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Abstract

Over the past few years, the research on evolu-
tionary algorithms has demonstrated their niche
in solving multi-objective optimization prob-
lems, where the goal is to find a number of
Pareto-optimal solutions in a single simulation
run. However, none of the multi-objective evo-
lutionary algorithms (MOEAs) has a proof of
convergence to the true Pareto-optimal solutions
with a wide diversity among the solutions. In
this paper we discuss why a number of earlier
MOEAs do not have such properties. A new
archiving strategy is proposed that maintains a
subset of the generated solutions. It guaran-
tees convergence and diversity according to well-
defined criteria, i.e. ε-dominance and ε-Pareto
optimality.

1 Introduction

After the doctoral study of Schaffer (1984) on the vector
evaluated genetic algorithm (VEGA), Goldberg’s sugges-
tion of the use of non-dominated sorting along with a nich-
ing mechanism (1989) generated an overwhelming interest
on multi-objective evolutionary algorithms (MOEAs). Ini-
tial MOEAs – MOGA (Fonseca and Fleming 1993), NSGA
(Srinivas and Deb 1994), NPGA (Horn et al. 1994) – used
Goldberg’s suggestion in a straightforward manner: (i) the
fitness of a solution was assigned using the extent of its
dominationin the population and (ii) the diversity among
solutions was preserved using a niching strategy. The
above three studies have shown that different ways of im-
plementing the above two tasks can all result in successful
MOEAs. However, in order to ensure convergence to the
true Pareto-optimal solutions, an elite-preservation opera-
tor was absent in those algorithms. Thus, the latter MOEAs
mainly concentrated on how elitism could be introduced in

an MOEA. This resulted in a number of advanced algo-
rithms – SPEA (Zitzler and Thiele 1999), PAES (Knowles
and Corne 2000), NSGA-II (Deb et al. 2000), and others.
With the development of better algorithms, multi-objective
evolutionary algorithms have also been used in a number
of application case studies (Zitzler et al. 2001).

What is severely lacking are studies related to theoreti-
cal convergence analysis with guaranteed spread of solu-
tions. In this regard, Rudolph (1998, 2001) and Rudolph
and Agapie (2000) suggested a series of algorithms, all of
which guarantee convergence, but do not address the fol-
lowing two aspects:

1. The convergent algorithms do not guarantee maintain-
ing a spread of solutions.

2. The algorithms do not specify any time complexity for
their convergence to the true Pareto-optimal set.

Although the second task is difficult to achieve (and is
dependent on the fitness landscape and genetic operators
used) even in the case of single-objective evolutionary al-
gorithms, the first task is as important as the task of con-
verging to the true Pareto set. Deb (2001) suggested a
steady-state MOEA that attempts to maintain spread while
attempting to converge to the true Pareto-optimal front, but
there is no proof for its convergence properties. Knowles
(2002) has analyzed two further possibilities, metric-based
archiving and adaptive grid archiving. The metric-based
strategy requires a function that assigns a scalar value to
each possible approximation set reflecting its quality and
fulfilling certain monotony conditions. Convergence then
is proven as a local optimum of the quality function will
be reached, but how this optimum relates to the actual dis-
tribution of the solutions is unclear and the computational
overhead is enormous. The adaptive grid archiving strat-
egy implemented in PAES provably maintains solutions in
some ’critical’ regions of the Pareto set once they have been
found, but convergence can only be guaranteed for the so-
lutions at the extremes of the Pareto set.



Algorithm 1 Iterative search procedure
1: t := 0
2: A(0) := ∅
3: while terminate(A(t), t) = false do
4: t := t + 1
5: f (t) := generate() {generates new search point}
6: A(t) := update(A(t−1), f (t)) {updates archive}
7: end while
8: Output: A(t)

In this paper, we propose an archiving/selection strategy
that guarantees at the same time progress towards the
Pareto-optimal set and a covering of the whole range of
the non-dominated solutions. The algorithm maintains a
finite-sized archive of non-dominated solutions which gets
iteratively updated in the presence of a new solution based
on the concept of ε-dominance. The use of ε-dominance
also makes the algorithms practical by allowing a decision-
maker to control the resolution of the Pareto set approxi-
mation by choosing an appropriate ε value.

