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Abstract
Over the past few years, the research on evolutionary algorithms has demonstrated
their niche in solving multi-objective optimization problems, where the goal is to
find a number of Pareto-optimal solutions in a single simulation run. Many stud-
ies have depicted different ways evolutionary algorithms can progress towards the
Pareto-optimal set with a widely spread distribution of solutions. However, none of
the multi-objective evolutionary algorithms (MOEAs) has a proof of convergence to
the true Pareto-optimal solutions with a wide diversity among the solutions. In this
paper we discuss why a number of earlier MOEAs do not have such properties. Based
on the concept of ε-dominance new archiving strategies are proposed that overcome
this fundamental problem and provably lead to MOEAs which have both the desired
convergence and distribution properties. A number of modifications to the baseline
algorithm are also suggested. The concept of ε-dominance introduced in this paper is
practical and should make the proposed algorithms useful to researchers and practi-
tioners alike.

Keywords
Evolutionary algorithms, multi-objective optimization, convergence, preservation of
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1 Introduction

After the doctoral study of Schaffer (1984) on the vector evaluated genetic algorithm
(VEGA), Goldberg’s suggestion of the use of non-dominated sorting along with a nich-
ing mechanism (1989) generated an overwhelming interest on multi-objective evolu-
tionary algorithms (MOEAs). Initial MOEAs – MOGA (Fonseca and Fleming 1993),
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NSGA (Srinivas and Deb 1994), NPGA (Horn et al. 1994) – used Goldberg’s suggestion
in a straightforward manner: (i) the fitness of a solution was assigned using the extent
of its domination in the population and (ii) the diversity among solutions were preserved
using a niching strategy. The above three studies have shown that different ways of im-
plementing the above two tasks can all result in successful MOEAs. However, in order
to ensure convergence to the true Pareto-optimal solutions, an elite-preservation op-
erator was absent in those algorithms. Thus, the latter MOEAs mainly concentrated
on how elitism could be introduced in an MOEA. This resulted in a number of ad-
vanced algorithms – SPEA (Zitzler and Thiele 1999), PAES (Knowles and Corne 2000),
NSGA-II (Deb et al. 2000), and others. With the development of better algorithms,
multi-objective evolutionary algorithms have also been used in a number of interesting
application case studies (Zitzler et al. 2001).

What is severely lacking are studies related to theoretical convergence analy-
sis with guaranteed spread of solutions. In this regard, Rudolph (1998b, 2001) and
Rudolph and Agapie (2000) suggested a series of algorithms, all of which guarantee
convergence, but do not address the following two aspects:

1. The convergent algorithms do not guarantee maintaining a spread of solutions.

2. The algorithms do not specify any time complexity for their convergence to the
true Pareto-optimal set.

Although the second task is difficult to achieve even for simple objective functions (see
Laumanns et al. 2002) and also in the single-objective case, the first task is as important
as the task of converging to the true Pareto-optimal set. Deb (2001) suggested a steady-
state MOEA which attempts to maintain spread while attempting to converge to the
true Pareto-optimal front. But there is no proof for its convergence properties. Knowles
(2002) has analyzed two further possibilities, metric-based archiving and adaptive grid
archiving. The metric-based strategy requires a function that assigns a scalar value to
each possible approximation set reflecting its quality and fulfilling certain monotonicity
conditions. Convergence is then defined as the achievement of a local optimum of the
quality function. The adaptive grid archiving strategy implemented in PAES provably
maintains solutions in some ’critical’ regions of the Pareto set once they have been
found, but convergence can only be guaranteed for the solutions at the extremes of the
Pareto set.

In this paper, we propose archiving/selection strategies that guarantee at the same
time progress towards the Pareto-optimal set and a covering of the whole range of
the non-dominated solutions. The algorithms maintain a finite-sized archive of non-
dominated solutions which gets iteratively updated in the presence of a new solution
based on the concept of ε-dominance. The use of ε-dominance also makes the algo-
rithms practical by allowing a decision-maker to control the resolution of the Pareto
set approximation by choosing an appropriate ε value. The archiving algorithms sug-
gested here are generic and enable convergence with a guaranteed spread of solutions.

In the remainder of the paper, we state the general structure of an iterative archive-
based search procedure which is usually used for multi-objective optimization. There-
after, we briefly review the existing MOEAs and discuss why they do not have the the-
oretical convergence as well as the diversity-preservation properties at the same time.
In section 4 we formally define our concepts of ε-dominance and the corresponding
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ε-Pareto-optimal set as well as the new selection algorithms. Section 5 presents some
simulation results to demonstrate the behavior of the new algorithms and to highlight
the important differences to the existing approaches. In section 6 various practically
relevant extensions to the new approach are outlined and discussed. The proposed
convergent MOEAs are interesting and should make MOEAs more useful and attrac-
tive to both theoreticians and practitioners in the coming years.

2 Structure of an Iterative Multi-Objective Search Algorithm

The purpose of this section is to informally describe the problem we are dealing with.
To this end, let us first give a template for a large class of iterative search procedures
which are characterized by the generation of a sequence of search points and a finite
memory.

