

Evolutionary Multi-objective Integer

Programming for the Design of Adaptive Cruise
Control Systems

Nando Laumanns1, Marco Laumanns2, and Hartmut Kitterer3

1 RWTH Aachen, Institut für Kraftfahrwesen (ika), D-52704 Aachen, Germany,
laumanns@ika.rwth-aachen.de

2 ETH Zürich, Computer Engineering and Networks Laboratory (TIK),
CH–8092 Zürich, Switzerland,
laumanns@tik.ee.ethz.ch,

http://www.tik.ee.ethz.ch/aroma
3 WABCO Vehicle Control Systems, D-30453 Hannover, Germany,

hartmut.kitterer@wabco-auto.com

Abstract. Adaptive Cruise Control (ACC) systems represent an active
research area in the automobile industry. The design of such systems typ-
ically involves several, possibly conflicting criteria such as driving safety,
comfort and fuel consumption. When the different design objectives can-
not be met simultaneously, a number of non-dominated solutions exists,
where no single solution is better than another in every aspect. The
knowledge of this set is important for any design decision as it contains
valuable information about the design problem at hand.

In this paper we approximate the non-dominated set of a given ACC-
controller design problem for trucks using multi-objective evolutionary
algorithms (MOEAs). Two different search strategies based on a con-
tinuous relaxation and on a direct representation of the integer design
variables are applied and compared to a grid search method.

1 Introduction

Crowded motorways and a higher average vehicle speed create increasing diffi-
culties for drivers. The automobile industry tries to compensate these additional
demands by inventing driver assistance systems such as antilock braking system
(ABS), cruise control (CC) and electronic stability control (ESC).

In contrast to the systems mentioned above, adaptive cruise control (ACC)
has not been thoroughly established yet. The ACC-system is an enhanced cruise
control, not only designed to keep the vehicle’s speed constant, but also to an-
alyze the traffic situation in front of the vehicle and regulate its longitudinal
dynamics accordingly. Thus it especially suits the demands of truck drivers, who
frequently have to follow a leading vehicle.

Used effectively, ACC-systems can increase driving safety, make driving more
comfortable and reduce fuel consumption. However it is rather difficult to develop

a controller that meets the drivers’ requirements concerning its speed regulating
behavior as well as safety criteria and fuel efficiency.

Since experimental testing of each modified controller variant would enor-
mously raise development costs and time, a simulation tool is used to analyze
the ACC-system’s behavior. This offers the possibility to improve the devel-
opment process further by applying numerical optimization techniques such as
evolutionary algorithms to optimize the ACC-controller.

This paper now examines the design of an ACC-controller for trucks un-
der multiple, possibly conflicting criteria. In the next section the ACC-system
is explained along with its simulation environment and the corresponding op-
timization problem that results from the system’s degrees of freedom and the
different design criteria. Section 3 addresses multi-objective optimization and
describes the algorithms that are used to approximate the set of non-dominated
or Pareto-optimal solutions. In section 4 the results of the different optimization
runs are presented and discussed.

2 Adaptive Cruise Control (ACC)

The adaptive cruise control system is intended to support the driver with control-
ling the vehicle’s longitudinal dynamics. A radar sensor detects moving objects
in front of the car. A tracking algorithm along with a yaw rate sensor deter-
mines a relevant target, including its distance and its relative velocity to the
ACC-vehicle.

The ACC-controller uses this information to calculate a desired speed and a
corresponding acceleration. This is transferred via CAN-bus to the appropriate
parts of the car (see Fig. 1). Concerning trucks, ACC-systems usually have in-
fluence on the various elements of the braking system and on the engine control.
In addition to that, the gear-box can be controlled. The interaction between the
system and the driver is accomplished through an intelligent dashboard with
switches, displays and a buzzer.

2.1 Design Variables

The longitudinal controller is responsible for the translation of the incoming
data about the traffic situation in front of the vehicle and its own driving con-
dition into a desired acceleration. The data produced by the sensor contains
some deviation. This requires four different filters in order to create a smooth
acceleration signal. The influence of these filters can be regulated by four inte-
ger parameters x1, . . . , x4. Strong filters result in very smooth signals. However,
they somewhat delay the vehicle’s reaction to incoming data and that weakens
its driving performance.

