
Running Time Analysis of Evolutionary Algorithms on

Vector-Valued Pseudo-Boolean Functions

Marco Laumanns Lothar Thiele Eckart Zitzler

TIK-Report No. 165

Institut f�ur Technische Informatik und Kommunikationsnetze, ETH Z�urich

Gloriastrasse 35, ETH-Zentrum, CH{8092 Z�urich, Switzerland

Abstract

This paper presents a rigorous running time analysis of evolutionary al-
gorithms on pseudo-Boolean multiobjective optimization problems. We pro-
pose and analyze di�erent population-based algorithms, the simple evolution-
ary multiobjective optimizer SEMO and two improved versions, FEMO and
GEMO. The analysis is carried out on two bi-objective model problems, LOTZ
(Leading Ones Trailing Zeroes) and COCZ (Count Ones Count Zeroes) as well
as on the scalable m-objective versions mLOTZ and mCOCZ. Results on the
running time of the di�erent population-based algorithms and for an alterna-
tive approach, a multistart (1+1)-EA based on the �-constraint method, are
derived The comparison reveals that for many problems, the simple algorithm
SEMO is as eÆcient as the (1+1)-EA. For some problems, the improved vari-
ants FEMO and GEMO are provably better. For the analysis we propose
and apply two general tools, an upper bound technique based on a decision
space partition and a randomized graph search algorithm, which facilitate the
analysis considerably.

1 Introduction

Evolutionary Algorithms (EAs) are probabilistic search techniques that are inspired
by models of natural evolution. The underlying principles are simple, but neverthe-
less EAs usually exhibit a complex behavior which is hard to analyze theoretically.
Consequently, a lot of empirical knowledge and successful applications have been
reported in the literature, but much less rigorous theoretical results about their
eÆciency are available. Besides empirical investigations, though, theoretical work
is important for making more general, but also more precise statements about the
performance of EA variants and for better understanding the dynamics of EAs.

A recent overview of the theoretical analysis of EAs is given by Beyer et al. (2). A
major part of this theory is the running time analysis, which addresses the question

of how long a certain algorithm takes to �nd the optimal solution for a speci�c
problem or a class of problems. Such an analysis typically contains the following
ingredients:

1. Simple, well-de�ned algorithms, which are simple instances or stochastic mod-
els of EAs,

2. Sample problems (or problem classes), which the algorithms are applied to,
and

3. Analytical methods and tools, which are used for the study of the algorithms.

In the case of a single objective and discrete search spaces, several results have been
achieved regarding the optimization of pseudo-Boolean functions. Following �rst
results by M�uhlenbein (19) and Rudolph (20), a wide range of such problems was
covered by Droste et al. (6; 7) who successfully applied and considerably extended
analytical methods from the �eld of randomized algorithms. Modeling the EA as a
Markov process, Garnier et al. calculated the distribution of the �rst hitting time
of the optimum for the CountOnes problem (9) and for long-path problems (8).
He and Yao derived bounds for the expected running time using drift analysis (13)
and exact expressions for the �rst hitting times of population-based EAs directly
from the transition matrix of the associated Markov chains (14).

In the multiobjective case, only few theoretical results are available. Most of the
corresponding studies were concerned with the limit behavior, i.e. the question
whether the search algorithm converges, if the number of iterations goes to in�nity
(21; 22; 23; 24; 11; 12; 26; 16). Only recently, Scharnow et al. (25) provided a
running time analysis of a (1+1)-EA on the shortest path problem and showed that
a multiobjective formulation of the problem can reduce the time to �nd the single
optimum considerably. The �rst running time analysis of population-based EAs on
a multiobjective problem with con
icting objectives was given in (17) for a simple
bi-objective model problem.

This paper contains running time results for di�erent multiobjective EAs and for
di�erent problem scenarios. In particular, we

� Introduce two pseudo-Boolean model problems, which are scalable in the
number of decision variables and number of objectives,

� De�ne simple individual-based and population-based multiobjective EAs,

� Propose methods, how population-based EAs can be analyzed in a multiob-
jective framework, and

� Present complexity results in terms of bounds of the expected running time
of the di�erent algorithms.

2

Besides these fundamental contributions, a further motivation for this analysis is
to investigate whether the use of a population is bene�cial in solving multiobjective
problems: is a population-based EA searching concurrently for all optimal solutions
in a single run more eÆcient, or represent multiple, separate runs of a (1+1)-EA
searching for di�erent optimal solutions a better strategy?

The paper is organized as follows. In section 2, we construct two multiobjective
example problems. In section 3, we introduce and analyze SEMO; SEMO is the
�rst example of a simple, parameterless population-based EA for multiobjective
optimization problems. The analysis of SEMO reveals a similar performance on
the bi-objective problems as a (1+1)-EA using multi-starts. In this context, we
present a theorem that can help bounding the running time for a general class of
elitist population-based EAs on multiobjective problems. In section 4, we propose
two algorithmic improvements, a fair sampling strategy that accelerates the explo-
ration of the optimal set, and a greedy selection mechanism that leads to a faster
progress towards the optimal set. With these two improvements, implemented in
the algorithms FEMO and GEMO, we are able to prove that population-based
algorithms can actually have a lower running time than the (1+1)-EA. In section
5, the obtained results are generalized to higher dimensional objective spaces: We
present and apply a theorem on a general graph search procedure that models the
behavior of the fair sampling algorithms on the set of optimal solutions. Section
6 discusses the changes and diÆculties when independent-bit mutations are used
instead of one-bit mutations as considered before in the analysis of the di�erent
algorithms Finally, Section 7 summarizes the results obtained in this paper and
discusses how these results can lead to a more eÆcient usage of multiobjective EAs
for other problem domains.

2 Two Example Problems

The optimization problems considered in this paper are binary decision problems
with n variables andm � 2 objectives. All objective functions are to be maximized.
As there is no single search point that maximizes all components simultaneously,
the goal is to �nd a set of so-called Pareto-optimal solutions as de�ned as follows.

De�nition 1 (Pareto optimality)

Let f : X ! F where X � f0; 1gn is called decision space and F � IRm objective
space. The elements ofX and called decision vectors and the elements of F objective
vectors. A decision vector x� 2 X is Pareto optimal if there is no other x 2 X
that dominates x�. x dominates x�, denoted as x � x� if fi(x) � fi(x

�) for all
i = 1; : : : ;m and fi(x) > fi(x

�) for at least one index i. The set of all Pareto

optimal decision vectors X� is called Pareto set. F � = f(X�) is the set of all

Pareto optimal objective vectors and denoted as Pareto front.

3

Figure 1: Objective space of the LOTZ problem with n = 8

In this paper, the running time of an algorithm equals the number of necessary
evaluations of the objective function. As the algorithms de�ned in the following do
not have an explicit stopping rule, we are interested in the running time until all
elements of the Pareto front have been identi�ed and are contained in the internal
memory of the algorithm, together with one corresponding Pareto-optimal decision
vector each.

The �rst example problem for this analysis is the LOTZ problem. The abbreviation
LOTZ stands for \Leading Ones, Trailing Zeroes" and means that we want to
simultaneously maximize the number of leading ones and trailing zeroes in a bit-
string. The �rst component, the LeadingOnes function, has been analyzed in
detail in (20) and (7).