The purpose of such algorithms is to find or approximate the Pareto set of the
image set F of a vector valued function h : X → F defined over some domain X .
In the context of multi-objective optimization, h, F and X are often called the multi-
valued objective function, the objective space and the decision space, respectively.

Algorithm 1 Iterative search procedure
1: t := 0
2: A(0) := ∅
3: while terminate(A(t), t) = false do
4: t := t + 1
5: f (t) := generate() {generates new search point}
6: A(t) := update(A(t−1), f (t)) {updates archive}
7: end while
8: Output: A(t)

An abstract description of a generic iterative search algorithm is given in Algo-
rithm 1. The integer t denotes the iteration count, the n-dimensional vector f (t) ∈ F is
the sample generated at iteration t and the set A(t) will be called the archive at itera-
tion t and should contain a representative subset of the samples in the objective space
F generated so far. To simplify the notation, we represent samples by m-dimensional
real vectors f where each coordinate represents one of the objective values. Additional
information about the corresponding decision values could be associated to f , but will
be of no concern in this paper.

The purpose of the function generate is to generate a new solution in each iteration
t, possibly using the contents of the old archive set A(t−1). The function update gets
the new solution f (t) and the old archive set A(t−1) and determines the updated one,
namely A(t). In general, the purpose of this sample storage is to gather ’useful’ infor-
mation about the underlying search problem during the run. Its use is usually two-fold:
On the one hand it is used to store the ’best’ solutions found so far, on the other hand
the search operator exploits this information to steer the search to promising regions.

This algorithm could easily be viewed as an evolutionary algorithm when the
generate operator is associated with variation (recombination and mutation). How-
ever, we would like to point out that all following investigations are equally valid for
any kind of iterative process which can be described as Algorithm 1 and used for ap-
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proximating the Pareto set of multi-objective optimization problems, e.g. simulated
annealing or tabu search.

There are several reasons, why the archive A(t) should be of constant size, inde-
pendent of the number of iterations t. At first, the computation time grows with the
number of archived solutions, as for example the function generate may use it for guid-
ing the search, or it may simply be impossible to store all solutions as the physical
memory is always finite. In addition, the value of presenting such a large set of so-
lutions to a decision maker is doubtful in the context of decision support, instead one
should provide him with a set of the best representative samples. Finally, in limiting the
solution set preference information could be used to steer the process to certain parts
of the search space.

generate update
vector f

archive A

one sample per iteration

finite memory

finite size
representative subset of best samples

Figure 1: Representation of the generic search algorithm 1.

The paper solely deals with the function update, i.e. with an appropriate generation
of the archive. Because of the reasons described above, the corresponding algorithm
should have the following properties, see also Fig. 1:

• The algorithm is provided with one sample f (t) at each iteration, i.e. one at a time.

• It operates with finite memory. In particular, it cannot store all the samples sub-
mitted until iteration t.

• The algorithm should maintain a set A(t) of a limited size which is independent
of the iteration count t. The set should contain a representative subset of the best
samples f (1), ..., f (t) received so far.

A clear definition of the term representative subset of the best samples will be given
in Section 4.1. But according to the common notion of optimality in multi-objective op-
timization and the above discussion it should be apparent that the archive A(t) should
contain a subset of all Pareto vectors of the samples generated until iteration t. In ad-
dition, these selected Pareto vectors should represent the diversity of all Pareto vectors
generated so far.

We will construct such an algorithm in Sections 4.2 and 4.3. Beforehand, existing
approaches will be described.
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3 Existing Multi-Objective Algorithms and Their Limitations

Here, we discuss a number of archiving strategies that are suggested in the context of
multi-objective evolutionary algorithms (MOEAs). They can be broadly categorized
into two categories depending on whether their focus lies on convergence or distribu-
tion quality.

3.1 Algorithms for Guaranteed Convergence

Theoretic work on convergence in evolutionary multi-objective optimization is mainly
due to Rudolph (1998a, 1998b, 2001), Rudolph and Agapie (2000), and Hanne (1999,
2001). The corresponding concepts and their algorithms are described in the following.

Efficiency Preservation and the Problem of Deterioration Hanne (1999) suggested
and implemented (2001) a selection strategy for MOEAs based on the concept of “(neg-
ative) efficiency preservation” as a multi-objective generalization of the “plus” (elitist)
selection in evolution strategies. He defines efficiency preservation as the property
of only accepting new solutions which dominate at least one of the current solutions.
Negative efficiency preservation is given when a solution is discarded only if a dom-
inating solution is accepted in return. Both properties are mutually independent, and
sufficient to preclude the problem of deterioration. Deterioration occurs, when elements
of a solution set at a given time are dominated by a solution set the algorithm main-
tained some time before. This can happen using the standard Pareto-based selection
schemes even under elitism, as well as with virtually all archiving schemes used in the
advanced state-of-the-art MOEAs, as will be described shortly.

In Hanne (1999) a convergence proof for a (µ+ λ)-MOEA with Gaussian mutation
distributions over a compact real search space has been enabled by the application of a
(negative) efficiency preservation selection scheme. A disadvantage of this approach,
no assumptions can be given as to the distribution of solutions, since with both effi-
ciency and negative efficiency preservation arbitrary regions of the objective space –
and hence of the Pareto set – can become unreachable.