In the remainder of the paper, we state the general structure
of an iterative archive-based search procedure which is usu-
ally used for multi-objective optimization. In section 3 we
formally define our concepts of ε-dominance and ε-Pareto
optimality. We present the new archiving algorithm and
prove the required convergence and distribution properties.
The simulation results in section 4 illustrate its practical rel-
evance in contrast to existing algorithms which either fail
with respect to convergence or to distribution behavior.

2 Structure of an Iterative Multi-Objective
Search Algorithm

The purpose of this section is to informally describe the
problem we are dealing with. To this end, let us first give
a template for a large class of iterative search procedures
which are characterized by the generation of a sequence of
search points and a finite memory.

The purpose of such algorithms is to find or approximate
the Pareto set of the image set F of a vector valued function
h : X → F defined over some domain X . In the context of
multi-objective optimization, h, F and X are often called
the multi-valued objective function, the objective space and
the decision space, respectively.

An abstract description of a generic iterative search algo-
rithm is given in Algorithm 1. The integer t denotes the
iteration count, the n-dimensional vector f (t) ∈ F is the
sample generated at iteration t and the set A(t) will be
called the archive at iteration t and should contain a rep-
resentative subset of the samples in the objective space F
generated so far. To simplify the notation, we represent

generate update
vector f

archive A

one sample per iteration

finite memory

finite size
representative subset of best samples

Figure 1: Representation of the generic search algorithm 1.

samples by n-dimensional real vectors f where each coor-
dinate represents one of the objective values. Additional
information about the corresponding decision values could
be associated to f , but will be of no concern in this paper.

The purpose of the function generateis to generate a new
solution in each iteration t, possibly using the contents of
the old archive set A(t−1). The function updategets the
new solution f (t) and the old archive set A(t−1) and deter-
mines the updated one, namely A(t). In general, the pur-
pose of this sample storage is to gather ’useful’ informa-
tion about the underlying search problem during the run.
Its use is usually two-fold: On the one hand it is used to
store the ’best’ solutions found so far, on the other hand the
search operator exploits this information to steer the search
to promising regions.

This algorithm could easily be viewed as an evolution-
ary algorithm when the generate operator is associated
with variation (recombination and mutation). However, we
would like to point out that all following investigations are
equally valid for any kind of iterative process which can be
described as Algorithm 1 and used for approximating the
Pareto set of multi-objective optimization problems, e.g.
simulated annealing or tabu search.

There are several reasons, why the archive A(t) should be
of constant size, independent of the number of iterations
t. At first, the computation time grows with the number
of archived solutions, as for example the function gener-
atemay use it for guiding the search, or it may simply be
impossible to store all solutions as the physical memory
is always finite. In addition, the value of presenting such
a large set of solutions to a decision maker is doubtful in
the context of decision support, instead one should provide
him with a set of the best representativesamples. Finally,
in limiting the solution set preference information could be
used to steer the process to certain parts of the search space.

The paper solely deals with the function update, i.e. with an



appropriate generation of the archive. Because of the rea-
sons described above, the corresponding algorithm should
have the following properties, see also Fig. 1:

• The algorithm is provided with one sample f (t) at
each iteration, i.e. one at a time.

• It operates with finite memory. In particular, it cannot
store all the samples submitted until iteration t.

• The algorithm should maintain a set A(t) of a limited
size which is independent of the iteration count t. The
set should contain a representative subset of the best
samples f (1), ..., f (t) received so far.

A clear definition of the term representative subsetof the
best sampleswill be given in Section 3.1. But according
to the common notion of optimality in multi-objective op-
timization and the above discussion it should be apparent
that the archive A(t) should contain a subset of all Pareto
vectors of the samples generated until iteration t. In ad-
dition, these selected Pareto vectors should represent the
diversity of all Pareto vectors generated so far. Such an
algorithm in will be constructed in section 3.3.

3 Algorithms for Convergence and Diversity

Before we present the update functions for finding a diverse
set of Pareto-optimal solutions, we define some terminol-
ogy.

3.1 Concept of Pareto Set Approximation

In this section we define relevant concepts of dominance
and (approximate) Pareto sets. Without loss of generality,
we assume a normalized and positive objective space in
the following for notational convenience. The algorithms
presented in this paper assume that all objectives are to be
maximized. However, either by using the duality princi-
ple (Deb 2001) or by simple modifications to the domi-
nation definitions, these algorithms can be used to handle
minimization or combined minimization and maximization
problems.

