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Abstract. This paper introduces a new technique called adaptive elitist-
population search method for allowing unimodal function optimization
methods to be extended to efficiently locate all optima of multimodal
problems. The technique is based on the concept of adaptively adjust-
ing the population size according to the individuals’ dissimilarity and
the novel elitist genetic operators. Incorporation of the technique in any
known evolutionary algorithm leads to a multimodal version of the al-
gorithm. As a case study, genetic algorithms(GAs) have been endowed
with the multimodal technique, yielding an adaptive elitist-population
based genetic algorithm(AEGA). The AEGA has been shown to be very
efficient and effective in finding multiple solutions of the benchmark mul-
timodal optimization problems.


1 Introduction


Interest in the multimodal function optimization is expanding rapidly since real-
world optimization problems often require the location of multiple optima in the
search space. Then the designer can use other criteria and his experiences to
select the best design among generated solutions. In this respect, evolutionary
algorithms(EAs) demonstrate the best potential for finding more of the best
solutions among the possible solutions because they are population-based search
approach and have a strong optimization capability. However, in the classic EA
search process, all individuals, which may locate on different peaks, eventually
converge to one peak due to genetic drift. Thus, standard EAs generally only
end up with one solution. The genetic drift phenomenon is even more serious
in EAs with the elitist strategy, which is a widely adopted method to improve
EAs’ convergence to a global optimum of the problems.


Over the years, various population diversity mechanisms have been proposed
that enable EAs to maintain a diverse population of individuals throughout
its search, so as to avoid convergence of the population to a single peak and to
allow EAs to identify multiple optima in a multimodal domain. However, various
current population diversity mechanisms have not demonstrated themselves to
be very efficient as expected. The efficiency problems, in essence, are related to
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some fundamental dilemmas in EAs implementation. We believe any attempt
of improving the efficiency of EAs has to compromise these dilemmas, which
include:


– The elitist search versus diversity maintenance dilemma: EAs are also ex-
pected to be global optimizers with unique global search capability to guar-
antee exploration of the global optimum of a problem. So the elitist strategy
is widely adopted in the EAs search process. Unfortunately, the elitist strat-
egy concentrates on some “super” individuals, reduces the diversity of the
population, and in turn leads to the premature convergence.


– The algorithm effectiveness versus population redundancy dilemma: For
many EAs, we can use a large population size to improve their effectiveness
including a better chance to obtain the global optimum and the multiple
optima for a multimodal problem. However, the large population size will
notably increase the computational complexity of the algorithms and gen-
erate a lot of redundant individuals in the population, thereby decrease the
efficiency of the EAs.


Our idea in this study is to strike a tactical balance between the two contra-
dictory issues of the two dilemmas. We propose a new adaptive elitist-population
search technique to identify and search multiple peaks efficiently in multimodal
problems. We incorporate the technique in genetic algorithms(GAs) as a case
study, yielding an adaptive elitist-population based genetic algorithm(AEGA).


The next section describes the related work relevant to our proposed tech-
nique. Section 3 introduces the adaptive elitist-population search technique and
describes the implementation of the algorithm. Section 4 presents the compar-
ison of our results with other multimodal evolutionary algorithms. Section 5
draws some conclusion and proposes further directions of research.


2 Related Work


In this section we briefly review the existing methods developed to address the
related issues: elitism, niche formation method, and clonal selection principle of
an artificial immune network.


2.1 Elitism


It is important to prevent promising individuals from being eliminated from
the population during the application of genetic operators. To ensure that the
best chromosome is preserved, elitist methods copy the best individual found
so far into the new population [4]. Different EAs variants achieve this goal of
preserving the best solution in different ways, e.g. GENITOR [8] and CHC [2].
However, “elitist strategies tend to make the search more exploitative rather
than explorative and may not work for problems in which one is required to find
multiple optimal solutions” [6].
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2.2 Evolving Parallel Subpopulations by Niching


Niching methods extend EAs to domains that require the location and mainte-
nance of multiple optima. Goldberg and Richardson [1] used Holland’s sharing
concept [3] to divide the population into different subpopulations according to
similarity of the individuals. They introduced a sharing function that defines the
degradation of the fitness of an individual due to the presence of neighboring
individuals. The sharing function is used during selection. Its effect is such that
when many individuals are in the same neighborhood they degrade each other’s
fitness values, thus limiting the uncontrolled growth of a particular species.