Rudolph’s and Agapie’s Elitist MOEAs Based on Rudolph (1998a), Rudolph and
Agapie (2000) suggested MOEAs with a fixed-size archive, where a sophisticated se-
lection process precludes the problem of deterioration. They have shown that this al-
gorithm with variation operators having a positive transition probability matrix guar-
antee convergence to the Pareto-optimal set. However, when all archive members are
Pareto-optimal, the algorithm does not allow any new Pareto-optimal solution to enter
the archive. Thus, although the algorithms guarantee convergence to the true Pareto-
optimal front, they do not guarantee a good distribution of Pareto-optimal solutions.

3.2 Elitist MOEAs with Focus on the Distribution Quality

Recently a number of elitist MOEAs have been proposed which especially address the
diversity of the archived solutions by different mechanisms.

Pareto-Archived Evolution Strategy (PAES) Knowles and Corne (2000) suggested a
simple elitist MOEA using a single parent, single child (1 + 1)-evolutionary algorithm
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called Pareto-Archived Evolution Strategy (PAES). If a new solution is not dominated
by any archive member it is included in the archive, deleting in turn all members that
it dominates. If the archive would exceed its maximum size, the acceptance of new
solutions is decided by a histogram-like density measure over a hyper-grid division of
the objective space. This archiving strategy is similar to the one proposed by Kursawe
(1990, 1991), who already used an adaptive distance measure to maintain a good spread
of non-dominated solutions in a fixed-size archive.

Strength Pareto Evolutionary Algorithm (SPEA) Zitzler and Thiele (1999) have sug-
gested an elitist MOEA using the concept of non-domination and a secondary pop-
ulation of non-dominated points. After every generation, the secondary population
is updated with the non-dominated offspring, while all dominated elements are dis-
carded. If this archive exceeds its maximum size, a clustering mechanism groups all
currently non-dominated solutions into a pre-defined number of clusters and picks a
representative solution from each cluster, thereby ensuring diversity among the exter-
nal population members.

Elitist Non-Dominated Sorting GA (NSGA-II) In NSGA-II (Deb et al. 2000), the
parent and offspring population (each of size N ) are combined and evaluated using
(i) a fast non-dominated sorting approach, (ii) an elitist approach, and (iii) an efficient
crowding approach. When more than N population members of the combined popu-
lation belong to the non-dominated set, only those that are maximally apart from their
neighbors according to the crowding measure are chosen.

This way, like PAES and SPEA, an existing non-dominated solution may get replaced
by another, since selection is then based only on the specific diversity or density mea-
sure or on the clustering procedure. In a succession of these steps, deterioration possi-
bly occurs, thus convergence can no longer be guaranteed for any of these algorithms.

3.3 Limitations

It is clear from the above discussion that the above elitist MOEAs cannot achieve both
tasks simultaneously, either they enable convergence or they focus on a good distri-
bution of solutions. The convergence criterion can easily be fulfilled by dominance
preservation, however, a pure implementation of this approach leaves the distribu-
tion aspect unsolved. All algorithms focusing on a good distribution are in danger of
deterioration though. The diversity-preservation operator used in each of the above
algorithms are primarily geared to maintain spread among solutions. While doing so,
the algorithm has no way of knowing which solutions are already Pareto-optimal and
which are not Pareto-optimal. The diversity-preservation operator always emphasizes
the less crowded regions of the non-dominated solutions.

4 Algorithms for Convergence and Diversity

Before we present the update functions for finding a diverse set of Pareto-optimal so-
lutions, we define some terminology.
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4.1 Concept of Pareto Set Approximation

In this section we define relevant concepts of dominance and (approximate) Pareto
sets. Without loss of generality, we assume a normalized and positive objective space
in the following for notational convenience. The algorithms presented in this paper
assume that all objectives are to be maximized. However, either by using the duality
principle (Deb 2001) or by simple modifications to the domination definitions, these
algorithms can be used to handle minimization or combined minimization and maxi-
mization problems.

Objective vectors are compared according to the dominance relation defined below
and displayed in Fig. 2 (left).

f 1

f 2 f

dominated by f

f 2 f

-dominated by f�

f 1
(1+ )�f 1

(1+ )� f 2

Figure 2: Graphs visualizing the concepts of dominance (left) and ε-dominance (right).

Definition 1 (Dominance relation)
Let f, g ∈ IRm. Then f is said to dominate g, denoted as f � g, iff

1. ∀i ∈ {1, . . . ,m} : fi ≥ gi

2. ∃j ∈ {1, . . . ,m} : fj > gj

Based on the concept of dominance, the Pareto set can be defined as follows.

Definition 2 (Pareto set)
Let F ⊆ IRm be a set of vectors. Then the Pareto set F ∗ of F is defined as follows: F ∗

contains all vectors g ∈ F which are not dominated by any vector f ∈ F , i.e.

F ∗ := {g ∈ F |  ∃f ∈ F : f � g} (1)

Vectors in F ∗ are called Pareto vectors of F . The set of all Pareto sets of F is denoted as
P ∗(F ).

From the above definition we can easily deduce that any vector g ∈ F \F ∗ is dominated
by at least one f ∈ F ∗, i.e.