De�nition 2

The pseudo-Boolean function LOTZ : f0; 1gn ! IN2 is de�ned as

LOTZ(x1; : : : ; xn) =

0
@ nX

i=1

iY
j=1

xj;
nX
i=1

nY
j=i

(1� xj)

1
A

The objective space of LOTZ can be partitioned into n + 1 sets Fi; i = 0; : : : ; n
(see Fig. 1). The index i corresponds to the sum of both objective values, i.e.
(f1; f2) 2 Fi if i = f1 + f2. Obviously, Fn represents the Pareto front F �. The
sub-domains Xi are de�ned as the sets containing all decision vectors which are

4

mapped to elements of Fi. They are of the form 1a0 �(n�i�2) 10b with a + b = i
for i < n, and 1a0b with a + b = n for Xn. The asterisk (*) is used as a wildcard
symbol and indicates that the corresponding bits can be chosen arbitrarily as zero
or one.

The cardinality of the Pareto set X� = Xn is jXnj = n+ 1 and we also have n+ 1
Pareto optimal objective vectors as jFnj = n+ 1. The next set Fn�1 is empty. For
the remaining sets with i = 0; : : : ; n�2 we have jFij = i+1 and jXij = jFij �2n�2�i.
As a consequence, the decision space X contains 2n di�erent elements, which are
mapped to jFnj +

Pn�2
i=0 jFij = 1=2 � n2 + 1=2 � n + 1 = O(n2) di�erent objective

vectors.

The LOTZ problem has a particular feature: All non-Pareto-optimal decision vec-
tors only have one-bit Hamming neighbors that are either better or worse, but never
incomparable to it. This fact facilitates the analysis of the population-based algo-
rithms, which certainly cannot be expected from other multiobjective optimization
problems. Therefore, we additionally present another simple multiobjective prob-
lem where this condition doesn't hold. This problem is a multiobjective extension
of the CountOnes problem and is de�ned below. The problem consists of two
parts: a cooperative part (the �rst half of the bit-string) and a con
icting part (the
second half of the bit-string). In the cooperative part, the objective is to maximize
the number of ones in both functions. In the con
icting part, the �rst objective
is to maximize the number of ones and the second objective is to maximize the
number of zeroes. The single-objective CountOnes problem has been extensively
studied in the literature, see e.g. (19; 20; 6; 9).

De�nition 3

The pseudo-Boolean function COCZ : f0; 1gn ! IN2 is de�ned as follows:

COCZ(x1; : : : ; xn) =

0
@ nX

i=1

xi;

n=2X
i=1

xi +

nX
i=n=2+1

(1� xi)

1
A

where n = 2 � k and k 2 IN.

Also for the COCZ, a partition of the objective space (see Fig. 2) provides an easy
understanding of the problem. We distinguish n=2+1 sets Fi; i = 0; : : : ; n=2, where
the index i corresponds to the number of ones in the �rst half of the bit-string. All
Fi contain n=2+1 elements who distinguish themselves by the number of ones in the
second half of the bit-string. Fn=2 represents the Pareto front F �. The cardinality

of the Pareto set X� = Xn is jXnj = 2n=2. However, more Pareto-optimal decision
vectors map to objective vectors in the middle of the Pareto front than to its
borders: while

�n=2
n=4

�
decision vectors map to the objective vector (3n=4; 3n=4),

the objective vectors (n; n=2) and (n=2; n) only have one corresponding element in
decision space each.

5

Figure 2: Objective space of the COCZ problem with n = 8

3 A Simple Evolutionary Multiobjective Optimizer

The �eld of evolutionary multiobjective optimization is characterized by a vast va-
riety of EA variants with specialized operators of increasing complexity(5; 4). How-
ever, simple algorithms, which can serve as baseline algorithms for comparisons or
theoretical analysis, are missing. The necessity for a baseline algorithm was already
pointed out by (15) and motivated the invention of the Pareto Archived Evolution
Strategy (PAES). The PAES makes use of a complex archiving and selection logic
and is therefore diÆcult to analyze theoretically. We therefore propose and analyze
a simple baseline algorithm, which can be seen a multiobjective generalization of a
(1 + 1)-EA.

3.1 The SEMO

The Simple Evolutionary Multiobjective Optimizer (SEMO) represents the simplest
instance of a population-based EA for multiobjective optimization. The SEMO con-
tains a population of variable size that stores all individuals that are not dominated
by any other individuals found so far. In each iteration, one parent individual x
is drawn from this population uniformly at random and mutated. The child x0 is
added to the population, if it is not dominated by any population member and if
its objective vector is not already contained in the population. All individuals that
are dominated by the child are in turn deleted from the population.

6

Algorithm 1 Simple Evolutionary Multiobjective Optimizer (SEMO)

1: Choose an initial individual x uniformly from X
2: P fxg
3: loop

4: Select one element x out of P uniformly.
5: Create o�spring x0 by mutation of x.
6: if 6 9z 2 P such that (z � x0 _ f(z) = f(x0)) then
7: P (P n fz 2 P jx0 � zg) [fx0g
8: end if

9: end loop

3.2 Analysis of SEMO on LOTZ

We start our analysis with the SEMO algorithm applied to the LOTZ problem. A
run of the SEMO on LOTZ can be divided into two distinct phases: the �rst phase
lasts until the �rst Pareto-optimal individual has entered the population, and the
second phase ends when the whole Pareto set has been found.

Lemma 1

The expected running time of Alg. 1 until the �rst Pareto-optimal point of LOTZ

is found is O(n2).

Proof. During this �rst phase, the population will consist of one individual only, as
a mutation changing the objective values yields either a dominating or a dominated
individual. Hence, if an o�spring is accepted, it will replace the parent from which
it was produced. We consider the partition of the search space into distinct subsets
Xi as de�ned above and note that from any subset Xi only points in Xj ; j > i are
accepted. As there is always a one-bit mutation leading to the next subset, the
probability of improvement is at least 1=n. As there are at most n� 1 such steps
necessary (Xn�1 is empty) the expected time is at most n2. �

Lemma 2
After the �rst Pareto-optimal point is found, the expected running time of Alg. 1

until all Pareto-optimal points are found is �(n3) and the probability that the

running time is less than n3=c(n) is less than (8e=c(n))n=2.

Proof. We partition this phase into n di�erent sub-phases. Sub-phase i lasts from
the time when i Pareto-optimal solutions have been found to the time when the next
solution is found. Ti is a random variable denoting the duration of sub-phase i and
the random variable T is the sum of these times. As we always have a contiguous
subset of the Pareto set, only the individuals corresponding to the outer points of
this subset can create a new Pareto-optimal point. The probability ps(i) to sample
such a candidate in phase i is at least 1=i and at most 2=i. A subsequent mutation

7

has a success probability of at least 1=n and at most 2=n. Hence, ni=4 � E(Ti) � ni.
As T =

Pn
i=1 Ti, 1=8n

3 + 1=8n2 � E(T) � 1=2n3 + 1=2n2.

To derive a lower bound of the running time which holds with a high probability
we consider the run after n=2 Pareto-optimal solutions have already been found. In
this case the probability to �nd a new Pareto-optimal solution is at most 4=n2. If we
allow n3=c(n) trials, the expected number of successes, S, is at most 4n=c(n). With
Cherno�'s inequality, the probability that we reach the required n=2 + 1 successes
to �nd the remaining solutions can be bounded as

P (S > n=2) �

e
1
8
c(n)�1

(18c(n))
1
8
c(n)

!4n=c(n)

�
�

8e

c(n)

� 1
2
n

(1)

�

From the concatenation of the two phases the following theorem can be derived.

Theorem 1

The expected running time of SEMO on LOTZ is �(n3).