Another way of inducing niching behavior in a EAs is to use crowding meth-
ods. Mahfoud [7] improved standard crowding of De Jong [4], namely deter-
ministic crowding, by introducing competition between children and parents of
identical niche. Deterministic crowding works as follows. First it groups all popu-
lation elements into n/2 pairs. Then it crosses all pairs and mutates the offspring.
Each offspring competes against one of the parents that produced it. For each
pair of offspring, two sets of parent-child tournaments are possible. Determinis-
tic crowding holds the set of tournaments that forces the most similar elements
to compete. Similarity can be measured using either genotypic or phenotypic
distances. But deterministic crowding fails to maintain diversity when most of
the current populations have occupied a certain subgroup of the peaks in the
search process.


2.3 Clonal Selection Principle


The clonal selection principle is used to explain the basic features of an adaptive
immune response to an antigenic stimulus. This strategy suggests that the algo-
rithm performs a greedy search, where single members will be optimized locally
(exploitation of the surrounding space) and the newcomers yield a broader explo-
ration of the search space. The population of clonal selection includes two parts.
First one is the clonal part. Each individual will generate some clonal points and
select best one to replace its parent, and the second part is the newcomer part,
the function of which is to find new peaks. Clonal selection algorithm also incurs
expensive computational complexity to get better results of the problems [5].


All the techniques found in the literature try to give all local or global optimal
solutions an equal opportunity to survive. Sometimes, however, survival of low
fitness but very different individuals may be as, if not more, important than that
of some highly fit ones. The purpose of this paper is to present a new technique
that addresses this problem. We show that using this technique, a simple GA
will converge to multiple solutions of a multimodal optimization problem.


3 Adaptive Elitist-Population Search Technique


Our technique for the multimodal function maximization presented in this paper
achieves adaptive elitist-population searching by exploiting the notion of the
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Fig. 1. The relative ascending direction of both individuals being considered: back to
back, face to face and one-way.


relative ascending directions of both individuals (and for a minimization problem
this direction is called relative descending direction).


For a high dimension maximization problem, every individual generally has
many ascending directions. But along the line, which is uniquely defined by
two individuals, each individual only has one ascending direction, called the
relative ascending direction toward the other one. Moreover, the relative ascend-
ing directions of both individuals only have three probabilities: back to back,
face to face and one-way (Fig.1). The individuals located in different peaks
are called dissimilar individuals. We can measure the dissimilarity of the in-
dividuals according to the composition of their relative ascending directions and
their distance. The distance between two individuals xi = (xi1, xi2, · · · , xin) and
xj = (xj1, xj2, · · · , xjn) is defined by:


d(xi, xj) =


√
√
√
√


n∑


k=1


(xik − xjk)2 (1)


In this paper we use the above definition of distance, but the method we
described will work for other distance definitions as well.


3.1 The Principle of the Individuals’ Dissimilarity


Our definition of the principle of the individuals’ dissimilarity, as well as the
operation of the AEGA, depends on the relative ascending directions of both
individuals and a parameter we call the distance threshold, which denoted by
σs. The principle to measure the individuals’ dissimilarity is demonstrated as
follows:


– If the relative ascending directions of both individuals are back to back, these
two individuals are dissimilar and located on different peaks;


– If the relative ascending directions of both individuals are face to face or
one-way, and the distance between two individuals is smaller than σs, these
two individuals are similar and located on the same peak.


In niching approach, the distance between two individuals is the only measure-
ment to determine whether these two individuals are located on the same peak,
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Fig. 2. Determining subpopulations by niching method and the relative ascending di-
rections of the individuals.


but this is often not accurate. Suppose, for example, that our problem is to
maximize the function shown in Fig.2. P1 and P2 are two maxima and assume
that, in a particular generation, the population of the GA consists of the points
shown. The individuals a and b are located on the same peak, and the individual
c is on another peak. According to the distance between two individuals only, the
individuals b and c will be put into the same subpopulation, and the individual
a into another subpopulation (Fig.2-(a)). Since the fitness of c is smaller than
that of b, the probability of c surviving to the next generation is low. This is
true even for a GA using fitness sharing, unless a sharing function is specifically
designed for this problem. However, the individual c is very important to the
search, if the global optimum P2 is to be found. Applying our principle, the
relative ascending directions of both individuals b and c are back to back, and
they will be considered to be located on different peaks (Fig.2-(b)). Identifying
and preserving the “good quality” of individual c is the prerequisite for genetic
operators to maintain the diversity of the population. We propose to solve the
problems by using our new elitist genetic operators described below.


3.2 Adaptive Elitist-Population Search


The goal of the adaptive elitist-population search method is to adaptively adjust
the population size according to the features of our technique to achieve:


– a single elitist individual searching for each peak; and
– all the individuals in the population searching for different peaks in parallel.