Two further design variables x5, x6 are used to define the longitudinal con-
troller’s reaction to the vehicle’s distance from the leading vehicle and their
relative velocity.

e n g i n e
l o n g i t u d i n a l
c o n t r o l l e r

y a w r a t e
s e n s o r

t r a c k i n g

E l e c t r o n i c
B r a k e
S y s t e m

e n g i n e
e n g i n e
b r a k er e t a r d e r

o p t i o n a l

g e a r
b o x

o p t i o n a l

i n t e l l i g e n t
d a s h b o a r d

s w i t c h e s

d i s p l a y

b u z z e r

C A N - B u s

Fig. 1. Structure of the ACC-system.

2.2 Simulation

Each setting of the design variables represents a decision alternative, and the
resulting controller performance is determined through simulation. For this we
apply the simulation tool PELOPS, which has been developed by the ika in co-
operation with BMW [3]. It analyses interactions between vehicle, driver and
the environment. Its three main elements are the stretch-module, the decision-
module, and the handling-module (see Fig. 2). The cause-effect-principle is used
to realize the relation between vehicle performance, environmental impacts and
the driver’s decision. In this case the ACC-system replaces the driver in terms
of regulating the speed.

2.3 Design Objectives

Four objectives are defined to give a sufficient characterization of the ACC-
system’s longitudinal controlling behavior considering driving comfort, fuel effi-
ciency and safety. All these objective functions are computed within the simula-
tion. Thus, the resulting multi-objective optimization problem can be stated as
follows (where the function values of f and g calculated by the simulator).

Minimize f(x) =

f1(x)
f2(x)
f3(x)
f4(x)

(average fuel consumption)
(acceleration / deceleration time)

(velocity deviation)
(acceleration deviation)

subject to g(x) ≥ dmin (minimum follow-up distance)
x ∈ X = {1, 2, . . . , 99}2 × {1, 2, . . . , 16} × {1, 2, . . . , 8}3 ⊆ ZZ6

(1)

For safety reasons there is a constraint on the minimum distance g(x) between
the ACC-vehicle and the leading vehicle.

100

t

v

v=f(t)

2 1

34

5Rlane
x, v, a

n
gear

point of
gear-

change

gear

lane
v, a

DV

DX

Stretch-Module Handling-Module

lane

a require

α
α

br

thr

α thr

ψ

gear
s

clutch

lane, x, v
a, gear, n

Vehicle-Module

Decision-Module

Fig. 2. Elements of simulation environment PELOPS.

3 Multi-objective Optimization

The presence of multiple objectives in a design problem induces a partial order
on the set of alternatives. This partial order is represented by the dominance
relation ≺, where a decision alternative is said to dominate another (a ≺ b) if
and only if it is at least as good in all objectives and strictly better in at least one
objective. The solution of the constrained multi-objective integer programming
problem (1) is defined as the set of feasible non-dominated decision alternatives
(Pareto set) X∗ = {a ∈ X : (6 ∃b ∈ X with b ≺ a) ∧ g(a) ≥ dmin}.

In order to approximate the non-dominated set for the constrained multi-
objective integer programming problem (1), three methods are applied and com-
pared: a grid search and two evolutionary algorithms. The computation time of
the simulator makes exhaustive search or complete enumeration of all alterna-
tives impractical. Thus, a grid search with 215 representative solutions regularly
distributed in the decision variable space is performed. In comparing all these
alternatives to each other, the dominated ones are eliminated and the remaining
represent a first approximation to the non-dominated set as a baseline.

3.1 Multi-objective Evolutionary Algorithms

Evolutionary algorithms (EA) have shown to be a useful tool for approximating
the non-dominated set of multi-objective optimization problems [1, 6, 5]. In many
engineering design problems the evaluation of decision alternatives is based on

(computationally expensive) simulations which limits the use of traditional tech-
niques like gradient-based methods. When a priori incorporation of the decision
maker’s preferences is difficult or not desired (so that aggregation of the different
objectives to a scalar surrogate function is not possible), there are hardly any
alternative techniques available.