∀g ∈ F \ F ∗ : ∃f ∈ F ∗ such that f � g. (2)
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Moreover, for a given set F , the set F ∗ is unique. Therefore, we have P ∗(F ) = {F ∗}.
For many sets F , the Pareto set F ∗ is of substantial size. Thus, the numerical deter-
mination of F ∗ is prohibitive, and F ∗ as a result of an optimization is questionable.
Moreover, it is not clear at all what a decision maker can do with such a large result of
an optimization run. What would be more desirable is an approximation of F ∗ which
approximately dominates all elements of F and is of (polynomially) bounded size. This
set can then be used by a decision maker to determine interesting regions of the deci-
sion and objective space which can be explored in further optimization runs. Next, we
define a generalization of the dominance relation as visualized in Fig. 2 (right).

Definition 3 (ε-Dominance)
Let f, g ∈ IR+m

. Then f is said to ε-dominate g for some ε > 0, denoted as f �ε g, iff
for all i ∈ {1, . . . ,m}

(1 + ε) · fi ≥ gi. (3)

Definition 4 (ε-approximate Pareto set)
Let F ⊆ IR+m

be a set of vectors and ε > 0. Then a set Fε is called an ε-approximate
Pareto set of F , if any vector g ∈ F is ε-dominated by at least one vector f ∈ Fε, i.e.

∀g ∈ F : ∃f ∈ Fε such that f �ε g. (4)

The set of all ε-approximate Pareto sets of F is denoted as Pε(F ).

Of course, the set Fε is not unique. Many different concepts for ε-efficiency1 and the
corresponding Pareto set approximations exist in the operations research literature, a
survey is given by Helbig and Pateva (1994). As most of the concepts deal with infinite
sets, they are not practical for our purpose of producing and maintaining a representa-
tive subset. Nevertheless they are of theoretical interest and have nice properties which
can for instance be used in convergence proofs, see Hanne (1999) for an application in
MOEAs.

Using discrete ε-approximations of the Pareto set was suggested simultaneously
by Evtushenko and Potapov (1987), Reuter (1990), and Ruhe and Fruhwirt (1990). As
in our approach, each Pareto-optimal point is approximately dominated by some point
of the representative set. The first two papers use absolute deviation (additive ε, see
below) and the third relative deviation (multiplicative ε as above), but they are not
concerned with the size of the representative set in the general case.

Recently, Papadimitriou and Yannakakis (2000) and Erlebach et al. (2001) have
pointed out that under certain assumptions there is always an approximate Pareto set
whose size is polynomial in the length of the encoded input. This can be achieved by
placing a hyper-grid in the objective space using the coordinates 1, (1 + ε), (1 + ε)2, . . .
for each objective. As it suffices to have one representative solution in each grid cell
and to have only non-dominated cells occupied, it can be seen that for any finite ε and
any set F with bounded vectors f , i.e. 1 ≤ fi ≤ K for all i ∈ {1, . . . ,m}, there exists a
set Fε containing

|Fε| ≤
(

logK
log (1 + ε)

)m−1

(5)

1The terms ”efficient” and ”Pareto-optimal” can be used synonymously. While the former appears to be
more frequent in operations research literature, we generally use the latter as it is more common in the field
of evolutionary computation.
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vectors. A proof will be given in connection with Alg. 3 in section 4.3.

Note that the concept of approximation can also be used if other similar definitions
of ε-dominance are used, e.g. the following additive approximation

εi + fi ≥ gi ∀i ∈ {1, . . . ,m} (6)

where εi are constants, separately defined for each coordinate. In this case there exist
ε-approximate Pareto sets whose size can be bounded as follows:

|Fε| ≤
m−1∏
j=1

K − 1
εi

(7)

where 1 ≤ fi ≤ K , K ≥ εi for all i ∈ {1, . . . ,m}. A further refinement of the concept of
ε-approximate Pareto sets leads to the following definition.

Definition 5 (ε-Pareto set)
Let F ⊆ IR+m

be a set of vectors and ε > 0. Then a set F ∗
ε ⊆ F is called an ε-Pareto set

of F if

1. F ∗
ε is an ε-approximate Pareto set of F , i.e. F ∗

ε ∈ Pε(F ), and

2. F ∗
ε contains Pareto points of F only, i.e. F ∗

ε ⊆ F ∗.

The set of all ε-Pareto sets of F is denoted as P ∗
ε (F ).

The above defined concepts are visualized in Fig. 3. An ε-Pareto set F ∗
ε not only ε-

dominates all vectors in F , but also consists of Pareto-optimal vectors of F only, there-
fore we have P ∗

ε (F ) ⊆ Pε(F ).

f2

f1

F*

�F �F*

f2

f1

F*

Figure 3: Graphs visualizing the concepts of ε-approximate Pareto set (left) and ε-Pareto
set (right).

Since finding the Pareto set of an arbitrary set F is usually not practical because
of its size, one needs to be less ambitious in general. Therefore, the ε-approximate
Pareto set is a practical solution concept as it not only represents all vectors F but also
consists of a smaller number of elements. Of course, a ε-Pareto set is more attractive as
it consists of Pareto vectors only.
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Convergence and diversity can be defined in various ways. Here, we consider
the objective space only. According to Definition 3, the ε value stands for a relative
“tolerance” that we allow for the objective values. In contrast, using equation (6) we
would allow a constant additive (absolute) tolerance.

