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Abstract: This paper describes a new Evolutionary 

Programming optimisation algorithm and a method of 

its application to multi-objective optimisation 

problems. Computational results are presented 

demonstrating the algorithm�s ability to find Pareto-

optimal solutions for a real-world problem in radio-

frequency component design. 

1 Introduction. 

In the engineering design process there is now 

widespread use of sophisticated and realistic numerical 

simulations of physical phenomena influencing design 

decisions. However, much of this use is on an ad hoc

basis, manually investigating a limited set of design 

alternatives. Considerable improvements could be 

achieved with a capability to perform automatic 

optimisation, minimising or maximising some derived 

quantity, a measure of �fitness� of the design. This is an 

extremely computationally intensive process when 

models must be run tens, or maybe hundreds, of times to 

effectively search design parameter space. Current High 

Performance Computing systems mostly derive their 

capacity from parallel architectures so for optimisation 

methods to be practical and effective the algorithms used 

must preferably have a large degree of concurrency. 

Over the past decade the computational capacity 

available to scientists and engineers has increased to the 

point where population-based methods of optimisation, in 

which many instances of a problem are treated 

simultaneously, have become practical for the solution of 

real-world problems (for surveys of methods and 

applications to multi-objective problems see Coello 1999 

or Van Veldhuizen 1999). Moreover, in engineering 

design, the evaluation of the objective function is so 

much slower than the rest of the algorithm, that such 

codes are capable of giving excellent speedup in spite of 

the need for global communication on each iteration. 

Genetic Algorithms (GA) now may be frequently 

encountered in application to engineering problems (for 

examples, see Alander 1995.) Often the design needs of a 

particular engineering problem require the optimisation of 

more than one objective. In addition to describing a new 

Evolutionary Programming optimization algorithm, this 

paper outlines a method of applying the algorithm to such 

multi-objective problems. 

2 Evolutionary computation 

In the general case, evolutionary computation seeks to 

use insight into natural processes to inform population-

based computational methods. These resulting 

Evolutionary Algorithms are popularly differentiated into 

three main classes (Bäck 1996) namely, Genetic 

Algorithms, Evolutionary Strategies and Evolutionary 

Programming. 

In the general, population-based method, multiple 

instances of a problem, each represented by a vector of 

parameter values, are subject to various operators so that 

a population of problem instances in a �parent� 

generation evolve into a �child� population.  This process 

is repeated through a number of generations. 

Widely known, Genetic Algorithms are generally 

accepted as having been developed by Holland (Holland 

1975). Genetic Algorithms, in contrast to Evolutionary 

Strategies and Evolutionary Programming, work on 

bitstrings of fixed length. For problems of continuous 

variable parameters the bitstring has a mapping to the 

vector of parameters, which generally implies they are 

capable of returning approximate, rather than exact, 

global minima. The bitstring representations are subject to 

processes of recombination through a crossover operator, 

an analogue of genetic inheritance in sexual reproduction, 

mutation and selection. 

Evolutionary Strategies, a joint development of 

Bienert, Rechenberg and Schwefel in the 1960s (see, for 

example, Schwefel 1965), operate on continuous 

parameters, using normally distributed mutation and 

recombination. Recombination is either discrete, choosing 

which parent will contribute each of the parameter values 

in turn to a child, or intermediate with child parameter 

values being formed from the (weighted) mean of parent 

parameters.  

Evolutionary Programming was developed by Fogel 

(Fogel 1962) and refers to that class of methods in 

evolutionary computation that apply a (uniform) random 

mutation to each member of a population, generating a 

single offspring. However, unlike other methods, no 



recombination operators are applied. Population members

may be considered as representative of species, rather 

than individuals, so phenotypic effects are emphasised

instead of genetic change. After mutation, selection takes

place, and half the combined population of parents and 

offspring enter the next generation. Such methods are

generally simple, robust and highly parallel. Underused 

for many years, they were further developed in the 1980s 

and their use became more widespread in single-objective 

optimisation. However, they remain underused in multi-

objective optimisation. A 1999 review of 272

publications in multi-objective evolutionary algorithms

found only one citation related to Evolutionary

Programming (Van Veldhuizen 1999). 