Algorithm 1 (µ + λ)-SPEA2
1: Generate an initial population P of size µ + λ.
2: Calculate objective values of individuals in P .
3: while Termination criteria are not met do
4: Calculate fitness values of individuals in P .
5: Copy all non-dominated individuals in P to P ′.
6: if |P ′| > µ then
7: Reduce P ′ by means of the truncation procedure.
8: else if |P ′| < µ then
9: Fill P ′ with dominated individuals from P in increasing order of their fitness.

10: end if
11: Create P ′′ of size λ by iteratively selecting parents from P ′, applying recombi-

nation and mutation.
12: Calculate objective values of individuals in P ′′.
13: P ← P ′ + P ′′

14: end while

Here, two algorithms based on SPEA2 ([7], an improved version of the
Strength Pareto Evolutionary Algorithm, [8]) are applied. SPEA2 can be seen as
a (µ+λ)-EA with special fitness assignment and selection techniques, a pseudo-
code description is given in Alg. 1. Each individual in the combined parent and
offspring population P is assigned a strength value S which equals the number
of solutions it dominates. On the basis of the S values, the raw fitness R(i)
of an individual i is calculated R(i) =

∑
j∈P ,j≺i S(j). In addition, the local

density is estimated for each individual and added to R to discriminate between
individuals with equal raw fitness (line 4).

Selection is performed in two steps: environmental selection and mating se-
lection. The best µ solutions out of P are selected to constitute the set of parents
for the next generation. First, all non-dominated individuals, i.e., those which
have a fitness lower than one, are selected (line 5). If there are more than µ
such solutions, a truncation procedure is invoked which iteratively removes that
individual which is closest to the others (line 7). If less than µ individuals are
non-dominated, the space is filled with the dominated individuals in ascending
order of their fitness values (line 9). In the second step the recombination part-
ners for the next generation are selected by binary tournament selection (with
replacement) based on the fitness values (line 11).

The representation of the individuals and the variation operators (recombi-
nation and mutation) are different and explained in the following.

Real-valued individuals Many standard search operators are based on a
floating-point representation of (real-valued) decision variables. Therefore a con-
tinuous relaxation of the search space to [0, 99]2 × [0, 16] × [0, 8]3 is used, and
the variables are rounded to their integer part (plus 1) before each run of the
simulation tool. For the recombination we use the SBX-operator [1] with dis-
tribution index η = 5. The offspring individuals are then mutated by adding
normal distributed random numbers, where the standard deviation σ is set to 5
per cent of the interval length.

Integer-valued individuals As the relaxation produces an artificial blow-up
of the search space a direct representation of the decision variables as integer
numbers might be more appropriate. It also eliminates the potential problem
of mapping several different individuals to the same decision alternative by the
rounding procedure. Search operators working directly on integer variables are
not so common in evolutionary computation. Here, we adopt the techniques from
Rudolph [4] who developed an EA for integer programming with maximum en-
tropy mutation distributions that enables self-adaptive mutation control similar
to real-valued evolution strategies. A successful application to a mixed integer
design problem for chemical plants is reported in [2]. Here, the initial mutation
step size was set to s = 2 for all variables.

For both version of SPEA2 the population size was set to µ = λ = 10, and the
runs were terminated after 300 generations (3000 objective function evaluations).
During the run, an archive of all non-dominated solutions was maintained and
output as the approximation to the non-dominated set at the end of the run.

4 Results

In order to evaluate the performance of the evolutionary algorithm a grid search
over the whole parameter area is performed, along with a manual optimization
of the ACC-controller. The grid search contains 16384 elements, requiring a
computation time of almost 137 hours. As both instances of the evolutionary
algorithm only used 3000 function evaluations each, and since their internal
operations and data processing can be neglected compared to the simulation,
they have a clear advantage in terms of computation time.