Objective vectors are compared according to the domi-
nance relation defined below and displayed in Fig. 2 (left).

Definition 1 (Dominance relation)
Let f, g ∈ IRm. Then f is said to dominate g, denoted as
f � g, iff

1. ∀i ∈ {1, . . . ,m} : fi ≥ gi

2. ∃j ∈ {1, . . . ,m} : fj > gj

f1

f2 f

dominated by f

f2 f

-dominated by f�

f1(1+ )�f1

(1+ )� f2

Figure 2: Graphs visualizing the concepts of dominance
(left) and ε-dominance (right).

Definition 2 (Pareto set)
Let F ⊆ IRm be a set of vectors. Then the Pareto set F ∗

of F is defined as follows: F ∗ contains all vectors g ∈ F
which are not dominated by any vector f ∈ F , i.e.

F ∗ := {g ∈ F |  ∃f ∈ F : f � g} (1)

Vectors in F ∗ are called Pareto vectors of F . The set of all
Pareto sets of F is denoted as P ∗(F ).

From the above definition we can easily deduce that any
vector g ∈ F \F ∗ is dominated by at least one f ∈ F ∗, i.e.

∀g ∈ F \ F ∗ : ∃f ∈ F ∗ such that f � g. (2)

Moreover, for a given set F , the set F ∗ is unique. There-
fore, we have P ∗(F ) = {F ∗}. For many sets F , the Pareto
set F ∗ is of substantial size. Thus, the numerical determi-
nation of F ∗ is prohibitive, and F ∗ as a result of an op-
timization is questionable. Moreover, it is not clear at all
what a decision maker can do with such a large result of an
optimization run. What would be more desirable is an ap-
proximation of F ∗ which approximatelydominates all ele-
ments of F and is of (polynomially) bounded size. This set
can then be used by a decision maker to determine interest-
ing regions of the decision and objective space which can
be explored in further optimization runs. Next, we define
a generalization of the dominance relation as visualized in
Fig. 2 (right).

Definition 3 (ε-Dominance)
Let f, g ∈ IR+m

. Then f is said to ε-dominate g for some
ε > 0, denoted as f �ε g, iff for all i ∈ {1, . . . ,m}

(1 + ε) · fi ≥ gi. (3)

Definition 4 (ε-approximate Pareto set)
Let F ⊆ IR+m

be a set of vectors and ε > 0. Then a set
Fε is called an ε-approximate Pareto set of F , if any vector
g ∈ F is ε-dominated by at least one vector f ∈ Fε, i.e.

∀g ∈ F : ∃f ∈ Fε such that f �ε g. (4)
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Figure 3: Graphs visualizing the concepts of ε-approximate
Pareto set (left) and ε-Pareto set (right).

The set of all ε-approximate Pareto sets of F is denoted as
Pε(F ).

Of course, the set Fε is not unique. Many different con-
cepts for ε-efficiency1 and the corresponding Pareto set ap-
proximations exist in the operations research literature, a
survey is given by Helbig and Pateva (1994). As most of
the concepts deal with infinite sets, they are not practical
for our purpose of producing and maintaining a represen-
tative subset. Nevertheless they are of theoretical interest
and have nice properties which can for instance be used in
convergence proofs, see (Hanne 1999) for an application in
MOEAs.

Using discrete ε-approximations of the Pareto set was sug-
gested simultaneously by Evtushenko and Potapov (1987),
Reuter (1990), and Ruhe and Fruhwirt (1990). As in our
approach, each Pareto-optimal point is approximately dom-
inated by some point of the representative set. The first two
papers use absolute deviation (additive ε, see Eqn. 7 below)
and the third relative deviation (multiplicative ε as above),
but they are not concerned with the size of the representa-
tive set in the general case.

