randomly selected pairs undergo a crossover 
operation with a probability Pc and mutation with a probability Pm. We have found that  Pc must 



be larger than 0.7 and Pm should be smaller than 0.1. The size of the population should be larger 
than 50. Various crossover types can be selected such as single point, two point, and arithmetic 
crossover. For the mutation operation also we have used various forms: uniform or non-uniform 
mutation. We use a real representation for the gene values. A detailed description of the genetic 
operators is given in reference  [12]. 
 
For the NPGA algorithm we use a tournament selection, the tournament population size is a free 
parameter and can be used for the modification of the selective pressure. Tests have shown that 
it should be normally 10 % of the population size. For much smaller values the genetic algorithm 
is sensitive to fluctuations, while much larger values can lead to a premature convergence. We 
applied special genetic operators for decision variables as described by Michalewicz [13]. Some 
of them offer the possibility for a better performance of the genetic algorithms in the late stage of 
the optimization process. For NPGA we use a sharing mechanism described by S. Deb  [14]. 
The sharing parameter  σshare is given by: 
 

 P
share q≈σ           (7) 

 
where q is the desired number of distinct Pareto-optimal solutions and P is the number of 
variables in the problem. 
 
 
Selecting the Solution from the Pareto Set  
 
After the last generation is processed by the SPEA, NRGA or NPGA algorithm, members of the 
population are expected to be close to the Pareto frontier. A member of the non dominated set is 
selected which has a minimum Euclidean distance to the ideal optimum. The ideal point is 
defined by the minimum values  (f1

min, f2
min) of each objective function. The distance is calculated 

by normalizing each objective to a maximum value of 1 using the corresponding largest objective 
value found in the population. This member is presented as the solution of the optimization 
process. Additionally members are selected each with the best result in each objective. A list is 
produced with the objective values for all the members of the Pareto set. Additionally the user 
can examine the dose distributions and the dose-volume histogram and isodose contours of 
every member of the population. Based on this information of the trade-off surface of the various 
objectives a decision maker can select the best result. In our current implementation each 
objective has equal priority.  
 
  
3  Results  
  
 
The dose variances are calculated from 1000-4000 quasi-randomly distributed sampling points. 
For the COIN based optimitation  ≈ 100000  points are generated. The distances of these points 
to each source dwell position r, more precisely the inverse square distances 1/r2, are stored for 
speed maximization in look-up tables. We assume a invariant kernel  K(r)= 1/r2 and ignore any 
spatial anisotropy, namely attenuation and scattering effect. This dosimetric simplification has no 
measurable influence on the results of the optimization. 
 
All calculations presented in our study have been made by using for the mutation probability Pm  
a value of 0.0065 and for the crossover probability Pc a value of 0.85. Furthermore a uniform 
mutation option has been selected and a two point crossover has been used. The selection of a 
two point crossover means that the string representation of a member is cut at two random 



positions and the two end parts are interchanged. This increases the efficiency of the 
exploitation [15]. 
 
The optimization time depends mainly on the number of dwell positions and the population size. 
For 200 dwell positions and up to 200 generations it can take 1 hour with an Intel Pentium III 700 
MHz processor with 512 MB RAM. 
 
 
The flowchart for the COIN based optimization algorithm is shown in Fig. 3. For each member of 
the population for a given generation a renormalization is carried out according to the resulting 
COIN distribution, so that the maximum COIN value is observed at D= Dref [7]. The dose 
prescription is realized at the Dref, the isodose value resulting in the maximal conformity. This 
results generally in mean normalized dose values at the surface of PTV different from 1.0. 
 
 
The multiobjective genetic algorithm, which uses dose-volume based constraints, produces 
equivalent or even better results than algorithms which were based on phenomenological 
methods and used in the majority of treatment planning systems [16],[17],[18]. 
 
 
As an example in Fig. 4 the multiobjective genetic algorithm provides a solution with a more 
homogeneous dose distribution inside the PTV than by conventional optimization algorithms of a 
treatment planning system. Due to the large computational time for the COIN based optimization 
we used only the NPGA algorithm. 
 
 
For the variance based objectives we used 22 different implant cases from various anatomic 
regions. For these implants different number of catheters were used and their topology differed 
from case to case. The study aimed to assess the dose homogeneity and conformity and to 
determine if a common set of importance factors exists, allowing a single objective function to be 
used with these weights. 
 
An example of the geometry of a PTV is shown in Fig. 5(a) including the catheters, the source 
dwell positions and the sampling points on the PTV surface which define the surface variance. In 
Fig. 5(b) the isosurface for the prescription dose is shown, which should have the same shape 
as the PTV. 
 
 
The deterministic gradient based algorithms are very effective in generating the Pareto front 
using a summed weights approach. Powells algorithm which does not require derivatives is 
efficient only for implants with a small number of sources. For implants with 250-300 sources the 
optimization time can reach a few hours for a single objective run, whereas the gradient based 
algorithms require only 1-2 minutes. Gradient based algorithms are limited by the fact that they 
can be trapped in local minima, or that non convex regions are not accessible using the 
weighted sum method [19]. 
 
