
Finding Pareto-Optimal Set by Merging Attractors for
a Bi-Objective Traveling Salesmen Problem

Weiqi Li

School of Management, University of Michigan-Flint, 303 East Kearsley Street,
Flint, Michigan 48502, U.S.A.

weli@umflint.edu

Abstract. This paper presents a new search procedure to tackle multi-objective
traveling salesman problem (TSP). This procedure constructs the solution at-
tractor for each of the objectives respectively. Each attractor contains the best
solutions found for the corresponding objective. Then, these attractors are
merged to find the Pareto-optimal solutions. The goal of this procedure is not
only to generate a set of Pareto-optimal solutions, but also to provide the in-
formation about these solutions that will allow a decision-maker to choose a
good compromise solution.

1 Introduction

A multi-objective optimization seeks to optimize a vector of non-commensurable and
often competing objectives. In other words, we whish to find a set of values for the
decision variables that optimizes a set of objective functions. The general multi-
objective combinatorial optimization problem can be formulated as:

Zz

zxf

zxf
zxf

xfoptimize

kk

∈=



















=

=
=

=

)(

)(
)(

)(22

11

M

Xxxxxtosubject n ∈=),,,(21 K

(1)

where x is the decision vector, or solution, and X∈ℜn is the n-dimensional decision
space, consisting of a finite set of feasible solutions. The objective function f(x) maps
x into Z∈ℜk, the k-dimensional objective space, where k is the number of objectives.
Whereas a single-objective problem is typically studied in decision space, multi-
objective optimization is mostly studied in objective space. The image of a solution in
the objective space is a point, z = [z1, z2, …, zk]. A point, z, is attainable if there exists
a solution x∈X such that z = f(x). The set of all attainable points is denoted as Z. The
ideal objective vector z* is defined as z* = [optf1(x), optf2(x), …, optfk(x)], which is
obtained by optimizing each of the objective functions individually. Normally, the
ideal objective vector is not attainable because of the conflict among the objectives.

Therefore, there will not exist a single optimal solution to the multi-objective combi-
natorial problem. Instead, we must look for “trade-off” solutions when dealing with a
multi-objective optimization problem.

Objective vectors are compared according to the concept of Pareto-optimality and
dominance relation. A partial ordering can be applied to solutions to the problem by
the dominance criterion. A solution xa∈X is said to dominate a solution xb∈X if xa is
superior or equal in all objectives and at least superior in one objective. Mathemati-
cally, the concept of Pareto optimality is as follows [21]: assume, without loss of
generality, a minimization problem, and consider two decision vectors, xa, xb ∈X, then
xa is said to dominate xb (often written as ba xx f) if and only if

∧≤∈∀)()(:},...,2,1{ b
i

a
i xfxfki

)()(:},,2,1{ b
j

a
j xfxfkj <∈∃ K

(2)

The solution xa is said to be indifferent to a solution xb, if neither solution is domi-
nating the other one. When no a priori preference is defined among the objectives,
dominance is the only way to determine if one solution performs better than the other
does. The concept of Pareto optimality almost gives us a set of solutions called the
Pareto-optimal set. The solutions in the Pareto-optimal set are also called nondomi-
nated, characterized by the fact that starting from a solution within the set, one objec-
tive can only be improved at the expense of at least one other objective being deterio-
rated. The curve formed by joining the Pareto-optimal solutions is known as a
Pareto-optimal front. The goal of solving multi-objective problem is to find the
Pareto-optimal set for the decision-maker to choose the most preferred solution. A
solution selected by the decision-maker always represents a compromise between the
different objectives.

The bounds on the Pareto-optimal set in the objective space can be defined by the
ideal point and the nadir point [16]. The ideal objective vector, z*, denotes an array of
the lower bound of all objective functions. For each of the k conflicting objectives,
there exists one different optimal solution. An objective vector constructed with these
individual optimal objective values constitutes the ideal objective vector z*. In gen-
eral, the ideal objective vector corresponds to a non-existent solution. This is because
the optimal solution for each objective function need not be the same solution. The
nadir objective vector, znad, represents the upper bounds of each objective in the entire
Pareto-optimal set.

The problem of finding the true Pareto-optimal set is NP-hard [5]. Thus, the goal
of the multi-objective combinatorial optimization is to approximate the Pareto-
optimal set. Over the years, the work of a considerable number of researchers has
produced an important number of techniques to deal with multi-objective optimiza-
tion problems [4], [7], [16], [22].

