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Abstract. For the first time, a running time analysis of population-
based multi-objective evolutionary algorithms for a discrete optimiza-
tion problem is given. To this end, we define a simple pseudo-Boolean
bi-objective problem (Lotz: leading ones - trailing zeroes) and investi-
gate time required to find the entire set of Pareto-optimal solutions. It
is shown that different multi-objective generalizations of a (1+1) evolu-
tionary algorithm (EA) as well as a simple population-based evolution-
ary multi-objective optimizer (SEMO) need on average at least Θ(n3)
steps to optimize this function. We propose the fair evolutionary multi-
objective optimizer (FEMO) and prove that this algorithm performs a
black box optimization in Θ(n2 log n) function evaluations where n is the
number of binary decision variables.


1 Introduction


Evolutionary Algorithms (EAs) are probabilistic search heuristics that mimic
principles of natural evolution. They are often used to solve optimization prob-
lems, in particular those with multiple objectives, for an overview see e.g. [1].
In multi-objective optimization, the aim is to find or to approximate the set of
Pareto-optimal (or non-dominated) solutions.


Existing theoretic work on convergence in evolutionary multi-objective op-
timization has so far mainly dealt with the limit behavior [9, 10, 12, 11, 4, 5, 14].
Under appropriate conditions for the variation and the selection operators, global
convergence to the Pareto set can be guaranteed in the limit.


In addition to that, we are often interested in a quantitative analysis, specif-
ically the expected running time for a given class of problems and the success
probability for a given optimization time. For single-objective evolutionary al-
gorithms many such results are contained in [8]. For the optimization of pseudo-
Boolean functions an extensive theory has been built up by Wegener et al., see







e.g. [16], Droste, Jansen, and Wegener [2, 3], or for a methodological overview
[15].


Results on the running time of evolutionary algorithms in the multi-objective
case are rare. Scharnow et al. [13] analyze a (1+1)-EA under multiple, non-
conflicting objectives. The purpose of this paper is to present a first analysis of
different population-based multi-objective evolutionary algorithms (MOEAs) on
a two-objective model problem. In particular, the following results are described
in the paper:


– The well known “Leading Ones” problem is generalized to two dimensions.
The new problem class is called Lotz (Leading Ones - Trailing Zeros).
– A simple evolutionary multi-objective optimization algorithm is defined


(SEMO - Simple Evolutionary Multi-objective Optimizer). Its expected run-
ning time on the above problem is shown to be Θ(n3).
– The algorithm is improved by a fair sampling strategy of the population


(FEMO - Fair Evolutionary Multi-objective Optimizer). Its running time on
the above problem is Θ(n2 logn) with a high probability of 1− O(1/n) and
its expected running time is O(n2 logn).


The model problem and its characteristics are introduced in section 2. It
is a multi-objective extension of the “Leading Ones” problem which has been
thoroughly analyzed for example in [8] and [3]. The algorithms are described
and analyzed in sections 3 and 4. They are instances of a steady state (µ + 1)-
EA with variable population size and differ in the manner how the parents are
sampled from the population.


2 The Model Problem


As the example problem for this analysis, we consider the maximization of a
2-dimensional vector valued function, Lotz, which maps n binary decision vari-
ables to 2 objective functions.


Definition 1. The pseudo-Boolean function Lotz : {0, 1}n → IN2 is defined as


Lotz(x1, . . . , xn) =



 n∑


i=1


i∏
j=1


xj ,


n∑
i=1


n∏
j=i


(1 − xj)






The abbreviation Lotz stands for “Leading Ones, Trailing Zeroes” and
means that we want to simultaneously maximize the number of leading ones and
trailing zeroes in a bit-string. The first component, the LeadingOnes function,
has been analyzed in detail in [8] and [3].