Recently, Papadimitriou and Yannakakis (2000) and Er-
lebach et al. (2001) have pointed out that under certain as-
sumptions there is always an approximate Pareto set whose
size is polynomial in the length of the encoded input. This
can be achieved by placing a hyper-grid in the objective
space using the coordinates 1, (1+ ε), (1+ ε)2, . . . for each
objective. As it suffices to have one representative solution
in each grid cell and to have only non-dominated cells oc-
cupied, it can be seen that for any finite ε and any set F with
bounded vectors f , i.e. 1 ≤ fi ≤ K for all i ∈ {1, . . . ,m},

1The terms ”efficient” and ”Pareto-optimal” can be used syn-
onymously. While the former appears to be more frequent in oper-
ations research literature, we generally use the latter as it is more
common the field of evolutionary computation.

there exists a set Fε containing

|Fε| ≤
(

logK
log (1 + ε)

)m−1

(5)

vectors. A proof will be given in connection with Alg. 2 in
section 3.3.

Note that the concept of approximation can also be used if
other similar definitions of ε-dominance are used, e.g. the
following additive approximation

εi + fi ≥ gi ∀i ∈ {1, . . . ,m} (6)

where εi are constants, separately defined for each coor-
dinate. In this case there exist ε-approximate Pareto sets
whose size can be bounded as follows:

|Fε| ≤
m−1∏
j=1

K − 1
εi

(7)

where 1 ≤ fi ≤ K , K ≥ εi for all i ∈ {1, . . . ,m}. A
further refinement of the concept of ε-approximate Pareto
sets leads to the following definition.

Definition 5 (ε-Pareto set)
Let F ⊆ IR+m

be a set of vectors and ε > 0. Then a set
F ∗

ε ⊆ F is called an ε-Pareto set of F if

1. F ∗
ε is an ε-approximate Pareto set of F , i.e. F ∗

ε ∈
Pε(F ), and

2. F ∗
ε contains Pareto points of F only, i.e. F ∗

ε ⊆ F ∗.

The set of all ε-Pareto sets of F is denoted as P ∗
ε (F ).

The above defined concepts are visualized in Fig. 3. An
ε-Pareto set F ∗

ε not only ε-dominates all vectors in F , but
also consists of Pareto-optimal vectors of F only, therefore
we have P ∗

ε (F ) ⊆ Pε(F ).

Since finding the Pareto set of an arbitrary set F is usu-
ally not practical because of its size, one needs to be less
ambitious in general. Therefore, the ε-approximate Pareto
set is a practical solution concept as it not only represents
all vectors F but also consists of a smaller number of el-
ements. Of course, an ε-Pareto set is more attractive as it
consists of Pareto vectors only.

3.2 Convergence and Diversity

Convergence and diversity can be defined in various ways.
Here, we consider the objective space only. According to
Definition 3, the ε value stands for a relative “tolerance”
that we allow for the objective values. In contrast, using
equation (6) we would allow a constant additive (absolute)
tolerance.



Algorithm 2 update function for ε-Pareto set
1: Input: A, f
2: D := {f ′ ∈ A|box(f) � box(f ′)}
3: if D = ∅ then
4: A′ := A ∪ {f} \D
5: else if ∃f ′ : (box(f ′) = box(f) ∧ f � f ′) then
6: A′ := A ∪ {f} \ {f ′}
7: else if  ∃f ′ : box(f ′) = box(f) ∨ box(f ′) � box(f)

then
8: A′ := A ∪ {f}
9: else

10: A′ := A
11: end if
12: Output: A′

Algorithm 3 function box

1: Input: f
2: for all i ∈ {1, . . . ,m} do
3: bi := � log fi

log (1+ε)�
4: end for
5: b := (b1, . . . , bm)
6: Output: b {box index vector}

The choice of the ε value is application specific: A deci-
sion maker should choose a type and magnitude that suits
the (physical) meaning of the objective values best. The
ε value further determines the maximal size of the archive
according to equations (5) and (7).

3.3 Maintaining an ε-Pareto Set

The Algorithm 2 has a two level concept. On the coarse
level, the search space is discretized by a division into
boxes (see Algorithm 3), where each vector uniquely be-
longs to one box. Using a generalized dominance re-
lation on these boxes, the algorithm always maintains
a set of non-dominated boxes, thus guaranteeing the ε-
approximation property. On the fine level at most one ele-
ment is kept in each box. Within a box, each representative
vector can only be replaced by a dominating one (similar
to Agapie’s and Rudolph’s algorithm), thus guaranteeing
convergence.