The choice of the ε value is application specific: A decision maker should choose a
type and magnitude that suits the (physical) meaning of the objective values best. The
ε value further determines the maximal size of the archive according to equations (5)
and (7).

4.2 Maintaining an ε-approximate Pareto Set

We first present an update function that leads to the maintenance of an ε-approximate
Pareto set. The idea is that new points are only accepted if they are not ε-dominated by
any other point of the current archive. If a point is accepted, all dominated points are
removed.

Algorithm 2 update function for ε-approximate Pareto set
1: Input: A, f
2: if ∃f ′ ∈ A such that f ′ �ε f then
3: A′ := A
4: else
5: D := {f ′ ∈ A|f � f ′}
6: A′ := A ∪ {f} \D
7: end if
8: Output: A′

Theorem 1
Let F (t) =

⋃t
j=1 f

(j), 1 ≤ f
(j)
i ≤ K, be the set of all vectors created in Algorithm 1 and

given to the update function as defined in Algorithm 2. Then A(t) is an ε-approximate
Pareto set of F (t) with bounded size, i.e.

1. A(t) ∈ Pε(F (t))

2. |A(t)| ≤
(

log K
log (1+ε)

)m

Proof.

1. Suppose the algorithm is not correct, i.e. A(t) ∈ Pε(F (t)) for some t. According to
Def. 4 this occurs only if some f = f (τ), τ ≤ t is not ε-dominated by any member
of A(t) and is not in A(t).

For f = f (τ) not being in A(t), it can either have been rejected at t = τ or accepted at
t = τ and removed later on. Removal, however, only takes place when some new
f ′ enters A which dominates f (line 6). Since the dominance relation is transitive,
and since it implies ε-dominance, there will always be an element in A which ε-
dominates f , which contradicts the assumption. On the other hand, f will only be
rejected if there is another f ′ ∈ A(τ) which ε-dominates f (line 2) and – with the
same argument as before – can only be replaced by accepting elements which also
ε-dominate f .

10 Evolutionary Computation Volume 10, Number 3
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2. Every f ∈ A(t) defines a hyper-rectangle between f and (1 + ε) · f where no other
element of A(t) can exist because dominated elements are always deleted from
the set. Furthermore, these areas do not overlap since this would mean that the
two corresponding points ε-dominate each other, which is precluded by the accep-
tance criterion. The maximum number of non-overlapping hyper-rectangles in the

whole objective space is given by
(

log K
log (1+ε)

)m

.

✷

The algorithms VV and PR of (Rudolph and Agapie 2000) can be viewed as special cases
of this algorithm for ε → 0. In the limit, the ε-dominance becomes the normal domi-
nance relation, and the algorithm will always maintain a set of only non-dominated
vectors. Of course, according to the previous theorem, the size of this set might grow
to infinity as t → ∞.

4.3 Maintaining an ε-Pareto Set

In a next step we would like to guarantee – in addition to a minimal distance between
points – that the points in A(t) are Pareto points of all vectors generated so far. The
following Algorithm 3 has a two level concept. On the coarse level, the search space is
discretized by a division into boxes (see Algorithm 4), where each vector uniquely be-
longs to one box. Using a generalized dominance relation on these boxes, the algorithm
always maintains a set of non-dominated boxes, thus guaranteeing the ε-approximation
property. On the fine level at most one element is kept in each box. Within a box, each
representative vector can only be replaced by a dominating one (similar to Agapie’s
and Rudolph’s algorithm), thus guaranteeing convergence.

Algorithm 3 update function for ε-Pareto set
1: Input: A, f
2: D := {f ′ ∈ A|box(f) � box(f ′)}
3: if D = ∅ then
4: A′ := A ∪ {f} \D
5: else if ∃f ′ : (box(f ′) = box(f) ∧ f � f ′) then
6: A′ := A ∪ {f} \ {f ′}
7: else if  ∃f ′ : box(f ′) = box(f) ∨ box(f ′) � box(f) then
8: A′ := A ∪ {f}
9: else

10: A′ := A
11: end if
12: Output: A′

Now, we can prove the convergence of the above update strategy to the Pareto set
while preserving diversity of solution vectors at the same time.

Theorem 2
Let F (t) =

⋃t
j=1 f

(j), 1 ≤ f
(j)
i ≤ K, be the set of all vectors created in Algorithm 1 and

given to the update function as defined in Algorithm 3. Then A(t) is an ε-Pareto set of
F (t) with bounded size according to equation (5), i.e.
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Algorithm 4 function box

1: Input: f
2: for all i ∈ {1, . . . ,m} do
3: bi := � log fi

log (1+ε)�
4: end for
5: b := (b1, . . . , bm)
6: Output: b {box index vector}

1. A(t) ∈ P ∗
ε (F (t))

2. |A(t)| ≤
(

log K
log (1+ε)

)(m−1)

Proof.

1. Suppose the algorithm is not correct, i.e. A(t) ∈ P ∗
ε (F (t)) for some t. According

to Def. 5 this occurs only if some f = f (τ), τ ≤ t is (1) not ε-dominated by any
member of A(t) and not in A(t) or (2) in A(t) but not in the Pareto set of F (t).