From the evolutionary algorithms SPEA has been found to produce the best results, since it 
applies an elitism and sharing mechanism. Therefore the Pareto fronts are more uniformly 
distributed as compared with NPGA. For implants with a small number of sources SPEA 
generated solutions close to the Pareto sets found by the deterministic algorithms. For implants 
with many sources the genetic algorithms used converge in some cases to a Pareto set which 
was far away from the true Pareto set. Such an example for an implant with 215 source dwell 



positions is shown in Fig. 6. The SPEA algorithm converges after 200 generations to a Pareto 
front which is very small and far from the Pareto set generated by the gradient based algorithms. 
The optimization path is shown for a set of importance factors fV, fS  for the Polak-Ribiere 
algorithm. After 10 iterations a point on the Pareto front is reached. 
 
Using random sets of decision variables we have found for this example that the number of 
function evaluations required by a random search method to obtain points on the Pareto front is 
larger than 1030 [12]. A random search would require  1010 times more function evaluations to 
generate points on the Pareto set found by the SPEA algorithm without initialization. Even with 
this performance the SPEA algorithm is not able to produce points on the Pareto front found by 
the deterministic methods. Using a few members initialized by the gradient based algorithm the 
multiobjective evolutionary algorithms, especially SPEA reproduced the Pareto fronts obtained 
by the deterministic algorithms, see Fig. 6. For a more detailed comparison of the deterministic 
and evolutionary algorithms see reference [12]. 
 
 
Fig. 7 shows the Pareto fronts for the 22 implants. For some implants a improvement in dose 
homogeneity is possible without reducing the COIN value which is correlated with the surface 
variance, while for some implants there is a strong trade off between these two objectives. 
Therefore a multiobjective optimization is essential for the dose optimization problem in 
brachytherapy. 
 
  
 
4  Conclusions  
  
 
We used for the first time multiobjective evolutionary anatomy based dose optimization 
algorithms in HDR brachytherapy [16]. For the COIN-based objectives we have found that 
multiobjective evolutionary algorithms produced solutions which are better than by conventional 
algorithms in treatment planning systems which use deterministic algorithms and catheter-
oriented objectives. They also have the problem with infeasible negative weights which they 
avoid by a repair mechanism or by using special constraints to the objective functions in order to 
reduce their numbers and the degree of the violation. 
 
The results of various algorithms for the variance based objectives have been compared using a 
representative set of 22 implants encountered in clinical practice. We have limited our study to 
cases where no critical structures are considered. Trade-off surfaces which reveal the nature of 
the multiobjective problem of the dose optimization in brachytherapy have been obtained. Due to 
the variety of the trade-off surfaces found, which depends on the implant and complex catheter 
geometry, no common set of optimal importance factors exists. Therefore it is useful to 
determine the Pareto front and then to select a solution according to its characteristics. Pareto 
sets have been obtained by a deterministic unconstrained optimization method using a simple 
mapping technique which transforms the linear into a quadratic optimization problem and 
removes infeasible solutions with negative dwell position weights. The gradient based 
algorithms, if they can be used, are very effective because they converge very fast and generate 
the Pareto fronts which in most cases are much better than the Pareto front obtained by 
evolutionary multiobjective algorithms. 
 
If the number of objectives increases then the number of combinations using a weighted sum 
approach with deterministic algorithms increases. Deterministic methods are not efficient for non 
analytic complex objectives such as used by the COIN based method. When more objectives 



are included then a non convex feasible space could be the result [20]. A combination of 
deterministic and evolutionary multiobjective algorithms seems to be the best choice for a robust 
and efficient multiobjective dose optimization in HDR brachytherapy. The targets of the dose 
optimization cannot be expressed uniquely by a single set of objective functions. This is because 
conformity and homogeneity can be expressed with various functional forms and for the complex 
geometry of the PTV and the variety of topological configurations it is not known which set is the 
best. Is the COIN based dose optimization approach better than the dose-statistics approach 
using variances and if yes how much better? 
 
We are currently studying for various sets of objectives the Pareto fronts using multiobjective 
evolutionary algorithms and if possible in combination with deterministic algorithms. We expect 
to understand their limitations and their robustness and performance for the complex problem of 
the dose-optimization in brachytherapy. 
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Fig. 1. Two-dimensional schematic diagram of the COIN=c1c2 based optimization. The 
coefficients c1 and  c2 consider the coverage of the PTV by the isosurface with the prescription 
dose Dref and parts of the tissue surrounding the PTV.  
 



 
Fig. 2. (a)Dose-volume histograms of the PTV and the body as a function of dose. (b)The 
corresponding COIN distribution. The shaded area to the right of D/Dref =1.5 is the COIN integral. 
The objectives are maximum COIN value at D=Dref and minimum COIN integral for the 
avoidance of high dose values in the PTV and the surrounding tissue.  
   
 



 
 
Fig. 3. Flow diagram for the dose-volume histogram based multiobjective genetic algorithm.     



 
Fig. 4. Comparison of the COIN distributions for a breast implant from the multiobjective genetic 
algorithm and four conventional single objective algorithms.   



 
 
 
Fig. 5. Contours of a rib implant with the catheters and the source dwell positions. On the PTV 
surface sampling points are shown at which the dose is calculated b) the dose isosurface 
obtained from the dose optimization.  
 



  
Fig. 6. Pareto front obtained by the gradient based algorithm and with the SPEA algorithm with 

and without initialization. 



 
Fig. 7. Pareto fronts obtained by the gradient based algorithm for 22 implants. The variety shows 
that a single objective optimization with constant importance factors does not give always a good 
result.     

 