Now, we can prove the convergence of the above update
strategy to the Pareto set while preserving diversity of so-
lution vectors at the same time.

Theorem 1
Let F (t) =

⋃t
j=1 f

(j), 1 ≤ f
(j)
i ≤ K, be the set of all vec-

tors created in Algorithm 1 and given to the update func-
tion as defined in Algorithm 2. Then A(t) is an ε-Pareto set
of F (t) with bounded size according to Eq. (5), i.e.

1. A(t) ∈ P ∗
ε (F (t))

2. |A(t)| ≤
(

log K
log (1+ε)

)(m−1)

Proof.

1. Suppose the algorithm is not correct, i.e. A(t) ∈
P ∗

ε (F (t)) for some t. According to Def. 5 this occurs
only if some f = f (τ), τ ≤ t is (1) not ε-dominated
by any member of A(t) and not in A(t) or (2) in A(t)

but not in the Pareto set of F (t).

Case (1):For f = f (τ) not being in A(t), it can either
have been rejected at t = τ or accepted at t = τ and
removed later on. Removal, however, only takes place
when some new f ′ enters A, which dominates f (line
6) or whose box value dominates that of f (line 4).
Since both relations are transitive, and since they both
imply ε-dominance, there will always be an element
in A which ε-dominates f , which contradicts the as-
sumption. On the other hand, f will only be rejected
if there is another f ′ ∈ A(τ) with the same box value
and which is not dominated by f (line 10). This f ′, in
turn, ε-dominates f and – with the same argument as
before – can only be replaced by accepting elements
which also ε-dominate f .

Case (2):Since f is not in the Pareto set of F (t), there
exists f ′ = f (τ ′), τ ′ = τ, f ′ ∈ F ∗(t) with f ′ � f .
This implies box(f ′) � box(f) or box(f ′) = box(f).
Hence, if τ ′ < τ , f would not have been accepted. If
τ ′ > τ , f would have been removed from A. Thus,
f ∈ A(t), which contradicts the assumption.

2. The objective space is divided into
(

log K
log (1+ε)

)m

boxes, and from each box at most one point can
be in A(t) at the same time. Now consider the(

log K
log (1+ε)

)(m−1)

equivalence classes of boxes where

– without loss of generality – in each class the boxes
have the same coordinates in all but one dimension.
There are log K

log (1+ε) different boxes in each class con-
stituting a chain of dominating boxes. Hence, only
one point from each of these classes can be a member
of A(t) at the same time.

✷

As a result, Algorithm 2 uses a finite memory, successively
updates a finite subset of vectors that ε-dominate all vectors
generated so far. It can be guaranteed that the subset con-
tains only elements which are not dominated by any of the
generated vectors. Note that specific bounds on the objec-
tive values are not used in the algorithm itself and are not
required for the convergence proof (claim 1 of Theorem 1).



They are only utilized to prove the relation between ε and
the size of the archive given in the second claim.

4 Simulations

This section presents some simulation results to demon-
strate the behavior of the proposed algorithm for two ex-
ample multi-objective optimization problems (MOPs). We
use instances of the iterative search procedure (specified
in Alg. 1) with a common generator and examine different
updateoperators.

An isolated assessment of the update strategy of course re-
quires the generator to act independently from the archive
set A(t) to guarantee that exactly the same sequence of
points is given to the update function for all different strate-
gies. Despite that, the exact implementation of the gener-
ator is irrelevant for this study, therefore we use standard
MOEAs here and take the points in the sequence of their
generation as input for the different update functions.

4.1 Convergence Behavior

At first we are interested in how different update strategies
affect the convergenceof the sequence (A(t)). As a test
problem a two-objective knapsack problem with 100 items
is taken from (Zitzler and Thiele 1999). The low number
of decision variables is sufficient to show the anticipated
effects, and we found it advantageous for visualization and
comparison purposes to be able to compute the complete
Pareto set F ∗ beforehand via Integer Linear Programming.

The points given to update operator are generated by a
standard NSGA-II with population size 100, one-point
crossover, and bit-flip mutations (with probability 4/n =
0.04). Figure 4 shows the output A(t) of sample runs
for the different instances after t = 5, 000, 000 and t =
10, 000, 000 iterations (generated objective vectors), using
update operators from SPEA, NSGA-II (both with maxi-
mum archive size of 20 and Alg. 2 with ε = 0.01.