As there is no single search point that maximizes both components simul-
taneously, we want to find the whole set of non-dominated points based on
the concept of Pareto optimality, here defined for an m-objective maximization
problem with binary decision variables.
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Fig. 1. Objective space of the Lotz function with n = 8


Definition 2 (Pareto optimality, Pareto set). Let f : X → F where X ⊆
{0, 1}n and F ⊆ IRm. A decision vector x∗ ∈ X is Pareto optimal if there
is no other x ∈ X that dominates x∗. x dominates x∗, denoted as x � x∗ if
fi(x) ≥ fi(x∗) for all i = 1, . . . , m and fi(x) > fi(x∗) for at least one index i. The
set of all Pareto optimal decision vectors X∗ is called Pareto set. F ∗ = f(X∗) is
the set of all Pareto optimal objective vectors and denoted as the Pareto front.


The objective space of this problem can be partitioned into n+1 sets Fi, i =
0, . . . , n (see Fig. 1). The index i corresponds to the sum of both objective values,
i.e. (f1, f2) ∈ Fi if i = f1+f2. Obviously, Fn represents the Pareto front F ∗. The
sub-domains Xi are defined as the sets containing all decision vectors which are
mapped to elements of Fi. They are of the form 1a0 ∗(n−i−2) 10b with a + b = i
for i < n, and 1a0b with a + b = n for Xn.


The cardinality of the Pareto set X∗ = Xn is |Xn| = n + 1 and we also have
n + 1 Pareto optimal objective vectors as |Fn| = n + 1. The next set Fn−1 is
empty. For the remaining sets with i = 0, . . . , n − 2 we have |Fi| = i + 1 and
|Xi| = |Fi| ·2n−2−i. As a consequence, the decision space X contains 2n different
elements, which are mapped to |Fn|+


∑n−2
i=0 |Fi| = 1/2 ·n2 +1/2 ·n+1 = O(n2)


different objective vectors.







2.1 How Difficult Is It to Find the Whole Pareto Set?


How long does it take to optimize the Lotz function? Droste et al. [3] have
proved that the expected running time of a (1+1)-EA on LeadingOnes is
Θ(n2). Using the same algorithm with an appropriate generalization of the ac-
ceptance criterion (either accepting only dominating offspring or by using a
weighted sum as a scalar surrogate objective) will certainly lead to finding one
element of the Pareto set in the same amount of time.


To find all different Pareto optimal points with such a (1+1) EA we can
consider the multi-start option, i.e. to run to the EA several times, and collect
all non-dominated solutions in an archive. For the acceptance criterion based on
the dominance relation, the random variable describing the number of ones in
the final solution of each single run follows a binomial distribution with p = 0.5.
Hence the probability of finding the “outer” points of the Pareto set decreases
exponentially. This would mean that the running time of this strategy until all
Pareto optimal points are found is exponentially large in n.


Another possibility would be to use the multi-start option together with a
weighted sum of the objective values. However, an appropriate choice of the
weights is very difficult. In our case, equal weights would lead to the same sit-
uation as before, with a very low probability to reach the outer points. Any
other selection of weights will let the sequence of search points converge to one
of the outer points of the Pareto set. The remaining points must be found “on
the way”, but the probability of such events is not easy to calculate. Even if we
could supply n + 1 different weights corresponding to each of the n + 1 Pareto
optimal points, this strategy would still need (n + 1) · Θ(n2) = Θ(n3) steps.


Contrary to the multi-start option, one could relax the acceptance criterion
such that only dominated offspring are rejected. This allows to accept other
Pareto-optimal solutions once an element of the Pareto set has been found and
one could continue this process until all Pareto-optimal solutions have been
visited at least once. This concept has been implemented in the PAES algorithm
[6]. It finally leads to a random walk on or around the Pareto set, and the running
time of the algorithm could be calculated based on the cover time of the random
walk. A random walk on the path given by the n + 1 Pareto-optimal solutions
has a cover time of Θ(n2). As each move of this random walk needs a successful
mutation, whose probability is bounded above by 2/n, the whole process again
needs Θ(n3) steps.


A last possibility would be to use a simple strategy known from classical
multi-objective function optimization. In this case, we optimize only one objec-
tive, e.g. the number of leading ones, and constrain the other objective to be
strictly larger than its value obtained in the previous optimization run. There-
fore, we find all n +1 Pareto vectors in n +1 runs of a single-objective EA with
an additional constraint. At the best, this strategy again needs Θ(n3) steps.