As a first interesting observation from the output of the different algorithms
no trade-off is visible for the second objective f2 (acceleration / deceleration
time): All algorithms have found values close to the minimal value of 66.6 for
almost all non-dominated alternatives. The remaining objective values of the
different non-dominated sets are displayed in Fig. 3. Here, the trade-off charac-
teristic is visible from the three-dimensional scatter plot.

Measuring the performance of different multi-objective optimizers or the
quality of different non-dominated sets is not straightforward. Many performance
metrics have been suggested [1] and can be applied, but there is no clear order
unless one set completely dominates another.

r−SPEA2
grid search

37.8 37.9 38 38.1 38.2 38.3 38.4
f1 0

5
10

15
20

25
30

35
40

45

f3

f4

i−SPEA2

20

16

12

8

4

Fig. 3. Scatter plot of the non-dominated solutions produced by the grid search and
the evolutionary algorithm with continuous relaxation (r-SPEA2) and direct integer
coding (i-SPEA) for the objective function values f1, f3, f4.

To ensure comparability of the results one has to look at different aspects.
One possibility is to define an evaluation formula based on a weighted distance
to an ideal point f∗ which is given by the minimal objective values in each
dimension. The difference between each decision parameter and the optimum
value in the referring category is multiplied with a factor, which represents the
importance of the category. Thus the interpretation of the results reflects an
adaptation to the user’s goals. In this case the objectives f1 and f3 are considered
most important, f2 is least important. Representing the distance to the optimal
solution the sum of those values gives the overall quality of the individual

D(x) = 150(f1(x) − f∗
1) + (f2(x) − f∗

2) + 6(f3(x) − f∗
3) + 4(f4(x) − f∗

4) (2)

with f∗ = (37.8339, 66.6, 2.06935, 3.03196). Accordingly, a ranking of the indi-
viduals developed by the different optimization strategies can be produced. The
best 100 solutions are displayed in Fig. 4. The two evolutionary algorithms cre-
ate the best solutions, with a slight advantage of the integer-version in terms
of density close to the optimum solution. Out of the top 100 solutions, 46 are
were created by this integer-version, 40 by the double-version and only 14 by
the grid-search.

Another aspect which has to be taken into consideration in order to compare
the different optimization approaches is the total objective space that their so-
lutions extend to. The minimum overall objective function value divided by the
minimum value of a single approach determines the quality of the optimization
in direction of the corresponding objective. Fig. 5 visualizes the performance of

10

15

20

25

30

35

40

45

50

55

60

1 10 20 30 40 50 60 70 80 90 100

number in ranking

grid search

EA (double)

EA (integer)
best individual:

EA (integer)

best individual:

EA (double)

best individual:

grid search

Fig. 4. Ranking of solutions according to aggregated quality measure.

the different optimization approaches in terms of objective space exploration.
While all three approaches reach the optimum in the objectives f1 and f2, the
grid search shows a performance almost 10% below the optimum in f3 and 5%
in f4. The integer-version of the EA proves to be the best optimization method
with a good performance in all four objectives and an average value of 99.62%.

C(A,B) i-SPEA2 r-SPEA2 grid search

i-SPEA2 0.423567 0.991597

r-SPEA2 0.070588 0.991597

grid search 0 0

Table 1. Results of the coverage measure C(·, ·) applied to all pairs of algorithms.

For a pairwise comparison of different output sets, the coverage measure
[8] gives an indication of how much of a one algorithm’s output has also been
reached by the other one. Specifically, C(A,B) calculates the relative number of
points of set B that are dominated by at least one point in set A. Table 1 shows
that none of the points found by the grid search is better than any point in the
non-dominated sets of the evolutionary algorithms. Also, the SPEA2 working
with the floating point representation does not cover much (less than 10%) of
the solutions produced by the integer version, which in turn is able to dominate
nearly half of the solutions of its competitor.

In contrast to a relative comparison by the coverage measure, the normalized
volume of the dominated space is often used to evaluate a single non-dominated

f1

f2

f3

f4

100%90%

i-SPEA2

r-SPEA2
grid search

Fig. 5. This graph shows how well each algorithm could approach the minimal value in
each objective dimension separately. The values on each axis is calculated by dividing
the overall minimal value by the minimal value produced by each algorithm.