3.3 Analysis of SEMO on COCZ and a General Upper Bound
Technique

The analysis of the SEMO on the LOTZ problem has been facilitated by the ob-
servation that the population does not contain more that one individual until the
Pareto set is reached. In this respect, the COCZ is a more realistic problem, be-
cause the population will certainly start growing before the Pareto set is reached.
Unfortunately, this population growth is hard to analyze in detail and therefore
hard to bound. In the worst case, the population might extend over the whole ob-
jective space and moves forward with a broad front of solutions. We can, however,
derive the following general upper bound for this worst-case scenario, which holds
not only for SEMO, but for a more general class of population-based approaches
under the assumption of an elitist selection strategy. The idea behind this lemma
is that it is suÆcient for each decision vector to be mutated once into a dominating
decision vector. The elitist selection strategy then guarantees that this decision
vector will discarded from the population for ever. The result is independent of the
sampling (or mating selection) strategy used and depends only on the properties of
the variation and replacement selection operator, which can be formalized as:

Lemma 3 (General upper bound I)

Let an algorithm be given that iteratively modi�es a population P by a sequence

of variation and selection operations with the properties

V1 For each y 2 F nF �, the probability that the variation operator applied to any

x 2 X with f(x) = y produces a dominating decision vector x0 with x0 � x is

bounded below by p(y) > 0

8

S1 A new generated decision vector will enter the population P only if it is not

dominated by any other element of P .

S2 A decision vector is deleted from the population P if and only if a dominating

decision vector is included into the population.

Then the expected number of times the variation operator is applied to non-Pareto

optimal decision vectors is bounded above by
P

y2FnF � p(y)�1.

Proof. Consider any objective vector y0 2 F n F � and the corresponding set of
decision vectors X 0 := f�1(y) = fx 2 Xjf(x) = yg. An element of X 0 can only
undergo variation, if it is present in the population P . Let T (X 0) denote the total
number of times that elements from X 0 undergo variation until for the �rst time,
an x00 is generated with f(x00) � y0. Clearly, x00 will enter P and cause all elements
of x0 2 X 0 being deleted due to S2. With S1, this will further mean that no element
of X 0 will ever be accepted again in the population, hence no elements of X 0 will
be subject to variation anymore. As the random variables T (X 0) are independent
it follows with V1 that E(T (X 0)) � p(y)�1. The summation over all y0 2 F n F �

leads to the claimed expression. �

In many cases, the summation over all elements in F nF � is impractical because its
cardinality is too large. We can, however, also work with larger groups of decision
vectors such that a smaller number of groups has to be accounted for. The following
lemma is an extension of the previous one for arbitrary partitions of the decision
space. It is similar to the �tness level technique (27) of single-objective problems
and can be seen as a generalization of this technique for partially ordered objective
spaces.

Lemma 4 (General upper bound II)

Let the dominated part of the decision space, X n X� be partitioned into k sets
X1; : : : ;Xk with

S
1�i�kXi = XnX� andXi\Xj = ; for all i; j. Let the dominance

relation on sets be de�ned as

Xi � Xj , 8(a; b) 2 Xi �Xj : a � b:

d(Xi) := fXj : Xj � Xig contain all sets Xj that dominate set Xi. If the algorithm

ful�lls the same properties as in Lemma 3 and p(Xi) is a lower bound for the

probability that a variation applied to an individual x 2 Xi produces an individual

x0 in a dominating decision space subset, i.e. 0 < p(Xi) � minx2XifProb(x0 2
d(Xi)jx 2 Xig then the expected number of times the variation operator is applied

to non-Pareto optimal decision vectors is bounded above by
Pk

i=1 p(Xi)
�1.

The proof can be done as for the previous lemma. With the help of this lemma it
is now possible to prove upper bounds for di�erent problems, given that an appro-
priate decision space partition and expressions for the improvement probabilities
p(�) can be derived. We demonstrate its use by deriving an upper bound for the
expected running time of the SEMO algorithm on the COCZ problem.

9

Theorem 2

The expected running time of SEMO applied to COCZ is bounded by O(n2 logn).

Proof. We divide the total number of objective function evaluation into those that
are required for mutants of non-Pareto-optimal parents and those for mutants of
Pareto-optimal parents. Let the parents that are not Pareto-optimal be divided
into group Xi;j := fx 2 Xjf(x) = (n=2� i+ j; n� i� j)g, i; j 2 f0; : : : ; n=2g, where
the i refers to the Hamming distance from the Pareto set and j to the number of
ones in the bit-sting. It is obvious that the Xi;j constitute a search space partition
according to Lemma 4 and that the SEMO also ful�lls the elitist selection conditions
P1 and P2. As a result, the total number of mutations of non-Pareto-optimal search

points can be bounded by
Pn=2

j=0

Pn=2
i=1 n=i = O(n2 log n).

Let k be the number of ones of the �rst Pareto-optimal point found. Now consider
a modi�ed SEMO that starts with this point and never accepts any non-Pareto-
optimal points (their contribution to the running time has already been bounded)
and never accepts any points with more than k ones. The expected time of this
algorithm until the remaining Pareto-optimal points have been found is

Pk
i=1 n(k�

i)=i = �(nk log k). For an upper bound, consider the negative assumption that
SEMO has to traverse the whole chain starting from k = n=2 twice, to move to
both ends of the Pareto front. In every case, the claimed bound of O(n2 log n)
holds. �

3.4 Comparing SEMO to a (1+1)-EA using Multistarts

An alternative approach to �nd a set of Pareto-optimal solutions is the so-called
scalarizing approach (18). The di�erent objective functions are aggregated to form
a single-objective surrogate problem, on which a single-objective optimizer can be
applied. This scalarization involves parameters to be set that balance the relative
importance of the di�erent objectives. The working principle of this approach is to
use multiple runs of the single-objective optimizer with di�erent parameter settings
such that in each run a di�erent Pareto-optimal solution is found. It is an open
problem whether this approach is more eÆcient compared to a population-based
algorithm that is able to search for the whole Pareto front in a single run.

In this study, we want address this question by a theoretical analysis of the di�erent
approaches. As a representative for the single-objective multistart class we use
the �-constraint method (10). The �-constraint method works by choosing one
objective function as the only objective and the remaining objective functions as
constraints. By a systematic variation of the constraint bounds, di�erent elements
of the Pareto front can be obtained (3, p. 285) by solving the constrained single-
objective problems

max f1 (2)

s.t: fi � �i 82 � i � m; i 2 IN: (3)

10

The (1+1)-EA therefore needs a set of di�erent �i values to be speci�ed. For the
following analysis we optimistically assume a best-case scenario, where

� The coordinates of all Pareto-optimal objective vectors f�1; f�2; : : : ; f�jF
�j are

known.

� The single-objective (1+1)-EA, Alg. 2, is run for each of those f�k; 1 � k �
jF �j, using the constraint bounds �i = f�ki .

� Each of the jF �j runs of the (1+1)-EA is independently executed until the
optimum is found.

Using information about the optimum might appear unfair, but we are mainly
interested in lower bounds for the multistart (1+1)-EA. It is obvious that a realistic
variant cannot be better than this one as it has to make at least one run for
each Pareto-optimal objective vector to be found, plus a number of run that are
redundant because of an non-optimal choice of the �i values.