The above discussion indicates that a (1+1) strategy may not be the best
approach for solving multi-objective optimization problems. Moreover, most of
the current multi-objective optimization algorithms use the concept of an archive
that maintains a set of Pareto optimal vectors of all decision vectors visited so







Algorithm 1 Simple Evolutionary Multi-objective Optimizer (SEMO)
1: Choose an initial individual x uniformly from X = {0, 1}n
2: P ← {x}
3: loop
4: Select one element x out of P uniformly.
5: Create offspring x′ by flipping a randomly chosen bit.
6: P ← P \ {z ∈ P |x′ � z}
7: if � ∃z ∈ P such that (z � x′ ∨ f(z) = f(x′)) then
8: P ← P ∪ {x′}
9: end if
10: end loop


far. This indicates that the concept of a population is vital in multi-objective
evolutionary optimization. In the next sections, we propose and analyze two
simple population-based steady state EAs.


3 A Simple Evolutionary Multi-objective Optimizer
(SEMO)


At first, we analyze a simple population-based multi-objective EA. This algo-
rithm contains a population of variable size that stores all non-dominated indi-
viduals. From this population a parent is drawn according to some probability
distribution and mutated by flipping a randomly chosen bit. For Algorithm 1 we
consider a uniform distribution for selecting the parent.


An appropriate archiving strategy [7] is assumed to prevent the population
from growing exponentially. For this study it suffices to ensure that a solution
is only accepted if it has different objective values (line 7).


3.1 Running Time Analysis of SEMO Applied to Lotz


The running time of an algorithm equals the number of necessary evaluations of
the objective function. For the analysis we divide the run of the SEMO into two
distinct phases: the first phase lasts until the first Pareto-optimal individual has
entered the population, and the second phase ends when the whole Pareto set
has been found.


Lemma 1 (Expected running time for phase 1). The expected running
time of Alg. 1 until the first Pareto-optimal point is found is O(n2).


Proof. Note that during this first phase the population will consist of one indi-
vidual only, as a mutation changing the objective values yields either a dominat-
ing or a dominated individual. Hence, if an offspring is accepted, it will replace
the parent from which it was produced. We consider the partition of the search
space into distinct subsets Xi as defined in section 2 and note that from any







subset Xi only points in Xj , j > i are accepted. As there is always a one-bit mu-
tation leading to the next subset, the probability of improvement is at least 1/n.
As there are at most n − 1 such steps necessary (Xn−1 is empty) the expected
time is at most n2. �


Lemma 2 (Expected running time for phase 2). After the first Pareto-
optimal point is found, the expected running time of Alg. 1 until all Pareto-
optimal points are found is Θ(n3) and the probability that the running time is
less than n3/c(n) is less than (8e/c(n))n/2.


Proof. We partition this phase into n−1 different sub-phases. Sub-phase i lasts
from the time when i − 1 Pareto-optimal solutions have been found to the time
when the next solution is found. Ti is a random variable denoting the duration of
sub-phase i and the random variable T is the sum of these times. As we always
have a contiguous subset of the Pareto set, only the individuals corresponding
to the outer points of this subset can create a new Pareto-optimal point. The
probability ps(i) to sample such a candidate in phase i is at least 1/i and at
most 2/i. A subsequent mutation has a success probability of at least 1/n and
at most 2/n. Hence, ni/4 ≤ E(Ti) ≤ ni. As T =


∑n−1
i=1 Ti, 1/8n3 − 1/8n2 ≤


E(T ) ≤ 1/2n3 − 1/2n2.
To derive a lower bound of the running time which holds with a high probability
we consider the run after n/2 Pareto-optimal solutions have already been found.
In this case the probability to find a new Pareto-optimal solution is at most
4/n2. If we allow n3/c(n) trials, the expected number of successes S is at most
4n/c(n). With Chernoff’s inequality, the probability that we reach the required
n/2 + 1 successes to find the remaining solutions can be bounded as


P (S > n/2) ≤
(


e
1
8 c(n)−1


(1
8c(n))


1
8 c(n)


)4n/c(n)


≤
(


8e
c(n)


) 1
2n


�
From the concatenation of the two phases the following Corollary can be derived.