3 Self-organised Criticality 

The theory of self-organised criticality gives an insight

into emergent complexity in nature (Bak 1996, Bak

1993). Systems in stable equilibrium exhibit linear 

behaviour. The system�s response to a disturbance is

proportional to the size of the disturbance. Large 

fluctuations can only occur if several factors

simultaneously combine to act in the same direction,

which is unlikely to occur. Such a system, then, is also 

unlikely to adapt rapidly to the demands of an objective

function.

At the other end of the spectrum, chaotic systems can 

react violently to change, as small perturbations of initial

values are amplified in the system�s response. Chaotic

systems have no memory of their past states and cannot

evolve.

However, at the transition from a stable system to

chaos, complex behaviour can emerge. It is this critical 

state that may deliver efficient adaptation. Self-organised

critical systems evolve to the critical state without any

external organising force. This is advantageous because it 

implies no a priori information about the internal

functioning of the systems is required to develop an 

effective means of optimising an objective function

expressed in terms of externally exposed parameters and

observed system response. 

Bak contended that the critical state was �the most

efficient state that can actually be reached dynamically�.

Inspection of many natural phenomena suggests the

critical state is capable of efficient adaptation to 

environmental pressures using simple, robust systems. If 

optimisation is considered as the adaptation of a system

described by its parameters to the selective pressure of an

objective function, then it appears developing a critical

state may be a highly effective method of optimisation.

Bak sought to model evolution of species with a

simple model of inter-species interactions and selection.

A number of species were arranged, arbitrarily and 

randomly, in a ring topology. At each time step, the least 

fit species and its two neighbours in the ring were 

replaced by randomly instantiated new species. This

model was demonstrated to lead to complex behaviour,

with gradual evolution of the fitness of the whole

population.

Self-organised criticality is also exhibited by the

�sandpile model� (Bak 1996). In this model, �grains� of

sand are modelled numerically, stacking upon each other 

and toppling onto neighbouring stacks under simple rules.

The structure of this simple system can be observed to

evolve to an organised state with dynamics characteristic 

of criticality.

4 A New Evolutionary Programming 

Algorithm (EPSOC) 

In earlier applications of self-organised criticality to

optimisation, it has been proposed that a separately

computed power-law extinction rate be imposed on a

spatial diffusion model, or cellular GA (Krink 2001).

Krink and Thomsen�s model used pre-computed, stored

dynamics of a sandpile model to control the size of 

extinction events in a diffusion model. The algorithm

apparently does not attempt to evolve a population in a 

critical state, but indirectly imposes the observed 

behaviour of such a population.

In both the Bak-Sneppen nearest-neighbour,

punctuated equilibrium model, and Krink and Thomsen�s

spatial diffusion model the population members are

artificially arranged spatially: in a ring in the former, and

in a toroidal, 2D grid in the latter. In contrast, by

considering the trial solution parameter vectors as

defining a location in an n-dimensional parameter space, 

the spatial behaviour of the Bak-Sneppen model is

realized naturally in EPSOC.

In the following section we outline a new algorithm,

called EPSOC, which is largely a straightforward

implementation of Bak's model as an optimisation

algorithm. It diverges in applying a high degree of

greediness to the algorithm. Maintaining a large �elite� 

(in EPSOC, half the total population) can be viewed as a 

�constructive� operator. An analogous operator is

�Maxwell's demon�. Elitism has been clearly

demonstrated to improved the performance of a GA

(Zitzler 2000). 

4.1 Single Objective Implementation 

Restated, the general optimisation problem is: 

Minimize f(x) where: is an

arbitrary non-linear function and 

1: nf

ixx{x ni xx },,...,,...,0

(1)

For a population-based method, the population, p,

consists of a set of parameter vectors, x : 

},...,,...,{ 0 mip xxx . For the real-world engineering 

design problems being considered, values for f(x) are 

generally derived from execution of complex numerical

simulations requiring considerable computation time.

The steps of the EPSOC algorithm are: 



1. Initialise a random, uniformly-distributed 

population, p, and evaluate each trial solution, xi

i.

2. Sort the population by objective function value, 

f(x).

3. Select a set, B, of the nbad worst members of the 

population. For each member of B, add to the set 

its two nearest neighbours in parameter space 

that are not already members of the set, or from 

the best half of the sorted population.