Algorithm 2 Single-objective (1+1)-EA

1: Choose an initial individual x uniformly from X
2: loop

3: Create o�spring x0 by mutation of x.
4: g(x) P

fi��i;2�i�m
(�i � fi(x)) fconstraint violation by xg

5: g(x0) P
fi��i;2�i�m

(�i � fi(x
0)) fconstraint violation by x0g

6: if g(x0) < g(x) _ (g(x0) = g(x) = 0 ^ f1(x0) > f1(x)) then
7: x x0

8: end if

9: end loop

The (1+1)-EMO proceeds by �rst minimizing the constraint violation given by the
second objective and the di�erent thresholds c. After the constraint is satis�ed, the
algorithm turns to optimize the �rst objective while keeping the second objective
value above the constraint boundary. We give an exact expression for the expected
running time of the (1+1)-EMO on the LOTZ and the COCZ problem, the proof
is given in the appendix.

Theorem 3

The expected running time of the multistart (1+1)-EA is 1
2(n

3+n2) on the LOTZ
problem and �(n2 log n) on the COCZ problem.

It follows that running time of the simple population-based optimizer SEMO for
both the LOTZ and the COCZ problem is of the same order as the multistart
(1+1)-EA in its base-case scenario. In the next section, we investigate whether a
population-based approach can be provably better than the (1+1)-EA.

11

4 Two Improved Evolutionary Multiobjective Optimiz-

ers

Obviously, SEMO is not advantageous to the (1+1)-EA using an �-constraint
method regarding the LOTZ and the COCZ problem. In this section, we pro-
pose two modi�cations of the SEMO algorithm, a fair sampling strategy and a
greedy selection mechanism. With the fair sampling strategy, the FEMO (Fair
Evolutionary Multiobjective Optimizer) can solve the LOTZ problem quicker. Us-
ing in addition a greedy selection mechanism, the GEMO (Greedy Evolutionary
Multiobjective Optimizer) is also quicker on the COCZ problem.

4.1 The FEMO and the Fair Sampling Strategy

The main weakness of the SEMO on the LOTZ problem lies in the fact that a large
number of mutations are allocated to parents whose neighborhood has already been
explored suÆciently. On the other hand, an optimal sampling algorithm would use
always the most promising parent at the border of the current population, leading
to a running time of �(n2). Of course, this information is not available in a black
box optimization scenario.

The uniform sampling leads to a situation, where the Pareto-optimal individuals
have been sampled unevenly depending on when each individual entered the popu-
lation. The fair sampling strategy implemented by FEMO guarantees that at the
end all individuals receive about the same number of samples.

The FEMO (see Alg. 3) implements a fair selection strategy by counting the number
of o�spring each individual produces (line 6). The sampling procedure determinis-
tically chooses the individual which has produced the least number of o�spring so
far, ties are broken randomly (line 5).

Algorithm 3 Fair Evolutionary Multiobjective Optimizer (FEMO)

1: Choose an initial individual x uniformly from X
2: w(x) 0 fInitialize o�spring countg
3: P fxg
4: loop

5: Select one element x out of fy 2 P jw(y) � w(z) 8z 2 Pg uniformly.
6: w(x) w(x) + 1 fIncrement o�spring countg
7: Create o�spring x0 by mutation of x.
8: if 6 9z 2 P such that (z � x0 _ f(z) = f(x0)) then
9: P (P n fz 2 P jx0 � zg) [fx0g

10: w(x0) 0 fInitialize o�spring countg
11: end if

12: end loop

For the analysis of the FEMO on LOTZ we note that the �rst phase is identical to

12

the SEMO described before. With the following theorem we prove that the total
running time of FEMO on LOTZ is bounded by �(n2 log n).

Theorem 4

With probability at least 1�O(1=n), the running time Algorithm 3 needs from the

discovery of the �rst two Pareto-optimal objective vectors of the LOTZ problem

until the whole Pareto set has been found lies in the interval [1=4 � 1=p � n logn; 2 �
1=p � n logn]. Hence, ProbfT = �(1=p � n logn)g = 1 � O(1=n). Furthermore,

E(T) = O(1=p � n logn).

The proof of this theorem is given in the appendix. The idea is to bound the number
times each element that enters P in the second phase will be mutated. Once the
�rst Pareto-optimal points is found, there is exactly one possible parent for each of
the remaining n points. We are interested in the number of mutations that must be
allocated to each of these n parents in order to have at least one successful mutation
that leads to the desired child. Lemma 7 and 8 provide upper and lower bounds
on the probability that a certain number of mutations per parent are suÆcient. In
Theorem 4 these probabilities are used to bound the running time of the FEMO
algorithm.

As discussed earlier, the COCZ problem leads to a possible growth of the population
before the Pareto set is found, for the SEMO as well as for the FEMO. This makes
it a diÆcult challenge to derive tight upper and lower bounds for the FEMO on
COCZ. Nevertheless, Lemma 4 and the same argumentation as with the SEMO
leads to a O(n2 logn) upper bound. For the lower bound it is suÆcient to note that
in order to �nd the last Pareto-optimal objective vector there is only one bit that
must
ip, the chance of which is 1=n. Due to the fair sampling strategy, FEMO will
therefore allocate
(n) mutation trials for all n=2 other Pareto-optimal members
of the population. In summary:

Theorem 5

The expected running time of FEMO applied to COCZ is bounded above by

O(n2 logn) and below by
(n2)

In the next section we propose a further improvement of the algorithm, which avoids
the population growth as much as possible.

4.2 The GEMO and the Greedy Selection Mechanism

The Greedy Evolutionary Multiobjective Optimizer (GEMO) is an extension of
the FEMO in order to achieve maximum progress towards the Pareto front. The
main idea is to allocate all search e�ort to o�spring of the most recently successful
mutant, which is implemented as follows.

As long as only mutually non-dominating individuals are found, the algorithm acts
like FEMO, in order to spread out the population, and hence the search e�ort, fairly

13

and equally. However, when further progress towards the Pareto front is achieved
(realized by the fact that a new individual is found that dominates elements of the
current population), all other remaining population members are disabled. This
means that they cannot produce any o�spring for the time being and is implemented
by setting their weight to in�nity (line 18). When GEMO �nally reaches the Pareto
front and no further progress is possible, it will again behave like FEMO. Here, it
is necessary to re-enable all re-discovered individuals (line 11), otherwise these
individuals would constitute barriers in the objective space that are diÆcult or,
depending on the mutation distribution, impossible to cross.

Algorithm 4 Greedy Evolutionary Multiobjective Optimizer (GEMO)

1: Choose an initial individual x uniformly from X
2: w(x) 0 fInitialize o�spring countg
3: P fxg
4: loop

5: Select one element x out of fy 2 P jw(y) � w(z) 8z 2 Pg uniformly.
6: w(x) w(x) + 1 fIncrement o�spring countg
7: Create o�spring x0 by mutation of x.
8: if 6 9z 2 P such that z � x0 then
9: if 9z 2 P such that f(z) = f(x0) then

10: if w(z) =1 then

11: w(z) 0 fReset o�spring countg
12: end if

13: else

14: D fz 2 P jx0 � zg fDetermine individuals dominated by x0g
15: if D 6= ; then
16: P P nD fDelete dominated individualsg
17: for all y 2 P do

18: w(y) 1 fDisable remaining individualsg
19: end for

20: end if

21: P P [fx0g fAdd x0 to populationg
22: w(x) 0 fInitialize o�spring countg
23: end if

24: end if

25: end loop

Due to the special characteristics of the LOTZ problem, the GEMO behaves iden-
tically to the FEMO here. On the COCZ problem, the new features of the GEMO
algorithm allow us to prove a tight bound of the expected running time.