Corollary 1 (Expected running time Alg. 1). The expected running time
of Alg. 1 until all Pareto-optimal points are found is Θ(n3).


For this problem, the simple population-based SEMO is at least as good as any
potential multi-objective adaptation of the (1+1)-EA discussed in the previous
section. But is there room for further improvement? As it takes about n2 steps
to find one Pareto-optimal point, there is no hope to find the whole Pareto set
in less time. But the time to generate all Pareto-optimal points can be reduced
substantially.


4 The Fair Evolutionary Multi-objective Optimizer
(FEMO)


The main weakness of the SEMO for the optimization problem under consider-
ation lies in the fact that a large number of mutations are allocated to parents







Algorithm 2 Fair Evolutionary Multi-objective Optimizer (FEMO)
1: Choose an initial individual x uniformly from X = {0, 1}n
2: w(x)← 0 {Initialize offspring count}
3: P ← {x}
4: loop
5: Select one element x out of {y ∈ P |w(y) ≤ w(z) ∀z ∈ P} uniformly.
6: w(x)← w(x) + 1 {Increment offspring count}
7: Create offspring x′ by flipping a randomly chosen bit.
8: P ← P \ {z ∈ P |x′ � z}
9: if � ∃z ∈ P such that (z � x′ ∨ f(z) = f(x′)) then
10: P ← P ∪ {x′}
11: w(x)← 0 {Initialize offspring count}
12: end if
13: end loop


whose neighborhood has already been explored sufficiently. On the other hand,
an optimal sampling algorithm would use always the most promising parent at
the border of the current population. Of course, this information is not available
in a black box optimization scenario.


The uniform sampling leads to a situation, where the Pareto-optimal indi-
viduals have been sampled unevenly depending on when each individual entered
the population. The following fair sampling strategy guarantees that the end all
individuals receive about the same number of samples.


Algorithm 2 implements this strategy by counting the number of offspring
each individual produces (line 6). The sampling procedure deterministically
chooses the individual which has produced the least number of offspring so far,
ties are broken randomly (line 5).


4.1 Running Time Analysis of FEMO Applied to Lotz


For the analysis of Algorithm 2 we focus only on the second phase as the first
phase is identical to the simple Algorithm 1 described before.


Once the first two Pareto-optimal points are found, there is exactly one
possible parent for each of the remaining n − 1 points. We are interested in
the number of mutations that must be allocated to each of these n − 1 parents
in order to have at least one successful mutation each that leads to the desired
child. Lemma 3 and 4 provide upper and lower bounds on the probability that
a certain number of mutations per parent are sufficient. In Theorem 1 these
probabilities are used to bound the running time of the FEMO algorithm.


Lemma 3 (Minimal success probability). Let p be the success probability
for each single mutation and c > 0 an arbitrary constant. With probability at
least 1 − n1−c all n − 1 remaining offspring have been constructed in at most
c · 1/p · logn mutation trials for each corresponding parent.







Proof. For each individual, the probability of having at least c · 1/p · logn non-
successful mutation is bounded above by


(1 − p)c·1/p·log n = (1 − 1
1/p


)c/p log n = (1 − 1
1/p


)1/p
c log n


≤
(


1
e


)c log n


=
1
nc


There are n−1 individuals that must be produced with the given number of trials.
These events are independent, so the probability that at least one individual
needs more than c/p · logn trials is bounded above by n−1


nc ≤ n1−c. �


Lemma 4 (Maximal success probability). Let k ∈ {1, . . . , n}, a = k/n,
and c > 0 be an arbitrary constant. The probability that k = a ·n individuals are
produced in c · 1/p · logn mutation steps each is not larger than (ea)−n(1−c−c/n)


.