4. Apply a random, uniformly-distributed mutation 

to the selected set, B, i.e. re-initialise them. For 

all other members of the population, generate a 

�child� by applying a small (~10% of parameter 

range), random, uniformly-distributed mutation 

to the �parent� member. 

5. Evaluate each new trial solution, f(x).

6. If a child has a better objective function value 

than its parent, replace the parent with the child. 

7. Repeat from step 2 until a preset number of 

iterations have been completed. 

As each set of parameters defining a trial solution is 

independent of all others, it is immediately apparent that 

the evaluation of trial solutions at steps 1 and 5 can be 

performed concurrently. Since the evaluation of the 

objective function completely dominates the execution 

time, from Amdahl�s Law we can expect extremely high 

parallel efficiency. 

In a previous study we applied the single objective 

implementation of EPSOC and compared it to a range of 

optimization algorithms (Lewis 2003), including a GA 

(Genesis 5.0, Grefenstette 1984), a parallel gradient 

descent method (P-BFGS), Dennis and Torczon's MDS, 

the Simplex method of Nelder and Mead, a Reducing Set 

Concurrent Simplex (RSCS), and line-searching variants 

of Simplex and RSCS. 

All the algorithms were tested on six case studies 

drawn from real-world problems, from antenna and 

aerofoil design to quantum electrodynamical simulations 

of laser-atom interactions. Each algorithm was run 

multiple times on each test case. The GA and EPSOC 

were limited to a maximum number of iterations 

determined empirically to be equivalent to the time the 

other algorithms took to converge. On each test case, tests 

were performed to determine optimal operational 

parameter settings for the GA and EPSOC. It was noted 

that statistically significant differences in results returned 

for different parameter settings were more common for 

the GA than for EPSOC, i.e. EPSOC was less sensitive to 

operational parameter tuning. 

Shapiro-Wilk testing of the distributions of returned 

values indicated the results were not normally distributed, 

so non-parametric, descriptive statistical methods were 

used to analyse the results. 

The Kruskal-Wallis H test statistic was used to rank 

the algorithms on each test case, and determine if any 

algorithm performed significantly better than others. A 

pair-wise comparison was performed on the two highest-

ranked algorithms on each case, using the Mann-Whitney 

U test statistic. In 4 of 6 test cases EPSOC was 

demonstrated to be the best algorithm on these test cases 

drawn from real-world problems, to a significance level 

of better than 0.05. In the remaining cases there was no 

statistically significant difference between the 

performance of EPSOC and the other leading algorithm. 

4.2 Multi-Objective Optimisation 

When tackling real-world problems, particularly in the 

field of engineering design, the desired optimal design 

may not be expressed in terms of a single objective. 

Product designers may wish to maximise some element of 

the performance of a product, while minimising the cost 

of its manufacture, for example. Different objectives may 

be conflicting, with little a priori knowledge as to how 

they interact. In the past, common practice was to 

optimise for a single objective while applying other 

objectives as penalty functions or constraints, a less than 

ideal approach. Evolutionary Algorithms (EA) have 

recently become more widely used for their ability to 

work well with large-scale, multi-objective problems 

(Van Veldhuizen 1999). 

In general, there remains a role for a human Decision 

Maker (DM) in choosing between competing objectives. 

Multi-objective optimisation algorithms can broadly be 

categorised by when in the optimisation process the DM 

intervenes (Zitzler 1999, Van Veldhuizen 2000): 

Decision making before search: the DM 

aggregates the objectives into a single objective, 

including preference information (or weights). 

The problem is essentially reduced to a single 

objective optimisation. 

Decision making during search: the DM 

interactively supplies preference information to 

guide the search 

Decision making after search: the DM selects 

from a set of candidate solutions resulting from 

the search. 

It may be noted that the first two of these approaches 

would seem to require some a priori knowledge of the 

problem domain in order to effectively provide preference 

information, particularly for methods involving 

aggregation. It has been asserted (Zitzler 1999, Coello 

1998) that the first approach does not return Pareto-

optimal solutions in the presence of non-convex search 

spaces. The multiobjective EPSOC method described in 

this paper  (EPSOC-MO) falls into the last category. 

EAs applied to multi-objective optimisation need to 

address two main problems: 

How is fitness assignment and selection 

performed? 