Theorem 6
The expected running time of GEMO applied to COCZ is bounded by �(n2).

The proof, which is given in the appendix, is again split into the two phases. The

14

Figure 3: Schematic view of the mLOTZ problem

idea is that the new greedy selection of the last improved individual reduces the
time needed on the way towards the Pareto front considerably.

5 Higher-dimensional Objective Spaces

In this section, we generalize the two bi-objective problems from the previous sec-
tions, LOTZ and COCZ, to arbitrary objective space dimensions. Bounds for the
expected running time for the di�erent algorithms are derived for each problem,
where the problem size is again determined by the number of decision variables
n, while the number of objectives m is considered as a constant. To facilitate the
analysis of the fair sampling strategy of the GEMO, we derive a general result on
a graph searching process, which serves as a model how GEMO behaves on the
Pareto front.

5.1 The Multiobjective Leading Ones (mLOTZ) Problem

The LOTZ problem can be generalized to an arbitrary even number of objectives
m by concatenating m=2 bi-objective LOTZ problems of 2n=m bits each.

De�nition 4

The pseudo-Boolean function mLOTZ : f0; 1gn ! INm is de�ned as follows:

mLOTZ(x1; : : : ; xn) = (f1; f2; : : : ; fm)

with

fk =

(Pn0

i=1

Qi
j=1 xj+n0(k�1)=2 if k is oddPn0

i=1

Qn0

j=i(1� xj+n0(k�2)=2) else:

where m = 2 �m0;m0 2 IN and n = m0 � n0; n0 2 IN.

The construction principle of the mLOTZ problem is depicted in Fig. 3. To solve
mLOTZ, we are searching for a representation of the Pareto front with jF �j =
(2n=m+ 1)m=2 elements.

15

Theorem 7

The expected running time of the (1+1)-EMO applied to mLOTZ is bounded by

�(nm=2n2).

Proof. For each of the jF �j Pareto-optimal points, we have to �nd a unique bit-
string. For each mutation, there are at least one and at most m bits that can
ip
for a success. In addition, a bit is set correctly with probability 1=2 even without
mutation, so half of the steps are for free. Hence, the expected running time for each
constrained sub-problem is �(n2), and with the number of jF �j = (2n=m + 1)m=2

sub-problems to be solved the claim follows. �

To derive an upper bound for the SEMO, we can again make use of the general
upper bound of Lemma 4.

Theorem 8

The expected running time of the SEMO and the FEMO applied to mLOTZ is

bounded by O(nm+1).

Proof. We have O((n=m)m) di�erent objective vectors. Each of the dominated
vectors receives on average O(n) mutations until it is improved and deleted for
ever. The discovery of the last Pareto-optimal vector takes O(n=m)m=2 � n time,
which is an upper bound the discovery of all Pareto-optimal vectors. �

For the analysis of the GEMO we again note that the running time is mainly
determined by the exploration of the Pareto front. In the general case, the Pareto
front can be modeled as a graph, where the nodes correspond to the di�erent
Pareto-optimal objective vectors and the directed weighted edges correspond to
mutation probabilities. Instead of analyzing GEMO directly, we �rst de�ne and
analyze a more general randomized graph search algorithm, which is similar to a
process described and analyzed in (1). The purpose of this approach is two-fold.
First, it gives a more intuitive view of how the di�erent population-based algorithms
behave on the Pareto front. Second, it provides a general tool, like the upper bound
technique of Lemma 4, which facilitates and shortens the analysis of di�erent real
algorithms.

The algorithm assumes that we are given a random starting node v and a random
operator jump : V 7! V, which returns for each node v a neighbor v0 of v with
probability w(v; v0). The purpose of the following algorithm is to determine V and
E using a minimal number of calls to jump.

It will be shown that the above algorithm explores a graph G using O(jV jp log jEj)
calls to the function jump with high probability, where p is a lower bound on the
edge weights. The �rst lemma bounds the weight of a node during a run of the
algorithm.

16

Algorithm 5 Randomized Graph Search

1: w(v) 0
2: V fv1g; E fg
3: loop

4: Select a node v out of fv0 2 V jw(v) � w(v0) 8v0 2 V g uniformly.
5: w(v) w(v) + 1
6: v0 jump(v)
7: if v0 62 A then

8: w(v) 0
9: V V [fv0g; E E [f(v; v0)g

10: end if

11: end loop

Lemma 5

With probability at most � � e��, the weight of a node with � neighbors exceeds
�
p before all neighbors of the node are found.

Proof. Starting from w(v) = 0, the weight increases by 1 after each trial. Let us
suppose that the neighbors of v are fv1; :::; v�g. The weight exceeds �

p if it exceeds
this value before neighbor v1 is found or before neighbor v2 is found or ... Using
the Boole-Bonferroni inequality, we can bound the probability P we are looking
for, according to

P �
k=�X
k=1

Pk = � � P1

where Pk denotes the probability that neighbor vk has not been found yet and w(v)
exceeds �

p . Now we have

P1 = (1� p)
�
p � e�� P � � � e��

�

Lemma 6

With probability at most jEj � e��, the weight of some node exceeds �
p before all

nodes and edges are found.

Proof. There are N nodes that must �nd all their neighbors. The events that
the weight of a node exceeds �

p are independent for all nodes. Using the number of
neighbors �i of node vi, we �nd the probability

i=jV jX
i=1

�i � e�� = jEj � e��

�

17

Now, we can bound the total running time of the exploration algorithm.

Theorem 9

With probability at least 1� 1
jEjc , the above algorithm explores all nodes and edges

of G after (c+ 1) jV jp log jEj calls to the function jump.

Proof. With � = (c + 1) log jEj and Lemma 6 we �nd that with probability

1� 1
jEjc , the maximal weight of the nodes in V does not exceed (c+1)

p log jEj at the
time when the whole graph has been explored. Therefore, the function jump has
been called at most jV j (c+1)p log jEj times. �

Theorem 10

The running time of the GEMO applied to mLOTZ is bounded by O(nm=2 �
m
2 n logn) = �(nm=2n logn) with probability at least 1�O(n�m).

Proof. Let us again consider two phases depending on whether a Pareto-optimal
point has been found so far. In the �rst phase, there are two types of mutations
that lead to accepting new points: successful mutations and indi�erent mutations.
Successful mutations cause the active population to shrink to one element x and
increase the objective sum s =

Pm
i=1 fi(x) by one. Indi�erent mutations can cause

the population to grow, but keep s constant. Therefore, at most n successful mu-
tations are needed in the �rst phase. Since the probability of a successful mutation
is always at least 1=n, the expected running time of the �rst phase is O(n2). At
the end of the �rst phase, P contains exactly one element of the Pareto set, and
we can describe the behavior in phase 2 by the the model of Alg. 5. In this case,
jV j = (2n=m+ 1)m=2, jEj �mjV j and p = 1=n. Application of Theorem 9 leads to
the claimed bound. �

5.2 The Multiobjective Count Ones Problem (mCOCZ) Problem

The idea of the mCOCZ is again a concatenation of multiple bi-objective COCZ
problems. However, the bits shall be re-arranged so that the �rst n=2 bits represent
the cooperative part, where the number of ones contributes equally to all objectives.
The remaining parts represent the mutual tradeo�s between pairs of objectives.