For satisfying multimodal optimization search, we define the elitist individ-
uals in the population as the individuals with the best fitness on different peaks
of the multiple domain. Then we design the elitist genetic operators that can
maintain and even improve the diversity of the population through adaptively
adjusting the population size. Eventually the population will exploit all optima
of the mulitmodal problem in parallel based on elitism.


Elitist Crossover Operator: The elitist crossover operator is composed based
on the individuals’ dissimilarity and the classical crossover operator. Here we
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Fig. 3. A schematic illustration that the elitist crossover operation.


have chosen the random uniformly distributed variable to perform crossover
(with probability pc), so that the offspring ci and cj of randomly chosen parents
pi and pj are:


ci = pi ± µ1 × (pi − pj)
cj = pj ± µ2 × (pi − pj)


(2)


where µ1, µ2 are uniformly distributed random numbers over [0, 1] and the signs
of µ1, µ2 are determined by the relative directions of both pi and pj .


The algorithm of the elitist crossover operator is given as follows:


Input: g–number of generations to run, N–population size
Output: Pg–the population to next generation


for t←− 1 to N/2 do
pi ←− random select from population Pg(N));
pj ←− random select from population Pg(N − 1);
determine the relative directions of both pi and pj ;


if back to back then µ1 < 0 and µ2 < 0;
if face to face then µ1 > 0 and µ2 > 0;
if one-way then µ1 > 0, µ2 < 0 or µ1 < 0, µ2 > 0;


ci ←− pi + µ1 × (pi − pj);
cj ←− pj + µ2 × (pi − pj);
if f(c1) > f(p1) then p1 ←− c1;
if f(c2) > f(p2) then p2 ←− c2;
if the relative directions of p1 and p2 are face to face or one-way, and


d(p1, p2) < σs, then
if f(p1) > f(p2) then Pg ←− Pg/p2 and N ←− N − 1;
if f(p2) > f(p1) then Pg ←− Pg/p1 and N ←− N − 1;


end for
As shown above, through determining the signs of the parameters µ1 and µ2


by the relative directions of both p1 and p2, the elitist crossover operator gen-
erates the offspring along the relative ascending direction of its parents (Fig.3),
thus the search successful rate can be increased and the diversity of the popula-
tion be maintained. Conversely, if the parents and their offspring are determined
to be on the same peak, the elitist crossover operator could select the elitist to be
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retained by eliminating all the redundant individuals to increase the efficiency
of the algorithm.


Elitist Mutation Operator: The main function of the mutation operator is
finding a new peak to search. However, the classical mutation operator cannot
satisfy this requirement well. As shown in Fig.4-(a), the offspring is located on a
new peak, but since its fitness is not better than its parent, so it is difficult to be
retained, and hence the new peak cannot be found by this mutation operation.
We design our elitist mutation operator for solving this problem based on any
mutation operator, but the important thing is to determine the relative directions
of the parent and the child after the mutation operation. Here we use the uniform
neighborhood mutation (with probability pm):


ci = pi ± λ × rm (3)


where λ is a uniformly distributed random number over [−1, 1], rm defines the
mutation range and it is normally set to 0.5 × (bi − ai), and the + and − signs
are chosen with a probability of 0.5 each.


The algorithm of the elitist mutation operator is given as follows:


Input: g–number of generations to run, N–population size
Output: Pg–the population to next generation


for t←− 1 to N do
ct ←− pt + λ× rm;
determine the relative directions of both pt and ct;
if face to face or one-way and f(ct) > f(pt) then


pt ←− ct and break ;
else if back to back, then


for s←− 1 to N − 1 do
if [d(ps, ct) < σs] and [f(ps) > f(ct)] then break;
else Pg ←− Pg ∪ {ct} and N ←− N + 1;


end for
end if


end for
As shown above, if the direction identification between the parent and off-


spring demonstrates that these two points are located on different peaks, the
parent is passed on to the next generation and its offspring is taken as a new
individual candidate. If the candidate is on the same peak with another individ-
ual, the distance threshold σs will be checked to see if they are close enough for
fitness competition for survival. Accordingly, in Fig.4-(a), the offspring will be
conserved in the next generation, and in Fig.4-(b), the offspring will be deleted.
Thus, the elitist mutation operator can improve the diversity of the population
to find more multiple optima.
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Fig. 4. A schematic illustration that the elitist mutation operation.