It is clearly visible that both the archiving (selection) strate-
gies from SPEA and NSGA-II suffer from the problem of
partial deterioration: Non-dominated points – even those
which belong to the “real” Pareto set – can get lost, and
on the long run might even be replaced by dominated solu-
tions. This is certainly not desirable, and algorithms rely-
ing on these strategies cannot be claimed to be convergent,
even if the generator would be able to produce all elements
of the Pareto set F ∗2. In contrast, Alg. 2 is able to maintain
an ε-Pareto set of the generated solutions over time.

2In our experiments almost all Pareto-optimal points have
been produced by the generator within t = 10, 000, 000 itera-
tions.
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Figure 4: Objective space of the knapsack problem, the
dots show the elements of the Pareto set F ∗. The dif-
ferent figures correspond to different instances of the up-
dateoperator in Alg. 1: NSGA-II (upper left), SPEA (up-
per right), and Alg. 2 (lower row). In each figure the
archive set A(t) is shown, for t = 5, 000, 000 (with dia-
monds) and for t = 10, 000, 000 (with boxes). A subset of
the samples is highlighted so visualize the negative effect
of losing Pareto-optimal solutions in many current archiv-
ing/selection schemes.
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Figure 5: Objective space of MOP (8). The discretization
into boxes according to Alg. 3 is indicated by showing all
boxes that intersect with the Pareto set F ∗ in dashed lines.
The non-dominated boxes are drawn in bold lines. The cir-
cles correspond to the output A of different instances of the
iterative search algorithm Alg. 1. For the upper figure an
update function according to AR-1 was used, for the lower
figure the function according to Alg. 2.

4.2 Distribution Behavior

In order to test for the distribution behavior only candi-
dates are taken into account which fulfill the requirements
for convergence: Rudolph’s and Agapie’s algorithm AR-
I (Rudolph and Agapie 2000) and Alg. 2. As a test case
the following continuous three-dimensional three-objective
problem is used:

Max f1(x) = 3 − (1 + x3) cos(x1π/2) cos(x2π/2),
Max f2(x) = 3 − (1 + x3) cos(x1π/2) sin(x2π/2),
Max f3(x) = 3 − (1 + x3) cos(x1π/2) sin(x1π/2),

0 ≤ xi ≤ 1, for i = 1, 2, 3,




(8)

The Pareto set of this problem is a surface, a quadrant of the
hyper-sphere of radius 1 around (3, 3, 3). For the results

shown in Figure 5 the real-coded NSGA without fitness
sharing, crossover with SBX (distribution index η = 5) and
population size 100 was used to generate the candidate so-
lutions. The distribution quality is judged in terms of the ε-
dominance concept, therefore a discretization of the objec-
tive space into boxes (using Alg. 3 with ε = 0.05) is plot-
ted instead of the actual Pareto set. As the multiplicative ε
is used, it can be seen that the box sizes vary and reflect
the relative deviations from different parts of the Pareto
set. From all boxes intersecting with the Pareto set the
non-dominated ones are highlighted. For an ε-approximate
Pareto set it is now sufficient to have exactly one solution
in each of those non-dominated boxes. This condition is
fulfilled by the algorithm using the update strategy Alg. 2,
leading to an almost symmetric distribution covering all re-
gions. The strategy from AR-1, which does not discrim-
inate among non-dominated points, is sensitive to the se-
quence of the generated solution and fails to provide an ε-
approximation of the Pareto set of similar quality even with
an allowed archive size of 50.

Looking at the graphs of Algorithm 2, one might have the
impression that not all regions of the Pareto set are equally
represented by archive members. However, these examples
represent optimal approximations according to the con-
cepts explained in section 3.2. They are not intended to
give a uniform distribution on a (hypothetical) surface that
might even not exist as in the discrete case.

4.3 Results

The simulation results support the claims of the preceding
sections. The archive updating strategy plays a crucial role
for the convergence and distribution properties. The key
results are:

• Rudolph’s and Agapie’s algorithm guarantees con-
vergence, but has no control over the distribution of
points.

• The current MOEAs designed for maintaining a good
distribution do not fulfill the convergence criterion, as
has been demonstrated for SPEA and NSGA-II for a
simple test case.