De�nition 5

The pseudo-Boolean function mCOCZ : f0; 1gn ! INm is de�ned as follows, where

n0 = n=m :

mCOCZ(x1; : : : ; xn) = (f1; f2; : : : ; fm)

with

fj =

n=2X
i=1

xi +

(Pn0

i=1 xi+n=2+(j�1)n0=2 if j is oddPn0

i=1(1� xi+n=2+(j�2)n0=2) else:

18

Figure 4: Schematic view of the mCOCZ problem

where m = 2 �m0;m0 2 IN and n = m � n0; n0 2 IN.

This gives rise to a Pareto front with jF �j = (n=m+ 1)m=2 di�erent elements. The
construction principle of the mCOCZ problem is depicted in Fig. 4.

Theorem 11

For the mCOCZ problem, the following bounds for the expected running times

hold:

� �(nm=2n log n) for the (1+1)-EMO

� O(nm+1) for the SEMO and the FEMO

The running time of the GEMO applied to mCOCZ is bounded by �(nm=2n log n)
with probability at least 1�O(n�m).

The proof of Theorem 11 is given in the appendix.

6 From One-bit to Independent-bit Mutations

So far, all algorithms in this paper have been considered with one-bit mutations
only as this simpli�es the analysis. The disadvantage is that the one-bit mutation
operator is less relevant in practise, because it is a local operator and will fail on
problems, where jumps of more than one bit are required to proceed the search.

In this section, we discuss the use of the independent-bit mutation operator, i.e. in
a mutation step each bit is
ipped independently with probability 1=n. We claim
that upper bounds derived by the general technique of Lemma 4 also hold in the
case of independent-bit mutations. Our argumentation relies mainly on the success
probabilities. We can simply disregard all mutations where not exactly one bit

ips. The expected waiting time from one one-bit mutation to the next is (1 �
1=n)�(n�1) = O(e), which doesn't change the order of the total expected running

19

time. Lemma 4 then assures us that we can work with the success probabilities
alone and completely ignore those mutations, where not exactly one bit
ips.

The situation is di�erent when we try to verify more tighter bounds, like only for the
FEMO on the LOTZ problem. Here, the independent-bit mutations can produce
incomparable individuals and hence cause the population to grow before it reaches
the Pareto set. This problem is somehow similar to the one encountered in the
analysis of FEMO on COCZ with the one-bit mutations, and it is a so far unsolved
challenge to prove tight bounds for both cases.

The e�ect of mutations that
ip more than one bit has to be taken into account also
for the GEMO algorithm. Here, we are faced with the following type of negative
event that might enlarge the running time: O�spring can be accepted into the
population with a larger Hamming distance from the Pareto set than their parent. If
this o�spring then happens to be the �rst in the population to produce a dominating
child, then the minimum Hamming distance of the active part of the population
can increase. It is therefore necessary to bound the negative e�ect of this event.

Altogether it can be stated that bounds for the case of independent-bit mutations
can be derived for all scenarios considered in this paper, but that it remains open
whether these bounds are tight.

7 Summary and Discussion

In this paper, running time results were derived for di�erent types of evolutionary
algorithms on di�erent pseudo-Boolean multiobjective optimization problems. To
this end, we proposed and analyzed various population-based multiobjective EAs:

� The simple population-based algorithm SEMO, and

� Two improved population-based algorithms, FEMO and GEMO

and compared their running time against a multi-start (1+1)-EA based on the �-
constraint method. To facilitate the analysis of population-based EA, we derived
two analytical tools,

� A general upper bound technique based on a partition of the decision space
and

� A general randomized graph search algorithm.

While the former can be used to bound the search e�ort in to non-Pareto optimal
regions, the latter helps to analyze the time spent for the exploration of the Pareto
front itself.

20

(1+1)-EMO SEMO FEMO GEMO

LOTZ �(n3) �(n3) �(n2 logn) �(n2 log n)

COCZ �(n2 log n) O(n2 log n) O(n2 logn) �(n2)

mLOTZ �(nm=2n2) O(nm+1) O(nm+1) O(nm=2n logn)

mCOCZ �(nm=2n logn) O(nm+1) O(nm+1) O(nm=2n logn)

Table 1: Bounds on the expected running time derived in this paper.

We additionally de�ned two model problems, mLOTZ and mCOCZ, which are
composed of unimodal pseudo-Boolean functions and which are scalable in the
number of objectives m.

The bounds on the expected running times are summarized in Table 1. It was
shown that on the bi-objective problems, the SEMO needs a running time of the
same order as the (1+1)-EA, while it loses its competitiveness with increasing
number of objectives. This is mainly due to SEMO's poor ability to expand the
population on the Pareto set. The GEMO on the other hand has the lowest running
time on all problems, except for the mCOCZ for m > 2, where an upper bound of
the same order as for the (1+1)-EA could be given, but which is not necessarily a
tight bound.

A major diÆculty in the analysis of the population-based algorithms is the handling
of the population size. In order to be able to store the whole Pareto front, a
large enough population size must be allowed, implying that in the worst case all
possible objective vectors will be visited. If is it not possible to bound the size
of the population on its way towards the Pareto set, the running time advantage
compared with the (1+1)-EA vanishes. The strategy of the GEMO to focus the
search e�ort on the most recently successful o�spring counteracts the tendency of
the population to increase, as long as successful mutations are possible. The GEMO
can therefore be viewed as an algorithm that implicitly notices when the Pareto
front is reached and automatically adapts its behavior. The rationale behind the
GEMO strategy is that we �rst want to �nd the Pareto set on the straightest way
possible and only thereafter to spread out the population as quick as possible. This
way, the GEMO represents the opposite of the (1+1)-EA, which searches in all
di�erent directions from the start, while the behavior of the FEMO and the SEMO
is somehow in between these two extremes.

There certainly exist multiobjective problems where it is not easy to traverse the
Pareto set, e.g. if its elements are at a large Hamming distance from each other. In
such a case it might be necessary to spread out the population early in the search
in order to make all Pareto-optimal points reachable. Clearly, the GEMO strategy
would be wrong here, because it was designed to prevent exactly this. Nevertheless,
it can be argued that such a scenario is anyway the domain of scalarizing approaches
like the multi-start (1+1)-EA presented in this paper, and that any approach with
a population would be less eÆcient.

21

8 Conclusion

We have shown for two types of problems that a population-based multiobjective
optimizer has a provable lower running time than traditional scalarizing methods
using multistarts of single-objective optimizers. So far it has often been claimed,
but never shown, that the use of a population is bene�cial in the context of multiob-
jective optimization, even without the use of recombination. The results presented
in this paper are the �rst theoretical evidence for this claim. Instead of the ex-
plicit co-operation using traditional recombination operators, implicit cooperation
via measuring of success in the population is used here.

The FEMO algorithm was invented as an optimal strategy for searching homoge-
neous graphs. If the Pareto set of a multiobjective optimization problem has such a
structure, as in the examples presented here, the FEMO will traverse it eÆciently.
The FEMO, however, loses its eÆciency in cases where the population spreads out
quickly before the Pareto set is reached. This problem is circumvented by GEMO
algorithm, where a 'greedy' selection strategy maintains maximum progress towards
the Pareto set.

One of the many challenging problems in this area is to derive tight bounds for the
cases where the population of the multiobjective EA spreads out before the Pareto
set is reached.