3.3 The AEGA


In this section, we will present the outline of the Adaptive Elitist-population
based Genetic Algorithm(AEGA). Because our elitist crossover and mutation
operators can adaptively adjust the population size, our technique completely
simulates the “survival for the fittest” principle without any special selection
operator. On the other hand, since the population of AEGA includes most of
the elitist individuals, a classical selection operator could copy some individuals
to the next generation and deleted others from the population, thus the selection
operator will decrease the diversity of the population, increase the redundancy
of the population, and reduce efficiency of the algorithm. Hence, we design the
AEGA without any special selection operator. The pseudocode for AEGA is
shown bellow. We can see that the AEGA is a single level parallel (individuals)
search algorithm same as the classical GA, but the classical GA is to search
for single optimum. The niching methods is a two-level parallel (individuals and
subpopulations) search algorithms for multiple optima. So in terms of simplicity
in the algorithm structure, the AEGA is better than the other EAs for multiple
optima.


The structure of the AEGA:


begin
t←− 0;
Initialize P (t);
Evaluate P (t);
while (not termination condition) do


Elitist crossover operation P (t + 1);
Elitist mutation operation P (t + 1);
Evaluate P (t + 1);
t←− t + 1;


end while
end


4 Experimental Results


The test suite used in our experiments include those multimodal maximization
problems listed in Table 1. These types of functions are normally regarded as
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difficult to be optimized, and they are particularly challenging to the applica-
bility and efficiency of the multimodal evolution algorithms. Our experiments of
multimodal problems were divided into two groups with different purpose. We
report the results of each group below.


Table 1. The test suite of multimodal functions used in our experiments.


Deb’s function(5 peaks):
f1(x) = sin6(5πx), x ∈ [0, 1];
Deb’s decreasing function(5 peaks):
f2(x) = 2−2((x−0.1)/0.9)2 sin6(5πx), x ∈ [0, 1];
Roots function(6 peaks):
f3(x) = 1


1+|x6−1| , where x ∈ C, x = x1 + ix2 ∈ [−2, 2];
Multi function(64 peaks):
f4(x) = x1 sin(4πx1)− x2 sin(4πx2 + π) + 1; x1, x2 ∈ [−2, 2].
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Fig. 5. The suite of the multimodal test function.


Explanatory Experiments: This group of experiments on f3(x) aims to ex-
hibit the evolution details (particularly, the adaptive adjusting population size
details) of the AEGA for 2-D case, and also to demonstrate the parameter con-
trol of the search process of the AEGA. In applying the AEGA to solve the
2-D problem f3(x), we set the initial population size N = 2 and the distance
threshold σs = 0.4 or 2.


Fig.6 demonstrate clearly how the new individual are generated on a newly
discovered peak and how the elitist individuals reach each optimum in the mul-
timodal domain. Fig.6-(a) shows the 2 initial individuals, when σs = 0.4, the
population size is increased to 8 at the 50th generation(Fig.6-(b)), and Fig.6-(c)
show the 4 individuals in the population at the 50th generation when σs = 2.
When σs is smaller, new individuals are generated more easily. At the 50th gen-
eration, the result of σs = 0.4 seems to be better; but finally, both settings of the
AEGA can find all the 6 optima within 200 generations (Fig.6-(d)). This means
the change of the distance threshold does not necessarily influence the efficiency
of the AEGA.
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Fig. 6. A schematic illustration that the AEGA to search on the Roots function, (a) the
initial population; (b) the population at 50th generation (σs = 0.4); (c) the population
at 50th generation (σs = 2); (d) the final population at 200th generation (σs = 0.4 and
2).


Comparisons: To assess the effectiveness and efficiency of the AEGA, its per-
formance is compared with the fitness sharing, determining crowding and clonal
selection algorithms. The comparisons are made in terms of the solution quality
and computational efficiency on the basis of applications of the algorithms to
the functions f1(x)−f4(x) in the test suite. As each algorithm has its associated
overhead, a time measurement was taken as a fair indication of how effectively
and efficiently each algorithm could solve the problems. The solution quality and
computational efficiency are therefore respectively measured by the number of
multiple optima maintained and the running time for attaining the best result
by each algorithm. Unless mentioned otherwise, the time is measured in seconds
as measured on the computer.