How is a diverse population maintained, to aid 

search space exploration? 

Fitness assignment can conceptually be divided into a 

number of approaches (Zitzler 2002): 

Aggregation-based 

Criterion-based 

Pareto-based



A great deal of recent work has concentrated on the use of 

pareto-based selection. EPSOC-MO does not make

explicit use of pareto dominance, selection being made

according to rankings based on single objective function 

values, and their combination. It does not do this,

however, by aggregation of the objectives.

In approach, EPSOC-MO can be seen as a hybrid of

criterion-based and Pareto-based fitness assignment and

selection. Fitness is determined by objective function

values in turn, a criterion-based assignment. But

selection, for extinction, is tempered by consideration of

ranking against all objectives, an implicit Pareto-based

approach.

Diversity of the population is addressed in EPSOC-

MO by the same means as for its use for single objective

optimisation, i.e. achieving a self-organised critical state 

through operations of mutation and extinction. Of the

common methods (Zitzler 1999):

Fitness sharing 

Restricted mating

Isolation by distance

Overspecification

Reinitialization

Crowding

the method of species extinction in EPSOC is closest to a

form of reinitialization, though of a carefully selected 

section of the population.

EPSOC operates on an ordered population, ranked by

fitness according to the objective function. However, for

it to be used for multi-objective optimisation it would not

be possible to sort the population according to two or 

more objectives simultaneously. EPSOC-MO, instead

maintains an ordered set for each objective, with a

mapping into the original population. An example for two

objectives is illustrated in Figure 1.

Set ordered

according to

objective 1

Mapping 1

Original
population

Set ordered

according to

objective 2

Mapping 2

Figure 1: Ordered set mapping for multi-objective EPSOC

Referring to the outline of the EPSOC algorithm in

Section 3.1, half of the nbad members selected come

from the worst members of the first ordered set, and the

remainder from the worst members of the second ordered 

set, with the proviso that those chosen from the first set 

not be among the elite of the second set and vice versa.

To implement this restriction, a set of reverse

mappings, from the original population back into the

ordered sets, was also maintained. Their use is illustrated

in Figure 2. A member chosen from the first set, for

example, would be mapped into the original population,

and then into the second set. It would only be chosen for 

extinction if it were not in the elite of either set. For the

example shown in Figure 2, the chosen member from set

1 would be rejected since it is in the elite of set 2. Similar

restrictions are imposed on the choice of nearest 

neighbours at step 3 of the algorithm. For a problem

involving more objectives, chosen members would be

tested against the elite of each set in turn. The elites of

each set were chosen so that their sum was the size of the 

elite of the single objective implementation of EPSOC.

Set ordered

according to

objective 1

Mapping 1 

Original

population

Set ordered

according to

objective 2

Mapping 2 

Figure 2: Use of reverse mappings in multi-objective EPSOC 

The use of archives to preserve the Pareto-optimal set is 

commonplace in multi-objective evolutionary algorithms

(MOEAs) (Zitzler 2002) and remains an area of active

research (Laumanns 2002). Most algorithms use the

archive as a form of �non-volatile� storage, serving only 

to preserve Pareto-optimal approximations. Only a few

use the archive as a dynamic element in the algorithm

(Knowles 1999).

In contrast, in EPSOC-MO the ranked sets play an 

integral role in the operation of the algorithm. These sets 

not only preserve the approximations to the Pareto-

optimal set, but also mediate between  objectives during

the search. In this regard they can be considered as 

playing a role in the decision-making process; in effect

decision making during search but without the interaction

of the Decision Maker. In a sense, through these sets

EPSOC-MO maintains multiple, �virtual� archives.