Case (1): For f = f (τ) not being in A(t), it can either have been rejected at t = τ or
accepted at t = τ and removed later on. Removal, however, only takes place when
some new f ′ enters A, which dominates f (line 6) or whose box value dominates
that of f (line 4). Since both relations are transitive, and since they both imply
ε-dominance, there will always be an element in A which ε-dominates f , which
contradicts the assumption. On the other hand, f will only be rejected if there is
another f ′ ∈ A(τ) with the same box value and which is not dominated by f (line
10). This f ′, in turn, ε-dominates f and – with the same argument as before – can
only be replaced by accepting elements which also ε-dominate f .

Case (2): Since f is not in the Pareto set of F (t), there exists f ′ = f (τ ′), τ ′ = τ, f ′ ∈
F ∗(t) with f ′ � f . This implies box(f ′) � box(f) or box(f ′) = box(f). Hence, if
τ ′ < τ , f would not have been accepted. If τ ′ > τ , f would have been removed
from A. Thus, f ∈ A(t), which contradicts the assumption.

2. The objective space is divided into
(

log K
log (1+ε)

)m

boxes, and from each box at most

one point can be in A(t) at the same time. Now consider the
(

log K
log (1+ε)

)(m−1)

equiv-
alence classes of boxes where – without loss of generality – in each class the boxes
have the same coordinates in all but one dimension. There are log K

log (1+ε) different
boxes in each class constituting a chain of dominating boxes. Hence, only one
point from each of these classes can be a member of A(t) at the same time.

✷

As a result, Algorithms 2 and 3 use finite memory, successively update a finite subset of
vectors that ε-dominate all vectors generated so far. For Algorithm 3 can additionally
be guaranteed that the subset contains only elements which are not dominated by any
of the generated vectors. Note that specific bounds on the objective values are not used
in the algorithms themselves and are not required to prove the convergence. They are
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only utilized to prove the relation between ε and the size of the archive given in the
second claim.

5 Simulations

This section presents some simulation results to demonstrate the behavior of the pro-
posed algorithms for two example multi-objective optimization problems (MOPs). We
use instances of the iterative search procedure (specified in Alg. 1) with a common gen-
erator and examine different update operators. An isolated assessment of the update
strategy of course requires the generator to act independently from the archive set A(t)

to guarantee that exactly the same sequence of points is given to the update function
for all different strategies. Despite that, the exact implementation of the generator is
irrelevant for this study, therefore we use standard MOEAs here and take the points in
the sequence of their generation as input for the different update functions.

5.1 Convergence Behavior

At first we are interested in how different update strategies affect the convergence of the
sequence (A(t)). As a test problem a two-objective knapsack problem with 100 items is
taken from Zitzler and Thiele (1999). The low number of decision variables is sufficient
to show the anticipated effects, and we found it advantageous for visualization and
comparison purposes to be able to compute the complete Pareto set F ∗ beforehand via
Integer Linear Programming.

The points given to the update operator are generated by a standard NSGA-II with
population size 100, one-point crossover, and bit-flip mutations (with probability 4/n =
0.04). Figure 4 shows the output A(t) of sample runs for the different instances after
t = 5, 000, 000 and t = 10, 000, 000 iterations (generated objective vectors), using update
operators from SPEA, NSGA-II (both with maximum archive size of 20) and Alg. 3 with
ε = 0.01.

It is clearly visible that both the archiving (selection) strategies from SPEA and
NSGA-II suffer from the problem of partial deterioration: Non-dominated points –
even those which belong to the “real” Pareto set – can get lost, and in the long run
might even be replaced by dominated solutions. This is certainly not desirable, and
algorithms relying on these strategies cannot claim to be convergent, even if the gener-
ator produces all elements of the Pareto set F ∗. In contrast, Alg. 3 is able to maintain
an ε-Pareto set of the generated solutions over time.

The number of function evaluations in this experiment is certainly extremely high,
but necessary to produce all Pareto-optimal points in this test case, especially at the
extremes of the Pareto set. It shows that the problem of deterioration does not only
occur at the beginning of a run. The non-convergent algorithms can even be run in-
finitely long without converging the Pareto set, although all Pareto-optimal points are
generated over and over again.

5.2 Distribution Behavior

In order to test for the distribution behavior only candidates are taken into account
which fulfill the requirements for convergence: Rudolph’s and Agapie’s algorithm AR-
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Figure 4: Objective space of the knapsack problem, the dots show the elements of the
Pareto set F ∗. The different figures correspond to different instances of the update op-
erator in Alg. 1: NSGA-II (top), SPEA (middle), and Alg. 3 (bottom). In each figure the
archive set A(t) is shown, for t = 5, 000, 000 (with diamonds) and for t = 10, 000, 000
(with boxes). A subset of the samples is highlighted so visualize the negative effect of
losing Pareto-optimal solutions in many current archiving/selection schemes.
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Figure 5: Objective space of MOP (8). The discretization into boxes according to Alg. 4
is indicated by showing all boxes that intersect with the Pareto set F ∗ in dashed lines.
The non-dominated boxes are drawn in bold lines. The circles correspond to the output
A of different instances of the iterative search algorithm Alg. 1. For the upper figure an
update function according to AR-1 was used, for the lower figure the function accord-
ing to Alg. 3.