Tables 2 lists the solution quality comparison results in terms of the num-
bers of multiple optima maintained when the AEGA and other three multimodal
algorithms are applied to the test functions, f1(x) − f4(x). We have run each
algorithms 10 times. We can see, each algorithm can find all optima of f1(x).
In the AEGA, two initial individuals increase to 5 individuals and find the 5
multiple optima. For function f2(x), crowding algorithm cannot find all optima
for each time. For function f3(x), crowding cannot get any better result. Shar-
ing and clonal algorithms need to increase the population size for improving
their performances. The AEGA still can use two initial individuals to find all
multiple optima. For function f4(x), crowding, sharing and clonal algorithms
cannot get any better results, but the successful rate of AEGA for finding all
multiple optima is higher than 99%. Figs.7 and 8 show the comparison results
of the AEGA and the other three multimodal algorithms for f1(x) and f2(x),
respectively. The circles and starts represent the initial populations of AEGA
and the final solutions respectively. In the AEGA process, we have only used 2
individuals in the initial population. In 200 generations, finally the 5 individuals
in the population can find the 5 multiple optima. These clearly show why the
AEGA is significantly more efficient than the other algorithms. On the other
hand, the computational efficiency comparison results are also shown in Tables
2. It is clear from these results that the AEGA exhibits also a very significant
outperformance of many orders compared to the three algorithms for all test
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functions. All these comparisons show the superior performance of the AEGA
in efficacy and efficiency.
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Fig. 7. A schematic illustration that the results of the algorithms for f1(x).
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Fig. 8. A schematic illustration that the results of the algorithms for f2(x).


Table 2. Comparison of results of the algorithms for f1(x)− f4(x).


5 Conclusion and Future Work


In this paper we have presented the adaptive elitist-population search method,
a new technique for evolving parallel elitist individuals for multimodal function
optimization. The technique is based on the concept of adaptively adjusting the
population size according to the individuals’ dissimilarity and the elitist genetic
operators.
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The adaptive elitist-population search technique can be implemented with
any combinations of standard genetic operators. To use it, we just need to in-
troduce one additional control parameter, the distance threshold, and the pop-
ulation size is adaptively adjusted according to the number of multiple optima.
As an example, we have endowed genetic algorithms with the new multiple tech-
nique, yielding an adaptive elitist-population based genetic algorithm(AEGA).


The AEGA then has been experimentally tested with a difficult test suite con-
sisted of complex multimodal function optimization examples. The performance
of the AEGA is compared against the fitness sharing, determining crowing and
clonal selection algorithms. All experiments have demonstrated that the AEGA
consistently and significantly outperforms the other three multimodal evolu-
tionary algorithms in efficiency and solution quality, particularly with efficiency
speed-up of many orders.


We plan to apply our technique to hard multimodal engineering design prob-
lems with the expectation of discovering novel solutions. We will also need to
investigate the behavior of the AEGA on the more theoretical side.


Acknowledgment. This research was partially supported by RGC Earmarked
Grant 4212/01E of Hong Kong SAR and RGC Research Grant Direct Allocation
of the Chinese University of Hong Kong.


References


1. D.E. Goldberg and J.Richardson, Genetic algorithms with sharing for multimodal
function optimization, Proc. 2nd ICGA, pp.41-49, 1987


2. Eshelman.L.J. The CHC adaptive search algorithm: how to have safe search when
engaging in nontraditional genetic recombination. In Rawlins, G.J.E., editor, Foun-
dation of Genetic Algorithms pp.265-283, Morgan Kaufmann, San Mateo, California,
1991


3. Holland and J.H. Adaptation in Natural and ArtificialSystem.University of Michi-
gan Press, Ann Arbor, Michigan, 1975.


4. K.A. De Jong, An analysis of the behavior of a class of genetic adaptive systems,
Doctoral dissertation, Univ. of Michigan, 1975


5. L.N.Castro and F.J.Zuben, Learning and Optimization Using the Clonal Selection
Principle, IEEE Transactions on EC, vol .6 pp.239-251, 2002


6. Sarma.J. and De Jong, Generation gap methods. Handbook of Evolutionary Com-
putation, pp.C2.7:1-C2.7:5, 1997


7. S.W.Mahfoud. Niching Methods for Genetic algorithms, Doctoral Dissertation, Il-
liGAL Report 95001, University of Illinois at Urbana Champaign, Illinois Genetic
Algorithm Laboratory, 1995


8. Whitley.D., The GENITOR algorithm and selection pressure: why rank-based allo-
cation of reproductive trials is best. Proc. 3rd ICGA, pp.116-121, 1989





		Introduction

		Related Work

		Elitism

		Evolving Parallel Subpopulations by Niching

		Clonal Selection Principle



		Adaptive Elitist-Population Search Technique

		The Principle of the Individuals' Dissimilarity

		Adaptive Elitist-Population Search

		The AEGA



		Experimental Results

		Conclusion and Future Work