Appendix

Proof of Theorem 3. As the Pareto front of the LOTZ problem contains n + 1
di�erent elements, the algorithm has to solve n + 1 sub-problems with di�erent
constraint values. Let Ti; 0 � i � n; denote the running time to solve the i-th
sub-problem whose optimum is given by the point with n � i leading ones and i
trailing zeroes. Each sub-problem can be further divided into n consecutive sub-
phases, the �rst i of which correspond to �nding the trailing zeroes starting from
the back and the following n� i by �nding the leading ones starting from the front.
At the beginning of each sub-phase, the bit under concern is with equal probability
0 or 1. If the bit is already set correctly, this sub-phase has length 0, otherwise it
follows a geometric distribution with parameter (n � 1)=n. Hence, all sub-phases
are independent and identically distributed with expectation n=2. Therefore,

E(T) =

nX
i=0

E(Ti) = (n+ 1)
n2

2
=

1

2
(n3 + n2)

The Pareto front contains n=2 + 1 di�erent elements, therefore the algorithm has
to solve n=2+ 1 sub-problems with di�erent constraint values. In each of the runs,
a bit-sting has to be produced where the �rst n=2 bits, the cooperative section,
are ones. We call this the end of phase 1. Its expected time is �(n log n) as it is
equivalent to solving the CountOnes problem with n=2 bits (6) and taking into

22

account that on average every second mutation will be realized in the �rst n=2 bits.
For the upper bound, consider the worst case, where at the end of the �rst phase
the �rst n=2 bits are set to one and the rest can be any string. Now there are
two alternatives. If the constraint is not satis�ed, then some of the ones must be
mutated to zero. If the constraint is already satis�ed, then it might be possible
to turn some of the zeroes into ones. In both cases, there are at most n=2 such
candidate bits, which can
ip at a random order, and the expected waiting time
for this event is again bounded by O(n logn). Thus, the expected time for solving
one sub-problem is �(n logn) and with n=2+1 such problems to solve gives a total
expected running time of �(n2 log n). �

Lemma 7
Let the population P of FEMO applied to LOTZ contain exactly one Pareto-optimal

solution and let c > 0 be an arbitrary constant. With probability at least 1�n1�c,
it takes at most c � n logn mutation trials per solution to generate all remaining n
Pareto-optimal solutions.

Proof. For each individual, the probability that its parent did not generate it
within its �rst c � n log n mutations is bounded by

(1� 1=n)c�n log n = (1� 1

n
)cn log n = (1� 1

n
)n

c log n

�
�
1

e

�c log n

=
1

nc

There are n individuals that must be produced with the given number of trials.
These events are independent, so the probability that at least one individual needs
more than c � n logn trials is bounded above by n1�c. �

Lemma 8

Let k 2 f1; : : : ; ng, a = k=n, and c > 0 be an arbitrary constant. The probability

that k = a �n individuals are produced in c �n log n mutation steps each is not larger

than (ea)�n
(1�c�c=n)

.

Proof. The probability that a parent has created a certain o�spring within the
�rst t = c � n logn mutations is 1 � (1 � 1=n)t. The probability that this happens
independently for a selection of k such parent-o�spring combinations can thus be
bounded as

(1� (1� 1=n)t)k � (1� 1

nc
n+1
n

)an � e
� an

nc(n+1)=n = (ea)�n
(1�c�c=n)

�

Proof of Theorem 4. Let the Pareto-optimal points be indexed according to the
order in which they have entered the set P . Let k 2 f0; : : : ; ng be the index of
the individual that required the largest number of mutations to be produced. We

23

apply Lemma 7 with c = 2 and notice that this individual k did not need more
than 2=p � logn trials with probability 1�O(1=n).

What remains to be shown for the upper bound is that no node will be sampled

more than t times during the algorithm. This can be guaranteed since there is
always a candidate x 2 P with w(x) � t (the element that has most recently
been added to P). Hence, any element whose weight has reached t will never be
sampled again. As there are n such elements, each of which is sampled at most
t times, the total number of samples (steps) the algorithm takes does not exceed
T = n � t = 2 � 1=p � n logn.
For the lower bound we apply Lemma 8 with c = 1=2 and k = n=2. With a

probability of 1 � pe�n(0:5�0:5=n)

there is an individual in the second half which
needs at least 1=2 �1=p � log n trials. Hence, all individuals in the �rst half have been
sampled at least 1=2 � 1=p � log n � 1 times each. Of course, all individuals in the
second half must be sampled at least once. The summation over all nodes gives a
total number of samples of at least 1=4 � 1=p � n logn with probability 1�O(1=n).

Using the probability bound from Lemma 7 the expected running time can be
bounded with T 0 = pT=(n log n) and

E(T 0) � 1 � Pf0 � T 0 < 1g+ 2 � Pf1 � T < 2g+ : : :

� 2 +

1X
c=3

c � PfT 0 � c� 1g

� 2 +
1X
c=1

(c+ 2)n�c

� 2 +
n

(n� 1)2
+

2

n� 1

as E(T) = O(1=p � n log n). �

Proof of Theorem 6. Consider again the two successive phases, where the �rst
phase ends when the �rst Pareto-optimal point is found. The algorithm starts with
a random point. A mutation can cause a step towards the Pareto front (successful
step) if in the �rst half of the bit-sting a zero is
ipped, or an incomparable step if
any bit in the second half is
ipped. If a one in the �rst half
ips, nothing happens,
because the mutant is dominated by the parent. If an incomparable mutant is not
already in the population, it will be accepted (line 21) while its parent remains,
causing the population to grow. A successful mutation leading to a dominating
child, however, will delete its parent and all other dominated individuals (line 16).
The remaining individuals in the population are temporarily disabled from o�spring
production (line 18). Now consider the Markov chain with n=2+1 states, where the
state is given by the number of zeroes in the �rst half of all population members
with w <1. The only possible transitions are from state i to i� 1, which happen
with probability i=n. The expected time to absorption into state 0, and hence the
time to reach the Pareto set, is bounded by �(n logn).

24

For the second phase we proceed similarly to the analysis of FEMO on LOTZ and
claim the following: If we allocate c �n mutation trials to each element of the Pareto
front, each one will have produced its neighbor with a probability depending on c.
The failure probability, i.e. the probability that we are not ready after all these cn2

mutations in total, can thus be bounded above by

nX
i=1

�
1� i

n

�cn

�
nX
i=1

�
1

ec

�i

� 1

ec � 1
�
�
1

2

�c�1

:

To bound the expected total number of mutations T we use the substitution T 0 =
T=n2, and

E(T 0) �P1
c=1 c � Pfc� 1 � T 0 � cg �P1

c=1 c � PfT 0 � c� 1g
�P1

c=1 c �
�
1
2

�c�2
= 4

P1
c=1 c �

�
1
2

�c
= 8

leads to an upper bound of E(T) = 8n2 for the second phase. �

Proof of Theorem 11. The (1+1)-EMO has to solve jF �j = (n=m + 1)m=2 con-
strained sub-problems. For each sub-problem we have to at least solve a Coun-

tOnes problem in the �rst n=2 bits, which takes �(n log n) time. This already
proves the lower bound. For the upper bound we pessimistically assume that we
then optimize each of the m=2 trade-o� sections separately. As all bits within the
same section are interchangeable, this is equivalent with solving m=2 CountOnes
problems of n=m bits, which again takes on average �(n log n) time and proves the
upper bound.