S(A,B) i-SPEA2 r-SPEA2 grid search S(A)

i-SPEA2 0.0038 0.223 0.949

r-SPEA2 0.002 0.188 0.913

grid search 0.0003 0.0018 0.726

Table 2. Results of the hypervolume difference measure S(·, ·) applied to all pairs of
algorithms and the absolute hypervolume measure S(·) (last column).

set alone [8]. Here, a reference cuboid between the ideal point f∗ and the nadir
point defined by the maximal objective function values of the union of all three
non-dominated sets is chosen. S(A) gives the fraction of this reference volume
that is dominated by A. It is clear that the algorithms ideally should maximize
the dominated space. The results are given in the last column of Table 2. In
addition, the volume differences are depicted, where S(A,B) evaluates to the
volume dominated by the set A, but not dominated by the set B.

5 Conclusion

The combination of PELOPS as simulation tool and an evolutionary algorithm
is an efficient method to optimize the longitudinal controller of an ACC-system.
Even the non-adapted version of the EA shows a better performance than a grid
search over the design variable area, in spite of its lower computation time.

Nevertheless it is sensible to adapt the EA to the simulation tool. Match-
ing parameter intervals and types increase the algorithm’s performance, because

they ensure that every change in the design variables, created by the EA, also
changes the ACC-system’s longitudinal controlling behavior within the simula-
tion tool. This correlation is necessary for an efficient optimization process, and
less redundancy is produced compared to the artificial relaxation to real vari-
ables. The superiority of results produced by the direct integer encoding shows
that efficient search operators exist for this domain, and that they are applicable
as well in a multi-objective environment.

Analyzing the trade-off-graph (Fig.3) the development engineer can learn
about performance boundaries of the ACC-system. It helps to understand the
system’s behavior and shows different solutions, which can suit the company’s
or customer’s preferences. Thus the EA can enhance the traditional developing
process by quickly providing broad and detailed information about a complex
optimization problem.

Acknowledgment

The second author acknowledges the support by the Swiss National Science
Foundation (SNF) under the ArOMA project 2100-057156.99/1.

References

1. K. Deb. Multi-objective optimization using evolutionary algorithms. Wiley, Chich-
ester, UK, 2001.

2. M. Emmerich, M. Grötzner, B. Groß, and M. Schütz. Mixed-integer evolution strat-
egy for chemical plant optimization with simulators. In I. C. Parmee, editor, Evo-
lutionary Design and Manufacutre — Selected papers from ACDM’00, pages 55–67,
Plymouth, UK, April 26–28, 2000. Springer, London.

3. J. Ludmann. Beeinflussung des Verkehrsablaufs auf Strassen: Analyse mit dem
fahrzeugorientierten Verkehrssimulationsprogramm PELOPS. Schriftenreihe Auto-
mobiltechnik. Forschungsgesellschaft Kraftfahrwesen mbH Aachen, 1998. (in Ger-
man).

4. G. Rudolph. An evolutionary algorithm for integer programming. In Y. Davidor, H.-
P. Schwefel, and R. Männer, editors, Parallel Problem Solving from Nature – PPSN
III, Int’l Conf. Evolutionary Computation, pages 139–148, Jerusalem, October 9–14,
1994. Springer, Berlin.

5. P. Sen and J.-B. Yang. Multipe Criteria Decision Support in Engineering Design.
Springer, 1998.

6. E. Zitzler, K. Deb, L. Thiele, C. A. C. Coello, and D. Corne, editors. Proceedings
of the First International Conference on Evolutionary Multi-Criterion Optimization
(EMO 2001), volume 1993 of Lecture Notes in Computer Science, Berlin, Germany,
March 2001. Springer.

7. E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the strength pareto
evolutionary algorithm for multiobjective optimization. In K. Giannakoglou et al.,
editors, Evolutionary Methods for Design, Optimisation, and Control, 2002. To
appear.

8. E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: A comparative
case study and the strength pareto approach. IEEE Transactions on Evolutionary
Computation, 3(4):257–271, 1999.