• The algorithm proposed in this paper fulfills both the
convergence criterion and the desired distribution con-
trol as it always maintains an ε-Pareto set of the gen-
erated solutions.

5 Possible Extensions

The above baseline algorithms can be extended in several
interesting and useful ways. In the following we discuss
two examples.



5.1 Steering Search by Defining Ranges of
Non-acceptance

In most multi-objective optimization problems, a decision-
maker plays an important role. If the complete search space
is not of importance to a decision-maker, the above algo-
rithm can be used to search along preferred regions. The
concept of ε-dominance will then allow pre-specified pre-
cisions to exist among the preferred Pareto-optimal vectors.

5.2 Fixed Archive Size by Dynamic Adaptation of ε

Instead of predetermining an approximation accuracy ε in
advance, one might ask whether the algorithm would be
able to dynamically adjust its accuracy to always maintain
a set of vectors of a given size. A concept like this is im-
plemented in PAES, where the hyper-grid dividing the ob-
jective space is adapted to the current ranges given by the
non-dominated vectors. However, PAES does not guaran-
tee convergence.

The idea is to start with a minimal ε, which is systemati-
cally increased every time the number of archived vectors
exceeds a predetermined maximum. In Algorithm 2, a sim-
ple modification would be to start with a minimal ε using a
first pair of mutually non-dominated vectors. Afterwards,
the increase of ε is taken care of by joining boxes and dis-
carding all but the oldest element from the new box.

The joining of boxes could be done in several ways, how-
ever for ensuring the convergence property it is important
not to move or translate any of the box boundaries, in other
words, the assignment of the elements to the boxes must
stay the same. A simple implementation could join ev-
ery second box, while it suffices to join only in the di-
mensions where the ranges have been exceeded by the
new element. This will mean that in the worst case an
area will be ε-dominated which is almost twice the size of
the actual Pareto set in each dimension. A more sophisti-
cated approach would join only two boxes at a time, which
would eliminate the over-covering, but involve a compli-
cated book-keeping of several different ε values in each di-
mension.

6 Conclusions

In this study we have addressed the problem of simultane-
ously achieving convergence and distribution quality when
approximating Pareto sets of multi-objective optimization
problems. It was shown that none of the existing multi-
objective evolutionary algorithms is able to accomplish
both tasks.

We proposed the ε-(approximate) Pareto set as a solution
concept for evolutionary multi-objective optimization that

• is theoretically attractive as it helps to construct algo-
rithms with the desired convergence and distribution
properties, and

• is practically important as it works with a solution set
with bounded size and predefined resolution.

We constructed the first archive updating strategy that

• can be used in any iterative search process and

• allows for the desired convergence properties while at
the same time

• guaranteeing an optimal distribution of solutions.

As we have exclusively dealt with the update operator (or
the archiving/selection scheme of the corresponding search
and optimization algorithms) so far, all statements had to
be done with respect to the generated solutions only. In or-
der to make statements about the convergence to the Pareto
set of the whole search space one has of course to include
the generator into the analysis. However, with appropri-
ate assumptions (non-vanishing probability measure for the
generation of all search points at any time step) it is clear
that the probability of not creating a specific point goes to
zero as t goes to infinity. Analogously to (Hanne 1999)
or (Rudolph and Agapie 2000), results on the limit behav-
ior such as almost sure convergence and stochastic conver-
gence to an ε-Pareto set (including all nice features as de-
scribed in this paper) can be derived.

Though the limit behavior might be of mainly theoretical
interest, it is of high practical relevance that now the prob-
lem of partial deterioration, which was imminent even in
the elitist MOEAs, could be solved. Using the proposed
archiving strategy maintaining an ε-Pareto set the user can
be sure to have in addition to a representative, well dis-
tributed approximation also a true elitist algorithm in the
sense that no better solution had been found and subse-
quently lost during the run.

Interesting behaviors occur when there are interactions be-
tween the archive and the generator. Allowing the archive
members to take part in the generating process has empir-
ically been investigated e.g. by Laumanns et al. (2000,
2001) using a more general model and a parameter called
elitism intensity. Now, also the theoretical foundation is
given so that the archived members are really guaranteed
to be the best solutions found.
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