Proof. The probability that a parent has created a certain offspring within the
first t = c · 1/p · logn trials is 1 − (1 − p)t. The probability that this happens
independently for a selection of k such pairs can thus be bounded as


(1 − (1 − p)t)k ≤ (1 − 1


nc n+1
n


)an ≤ e
− an


nc(n+1)/n = (ea)−n(1−c−c/n)


�


Now we can translate the number of mutations that are needed into the running
time of Algorithm 2.


Theorem 1 (Running time bounds).With probability at least 1−O(1/n) the
number of objective function evaluations T Algorithm 2 needs from the discovery
of the first two Pareto-optimal points until the whole Pareto set has been found
lies in the interval [1/4 · 1/p · n logn, 2 · 1/p · n logn]. Hence, Prob{T = Θ(1/p ·
n logn)} = 1 − O(1/n). Furthermore, E(T ) = O(1/p · n logn).


Proof. Let the Pareto-optimal points be indexed according to the order in which
they have entered the set P . Let k ∈ {0, . . . , n} be the index of the individual that
required the largest number of mutations to be produced. We apply Lemma 3
with c = 2 and notice that this individual k did not need more than 2/p · logn
trials with probability 1− O(1/n).
What remains to be shown for the upper bound is that no node will be sampled
more than t times during the algorithm. This can be guaranteed since there is
always a candidate x ∈ P with w(x) ≤ t (the element that has most recently
been added to P ). Hence, any element whose weight has reached t will never be
sampled again. As there are n such elements, each of which is sampled at most t
times, the total number of samples (steps) the algorithm takes does not exceed
T = n · t = 2 · 1/p · n logn.


For the lower bound we apply Lemma 4 with c = 1/2 and k = n/2. With a


probability of 1−√
e
−n(0.5−0.5/n)


there is an individual in the second half which
needs at least 1/2 · 1/p · logn trials. Hence, all individuals in the first half have







been sampled at least 1/2 · 1/p · logn − 1 times each. Of course, all individuals
in the second half must be sampled at least once. The summation over all nodes
gives a total number of samples of at least 1/4 · 1/p · n logn with probability
1 − O(1/n).


Using the probability bound from Lemma 3 the expected running time can
be bounded as


(1/p · n logn)−1E(T ) ≤ 1 · P{0 ≤ T < 1}+ 2 · P{1 ≤ T < 2}+ . . .


≤ 2 +
∞∑


c=3


c · P{T ≥ k − 1}


≤ 2 +
∞∑


c=1


(c + 2)n−c


≤ 2 +
n


(n − 1)2
+


2
n − 1


.


Hence, E(T ) = O(1/p · n logn). �


As before, the time to find the first one (or two) elements of the Pareto set can
be neglected and the total running time is mainly determined by Theorem 1. For
our case the mutation success probability is p = 1/n, which leads with a high
probability to a running time of Θ(n2 logn). This is a considerable improvement
in comparison to any multi-start strategy of a single objective EA and to the
SEMO algorithm.


5 Concluding Remarks


In this paper we have given first analytical results on the running time of evolu-
tionary algorithms for multi-objective optimization problems. We have defined
a bi-objective model problem and discussed different concepts of how to find the
whole set of Pareto-optimal solutions for this problem.


For a simple steady-state evolutionary multi-objective optimizer (SEMO) a
running time of Θ(n3) was proven, which is at least as good as any strategy based
on using a scalar surrogate objective function or multi-objective adaptations of
the (1+1)-EA.


We proposed FEMO, a new evolutionary multi-objective optimizer involv-
ing an archive or population and a fair sampling strategy. This algorithm im-
proves the running time substantially as it is able to find the whole Pareto set
in Θ(n2 logn) steps.


The FEMO algorithm uses information collected during the run and stored in
a population. For the first time it could be shown analytically that this concept
of a population-based EA leads to a provable advantage on a multi-objective
optimization problem compared to standard approaches based on scalarizing
functions.


In addition to its good running time behavior, the algorithm is simple and
problem- and representation-independent so that it might be easily and success-
fully applied to practical problems as well.
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