5 A Case Study: Multi Objective Radio 

Frequency Design 

A simple experiment was constructed on a data set from a 

case study in radio-frequency simulation. In this problem,

a ceramic bead must be designed to minimise distortion of 

the radiation pattern of a mobile telecommunications

handset during testing (Lewis 2000). The objective

function value, which is computed by a FDTD full-wave

analysis of the cable structure, is a measure of 

transmission strength through the bead at 1 GHz. The

dataset for the case study, of which isosurfaces for a 

particular value are shown in Figure 3, is quite complex

and rich in structure. It contains 298 local minima. The 



entire dataset is available as part of the Nimrod/O

optimisation toolset (Abramson 2000) 

A multiobjective version of this original problem can 

be derived by formulating a second objective for this test

case. In this new scenario, not only is gain to be

optimised, but the length of the optimal bead must also be

minimised. This is in some sense a realistic goal, in that a 

shorter, more compact component might be desirable in

practice. Ten  runs of EPSOC-MO were performed using

these objectives, each run with a population of 64 and a

maximum iteration limit set to 500. The length of the

bead was permitted in the range 35mm to 60mm and the

range of the gain values to be minimised was from �39.85 

to 48.52. 

Figure 3: Isosurfaces of the gain for the ceramic bead test case

Gain and length values for the points returned at the top

of the set ordered by gain for each run are shown in Table

1. The median gain for this set of points is �22.35, 

compared with a median of 34.99 for the whole dataset.

The median length of these returned points is 48.1, 

compared with a median of 47.5 for the whole dataset. 

Gain Length

-12.27 50.07

-26.98 48.44

-27.55 51.77

-14.35 41.37

-20.41 41.71

-30.42 51.68

-7.73 41.34

-35.57 51.97

-10.89 42.98

-24.29 47.79

Table 1: Gain and length of �best� points from 10 runs 

The entire decision space was scanned at integer

intervals, and the results are plotted in objective space in 

Figure 4 to illustrate the distribution of solutions in

objective space, and give some indication of the location 

of Pareto-optimal solutions. It should be noted that the

test case uses these sample points and linear interpolation 

between them to provide objective function values, i.e.

these are extremal points. The �best�  returned values are 

highlighted. By inspection, it can be seen that the returned 

points approach the Pareto-optimal front of minimal gain

values combined with minimal length.

The top-ranked points in the gain-ranked virtual

archive in any particular run also approach the Pareto-

optimal front. The top ten points from a representative run 

are shown in Figure 5, superimposed on the same

parameter sweep data as Figure 4. 

Figure 4: Multi-objective test case objective space sampling

with �best� points from 10 runs 

Figure 5: Multi-objective test case objective space sampling

with archive points from a single run 

In order to compare the effect of optimising for multiple

objectives, another 10 runs were performed, the only

change being the removal of the second objective

function (relating to the length). The median gain of the

set of points returned from these runs was �29.97, and the

median length of the optimised beads was 49.0. The 

length of the returned beads was purely a product of the

location of significant minima in the dataset, of which

there are two dominant, one in a region of parameter

space corresponding to a length of 52mm which also 

contains the global minimum, and another at length

42mm. The returned points, superimposed on the

parameter sweep data, are shown in Figure 6. It can be

seen that returned points are clustered at higher gain

values, unlike the points in Figure 4 which are more

spread along the Pareto-optimal front.

The median gain returned for the multi-objective test 

case is neither near that returned for the single-objective, 

gain-only case, nor near the median of the entire dataset.



It lies between and demonstrates EPSOC-MO is capable 

of returning a compromise solution, independent of an

external Decision Maker supplying preference

information after the search. 

The median length returned for the multi-objective

case lay close to the median for the entire dataset. It could

be concluded that behaviour of EPSOC-MO was neutral

toward the length objective, but evidence from the single-

objective test case indicates this value may also be a 

compromise between lengths for two solutions of 

attractive gain in different regions of parameter space. 

Figure 6: Test case objective space sampling with �best� points

from 10 runs, optimised for gain only

6 Conclusion 

An Evolutionary Programming algorithm using concepts

of Self-Organised Criticality, EPSOC, has been described

and a method for its use for multiobjective optimisation

outlined. The algorithm uses multiple, �virtual� archives

both to store optimal results and also to mediate between

objectives during selection. A test of the implemented

algorithm on a challenging test case with a highly

nonlinear objective has demonstrated its ability to return

close approximations to Pareto-optimal solutions.

These are preliminary results, and by no means

exhaustive. Several questions remain as to the efficacy of

EPSOC for multi-objective optimisation, not the least

being the scalability of the method, but the results

returned so far are quite promising. Further work is 

necessary to compare EPSOC-MO with other, widely-

used MOEAs, and to demonstrate its behaviour on 

standard test problems
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