I and Alg. 3. As a test case the following continuous three-dimensional three-objective
problem is used:

Maximize f1(x) = 3 − (1 + x3) cos(x1π/2) cos(x2π/2),
Maximize f2(x) = 3 − (1 + x3) cos(x1π/2) sin(x2π/2),
Maximize f3(x) = 3 − (1 + x3) cos(x1π/2) sin(x1π/2),

0 ≤ xi ≤ 1, for i = 1, 2, 3,




(8)

The Pareto set of this problem is a surface, a quadrant of the hyper-sphere of radius
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1 around (3, 3, 3). For the results shown in Figure 5 the real-coded NSGA without
fitness sharing, crossover using SBX (Simulated Binary Crossover, Deb and Agrawal
1995) with distribution index η = 5 and population size 100 was used to generate the
candidate solutions. The distribution quality is judged in terms of the ε-dominance
concept, therefore a discretization of the objective space into boxes (using Alg. 4 with
ε = 0.05) is plotted instead of the actual Pareto set. From all boxes intersecting with the
Pareto set the non-dominated ones are highlighted. For an ε-approximate Pareto set it
is now sufficient to have exactly one solution in each of those non-dominated boxes.
This condition is fulfilled by the algorithm using the update strategy Alg. 3, leading to
an almost symmetric distribution covering all regions. The strategy from AR-1, which
does not discriminate among non-dominated points, is sensitive to the sequence of the
generated solution and fails to provide an ε-approximation of the Pareto set of similar
quality even with an allowed archive size of 50.

Looking at the graphs of Algorithm 3, one might have the impression that not
all regions of the Pareto set are equally represented by archive members. However,
these examples represent optimal approximations according to the concepts explained
in section 4.1. They are not intended to give a uniform distribution on a (hypothetical)
surface that might even not exist as in the discrete case.

5.3 Results

The simulation results support the claims of the preceding sections. The archive updat-
ing strategy plays a crucial role for the convergence and distribution properties. The
key results are:

• Rudolph’s and Agapie’s algorithm guarantees convergence, but has no control
over the distribution of points.

• The current MOEAs designed for maintaining a good distribution do not fulfill
the convergence criterion, as has been demonstrated for SPEA and NSGA-II for a
simple test case.

• The algorithms proposed in this paper fulfill both the convergence criterion and
the desired distribution control.

6 Possible Extensions

The above baseline algorithms can be extended in several interesting and useful ways.
In the following, we first list some of these extensions and variations then discuss them
briefly.

6.1 Other Definitions of ε-Dominance

The convergent algorithms can also be implemented with a different definition of ε-
dominance. For example, with the dominance definition given in (6), grids are uni-
formly sized in the search space. Although the size of the generated Pareto-optimal set
will be different from that presented earlier, the algorithms given so far also maintain
the convergence and preserve the diversity.
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Although an identical ε value is suggested in the definition of ε-dominance a dif-
ferent εi can be used for each coordinate of the objective space. This way, different
precisions among the obtained Pareto-optimal vectors can be obtained in different cri-
teria. The upper bound of the number of Pareto-optimal solution presented above will
get modified accordingly.

6.2 Guaranteeing a Minimum Distance Between Obtained Vectors

The ε-dominance definition and the diversity preservation through grids allow a di-
verse and well convergent set of Pareto-optimal vectors to be obtained by the proposed
algorithms. Although diversity among the elements is ensured, the distance between
the obtained neighboring Pareto-optimal vectors may not be uniform. It is guaranteed
by the proposed algorithms that one box will have only one solution. But in practice,
two vectors lying on two neighboring boxes may lie very close to each other. To ensure
a good diversity among neighboring vectors, the algorithm 3 may be modified in the
following manner. In addition to discouraging two vectors to lie on the same box, the
vectors can also be discouraged to lie on the even numbered boxes. This way, vectors
can only lie on the alternate boxes, thereby ensuring a minimum difference of ε in each
objective function value between two neighboring Pareto-optimal vectors.

6.3 Steering Search by Defining Ranges of Non-acceptance

In most multi-objective optimization problems, a decision-maker plays an important
role. If the complete search space is not of importance to a decision-maker, the above
algorithms can be used to search along preferred regions. The concept of ε-dominance
will then allow pre-specified precisions to exist among the obtained preferred Pareto-
optimal vectors.

6.4 Fixed Archive Size by Dynamic Adaptation of ε

Instead of predetermining an approximation accuracy ε in advance, one might ask
whether the algorithm would be able to dynamically adjust its accuracy to always
maintain a set of vectors of a given magnitude. A concept like this is implemented
in PAES (see section 3), where the hyper-grid dividing the objective space is adapted
to the current ranges given by the non-dominated vectors. However, PAES does not
guarantee convergence.

Here two modified versions of the proposed converging algorithms are illustrated.
The idea is to start with a minimal ε, which is systematically increased every time the
number of archived vectors exceeds a predetermined maximum size.