For SEMO and FEMO, we again apply Lemma 4 with a search space partition
where each objective vector constitutes its own subset. In each subset, let k denote
the Hamming distance from the Pareto set, i.e. the number of zeros among the �rst
n=2 bits. For each k there are jF �j subsets in the partition whose elements have
a Hamming distance k to the Pareto set and whose probability of improvement
pk equals k=n (
ipping one of the zeroes in the �rst half of the bit-string). With
Lemma 4 we can bound the number of mutations allocated to non-Pareto optimal
points by O(nm=2n logn). On the Pareto front, we want to bound the expected
time to �nd the k-th element under the conditions that k � 1 elements are already
found. Such a bound is given O(kn), and the summation over all k from 1 to jF �j
leads to a total expected running time of O(nm+1).

For GEMO, let us again consider two phases depending on whether a Pareto-
optimal point has been found so far. In the �rst phase, there are two types of
mutations that lead to accepting new points: successful mutations and indi�er-
ent mutations. Successful mutations cause the active population to shrink to one
element x and increase the objective sum s =

Pm
i=1 fi(x) by one. Indi�erent mu-

tations can cause the population to grow, but keep s constant. Therefore, at most
n successful mutations are needed in the �rst phase. Since the probability of a
successful mutation is always at least 1=n, the expected running time of the �rst

25

phase is O(n2). At the end of the �rst phase, P contains exactly one element of
the Pareto set, and we can describe the behavior in phase 2 by the the model of
Alg. 5. In this case, jV j = (n=m+ 1)m=2, jEj � mjV j and p � 1=n. Application of
Theorem 9 leads to the claimed bound. �

Acknowledgments

The research has been funded by the Swiss National Science Foundation (SNF)
under the ArOMA project 2100-057156.99/1. We are grateful to Emo Welzl, Ingo
Wegener and Oliver Giel for numerous discussions on the subject.

References

[1] N. Alon. A random process for searching a graph (comment). Personal com-
munication, 2002.

[2] H.-G. Beyer, H.-P. Schwefel, and I. Wegener. How to analyse evolutionary
algorithms. Theoretical Computer Science, 287:101 { 130, 2002.

[3] V. Chankong and Y.Y. Haimes. Multiobjective Decision Making Theory and

Methodology. Elsevier, 1983.

[4] C. A. Coello Coello, D. A. Van Veldhuizen, and Gary B. Lamont. Evolutionary
Algorithms for Solving Multi-Objective Problems. Kluwer, New York, 2002.

[5] K. Deb. Multi-objective optimization using evolutionary algorithms. Wiley,
Chichester, UK, 2001.

[6] S. Droste, T. Jansen, and I. Wegener. A rigorous complexity analysis of the
(1+1) evolutionary algorithm for separable functions with Boolean inputs.
Evolutionary Computation, 6(2):185{196, 1998.

[7] S. Droste, T. Jansen, and I. Wegener. On the analysis of the (1+1) evolutionary
algorithm. Theoretical Computer Science, 276(1{2):51{81, 2002.

[8] J. Garnier and L. Kallel. Statistical distribution of the convergence time of evo-
lutionary algorithms for long-path problems. IEEE Transactions on Evo-

lutionary Computation, 4(1):16 { 30, 2000.

[9] J. Garnier, L. Kallel, and M. Schoenauer. Rigorous hitting times for binary
mutations. Evolutionary Computation, 7(2):173{203, 1999.

[10] Y.Y. Haimes, L.S. Lasdon, and D.A. Wismer. On a bicriterion formulation of
the problems of integrated system identi�cation and system optimization.
IEEE Transactions on Systems, Man, and Cybernetics, 1:296 { 297, 1971.

[11] T. Hanne. On the convergence of multiobjective evolutionary algorithms. Eu-
ropean Journal Of Operational Research, 117(3):553{564, 1999.

26

[12] T. Hanne. Global multiobjective optimization with evolutionary algorithms:
Selection mechanisms and mutation control. In Evolutionary Multi-

Criterion Optimization (EMO 2001), Proc., LNCS 1993, pages 197{212,
Berlin, 2001. Springer.

[13] J. He and X. Yao. Drift analysis and average time complexity of evolutionary
algorithms. Arti�cial Intelligence, 127:57 { 85, 2001.

[14] J. He and X. Yao. From an individual to a population: An analysis of the �rst
hitting time of population-based evolutionary algorithms. IEEE Transac-

tions on Evolutionary Computation, 6(5):495 { 511, 2002.

[15] J. D. Knowles and D. W. Corne. Approximating the non-dominated
front using the Pareto Archived Evolution Strategy. Technical Report
RUCS/1999/TR/005/A, Department of Computer Science, University of
Reading, UK, 1999.

[16] M. Laumanns, L. Thiele, E. Zitzler, and K. Deb. Archiving with guaranteed
convergence and diversity in multi-objective optimization. In W. B. Lang-
don, E. Cant�u-Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan,
V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A. Potter, A. C. Schultz,
J. F. Miller, E. Burke, and N. Jonoska, editors, GECCO 2002: Proceedings

of the Genetic and Evolutionary Computation Conference, pages 439{447,
New York, 9-13 July 2002. Morgan Kaufmann Publishers.

[17] M. Laumanns, L. Thiele, E. Zitzler, E. Welzl, and K. Deb. Running time
analysis of multi-objective evolutionary algorithms on a simple discrete
optimization problem. In Parallel Problem Solving From Nature | PPSN

VII, 2002.

[18] Kaisa Miettinen. Nonlinear Multiobjective Optimization. Kluwer, Boston, 1999.

[19] H. M�uhlenbein. How genetic algorithms really work: I. mutation and hillclimb-
ing. In R. M�anner and B. Manderick, editors, Parallel Problem Solving from

Nature 2, pages 15{25, Amsterdam, 1992. Elsevier Science.

[20] G. Rudolph. Convergence Properties of Evolutionary Algorithms. Verlag
Dr. Kova�c, Hamburg, 1997.

[21] G. Rudolph. Evolutionary search for minimal elements in partially ordered
�nite sets. In V.W. Porto, N. Saravanan, D. Waagen, and A.E. Eiben, edi-
tors, Evolutionary Programming VII, Proceedings of the 7th Annual Confer-

ence on Evolutionary Programming, pages 345{353, Berlin, 1998. Springer.

[22] G. Rudolph. On a multi-objective evolutionary algorithm and its conver-
gence to the pareto set. In IEEE Int'l Conf. on Evolutionary Computation
(ICEC'98), pages 511{516, Piscataway, 1998. IEEE Press.

[23] G. Rudolph. Evolutionary Search under Partially Ordered Fitness Sets. In
Proceedings of the International NAISO Congress on Information Sci-

ence Innovations (ISI 2001), pages 818{822. ICSC Academic Press: Mil-
let/Sliedrecht, 2001.

27

[24] G. Rudolph and A. Agapie. Convergence properties of some multi-objective
evolutionary algorithms. In Congress on Evolutionary Computation (CEC

2000), volume 2, pages 1010{1016, Piscataway, NJ, 2000. IEEE Press.

[25] J. Scharnow, K. Tinnefeld, and I. Wegener. Fitness landscapes based on sorting
and shortest paths problems. In Parallel Problem Solving From Nature |

PPSN VII, 2002.

[26] D. A. Van Veldhuizen.Multiobjective Evolutionary Algorithms: Classi�cations,

Analyses, and New Innovations. PhD thesis, Graduate School of Engineer-
ing of the Air Force Institute of Technology, Air University, June 1999.

[27] I. Wegener. Methods for the analysis of evolutionary algorithms on pseudo-
boolean functions. In R. Sarker, X. Yao, and M. Mohammadian, editors,
Evolutionary Optimization, pages 349{369. Kluwer, 2000.

28