6.4.1 Maintaining an ε-Approximate Pareto Set

In order to generate an ε-approximate Pareto set with a given upper bound a on its size,
Algorithm 2 can be modified. After the first pair g(1), g(2) of mutually non-dominating
vectors have been found, an initial ε is calculated according to Theorem 1 as

ε = K
′ 1

a1/m − 1 (9)
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where a is the maximum archive size. K ′ is set to the current maximum relative range
of the m objectives

K ′ := max
1≤i≤m

{
ui

li

}
(10)

where ui and li, ui ≥ li > 0, are the current maximum and minimum values of objective
function i.

From this onwards, new vectors are accepted according to Algorithm 2, where for
each element a time stamp is recorded. If the archive would exceed its maximum size
amax, a larger ε must be chosen, again using the new ranges and the above formulas. By
this new ε, all archive elements are again compared in the order of their time stamps.
Whenever one element is ε-dominated by an older one, the younger will be removed.
This way, the ranges will always be increased in order to cover the whole extent of
the current ε-approximate Pareto set. However, if the range of the actual Pareto set
decreases in the later part of the run, there is no possibility to decrease the ε again
without in general losing the property given by Theorem 1.

For ε-dominance definition given in equation (6), equation (9) becomes ε = K′
a1/m

and K ′ is calculated as K ′ = max1≤i≤m{ui − li}.

Agapie’s and Rudolph’s algorithms AR-1 and AR-2 also implement a fixed-size
archive, but with a constant ε = 0 during the run. This means that the guaranteed
minimal distance of vectors is also zero, hence not guaranteeing to maintain an ε-
approximate Pareto set.

6.4.2 Maintaining an ε-Pareto Set

In Algorithm 3, a simple modification would be to start with a minimal ε using a first
pair of mutually non-dominated vectors as in the previous subsection. Afterwards, the
increase of ε is taken care of by joining boxes and discarding all but the oldest element
from the new, bigger box.

The joining of boxes could be done in several ways, however for ensuring the
convergence property it is important not to move or translate any of the box limits,
in other words, the assignment of the elements to the boxes must stay the same. A
simple implementation could join every second box, while it suffices to join only in the
dimensions where the ranges have been exceeded by the new element. This will mean
that in the worst case an area will be ε-dominated which is almost twice the size of the
actual Pareto set in each dimension. A more sophisticated approach would join only
two boxes at a time, which would eliminate the over-covering, but make a complicated
book-keeping of several different ε values in each dimension necessary.

6.4.3 A Bi-start Strategy

In cases where the bounds of the Pareto set are much smaller than the bounds on F ,
both algorithms suffer from their inability to increase the precision again after having
reached any level of coarseness. In the worst case, they might end up with only one
solution ε-dominating the whole Pareto set using a rather large ε.

We illustrate how to use our proposed algorithms to maintain an ε-approximate
Pareto set or an ε Pareto set, respectively, with a maximum predefined cardinality amax.
For this a two-step strategy is followed: At first one of the two dynamic algorithms of
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the previous section is used to get a first, rough approximation of the Pareto set. From
their results the ranges of the Pareto set in the objective space can be determined and
used to calculate a fixed ε for a second run of the algorithm. Of course, one may use
different εi for the different objectives. In the second run the only required change to
the update operator is that it never accepts any vectors outside the ranges determined
by the first run and hence ensuring that the size of the solution set does not exceed the
limit amax.

7 Conclusions

In this study we proposed the ε-(approximate) Pareto set as a solution concept for evo-
lutionary multi-objective optimization that is

• theoretically attractive as it helps to construct algorithms with the desired conver-
gence and distribution properties, and

• practically important as it works with a solution set with bounded size and prede-
fined resolution.

We constructed the first archive updating strategies that

• can be used in any iterative search process and

• allow for the desired convergence properties while at the same time

• guaranteeing an optimal distribution of solutions.

As we have exclusively dealt with the update operator (or the archiving/selection
scheme of the corresponding search and optimization algorithms) so far, all statements
had to be done with respect to the generated solutions only. In order to make a state-
ment about the convergence to the Pareto set of the whole search space one has of
course to include the generator into the analysis. However, with appropriate assump-
tions (non-vanishing probability measure for the generation of all search points at any
time step) it is clear that the probability of not creating a specific point goes to zero as
t goes to infinity. Analogously to Hanne (1999) or Rudolph and Agapie (2000), results
on the limit behavior such as almost sure convergence and stochastic convergence to
an ε-Pareto set (including all nice features as described in this paper) can be derived.

Though the limit behavior might be of mainly theoretical interest, it is of high
practical relevance that now the problem of partial deterioration, which was imminent
even in the elitist MOEAs, could be solved. Using the proposed archiving strategy
maintaining an ε-Pareto set the user can be sure to have in addition to a representative,
well distributed approximation also a true elitist algorithm in the sense that no better
solution had been found and subsequently lost during the run.

Interesting behavior occurs when there are interactions between the archive and
the generator. Allowing the archive members to take part in the generating process has
empirically been investigated e.g. by Laumanns et al. (2000, 2001) using a more general
model and a parameter called elitism intensity. Now, also the theoretical foundation is
given so that the archived members are really guaranteed to be the best solutions found.
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