The TSP is the most well-known of all NP-hard combinatorial optimization prob-
lems. Multi-objective TSP is even harder than its corresponding single-objective
version. Some researches have specifically treated the multi-objective TSP. Fischer
and Richter [8] used a branch and bound approach to solve a TSP with two (sum)
criteria. Gupta and Warburton [9] used the 2- and 3-opt heuristics for the max-
ordering TSP. Sigal [20] proposed a decomposition approach for solving the TSP

with respect to the two criteria of the route length and bottlenecking, where both
objectives are obtained from the same cost matrix. Tung [23] used a branch and
bound method with a multiple labeling scheme to keep track of possible Pareto-
optimal tours. Melamed and Sigal [14] suggested an e-constrained-based algorithm
for bi-objective TSP. Ehrgott [6] proposed an approximation algorithm with worst
case performance bound. Hansen [10] applied the tabu search algorithm to multi-
objective TSP. Borges and Hansen [2] used the weighted sums program to study the
global convexity for multi-objective TSP. Jaszkiewicz [11] proposed the genetic local
search which combines ideas from evolutionary algorithms, local search with modifi-
cations of the aggregation of the objective functions. Paquete and Stützle [18] pro-
posed the two-phase local search procedure to tackle bi-objective TSP. During the
first phase, a good solution to one single objective is found by using an effective
single objective algorithm. This solution provides the starting point for the second
phase, in which a local search algorithm is applied to a sequence of different aggrega-
tions of the objectives, where each aggregation converts the bi-objective problem into
a single objective one. Yan et al. [24] used an evolutionary algorithm to solve multi-
objective TSP. Angel, Bampis and Gourvès [1] proposed the dynasearch algorithm
which uses local search with an exponential sized neighborhood that can be searched
in polynomial time using dynamic programming and a rounding technique. Paquete,
Chiarandini and Stützle [17] suggested a Pareto local search method which extends
local search algorithm for the single objective TSP to bi-objective case. This method
uses an archive to hold non-dominated solutions found in the search process.

This study proposes a new search procedure to tackle multi-objective TSP. Fig. 1
sketches the schematic of the search procedure. This procedure incorporates the rela-
tionship between the problem presentation and data structure into the algorithm de-
sign. For a TSP with k objectives, this procedure first constructs the solution attractor
for each of objectives individually. The solution attractor contains a set of the best
solutions found for the corresponding objective. It is also reasonable to believe that
the attractor consists of a large proportion of low-cost edges for the objective. These
edges are in the extreme for that objective function. Then the procedure combines
these k attractors in order to mix the edges contained in these attractors. Finally, the
Pareto-optimal solutions can be found from these mixed edges.

Fig. 1. Schematic of the search procedure

TSP with
k objectives

Attractor for f1

Attractor for fk

∶ Pareto set

Constructing the attractor
for each objective

Merging the attractors to
find the Pareto set

The remaining of the paper is organized as follows. Next section introduces a
method for constructing a solution attractor for a single-objective TSP. Section 3
describes the proposed procedure for finding the Pareto-optimal solutions for multi-
objective TSP and presents the computational results for a bi-objective TSP instance.
The goal of this procedure is not only to generate a set of Pareto-optimal solutions
effectively, but also to provide information about these solutions that will allow a
decision-maker to choose a good compromise solution. The final section concludes
this paper.

2 Constructing Solution Attractor for TSP

Local search heuristics is a widely used general approach to find reasonable solutions
to hard combinatorial optimization problems. Local search algorithms are simple to
implement and quick to execute, but they have the main disadvantage that they are
locally convergent.

When we apply a local search algorithm to the TSP, the common opinion about lo-
cal optima is that the set of local optima forms a “big valley” structure in the solution
space [3], [13], [15], [19]. In fact, it is a solution attractor, i.e., a set of fixed points,
that drives the local search trajectories into the small region of the solution space
[12]. The attractor is formed by the set of all local optimal tours. Since the global
solution is a special case of local optimal solutions, the global tour is expected to be
included in the attractor.

Li [12] suggests a procedure for constructing a solution attractor for single-
objective TSP. For a TSP instance, the solution space contains the tours that the
salesman may traverse. Li's procedure uses an n×n matrix E, called hit-frequency
matrix, to record the number of hits on each edge by a set of local optimal tours. The
hit-frequency matrix explores the information on edges and thus stores rich informa-
tion about the solution attractor for the TSP instance. If we use a local search algo-
rithm and generate all possible search trajectories for the TSP instance, when all
search trajectories reach their local optima we could obtain the real attractor for the
problem. Then, when all involved edges are recorded in the hit-frequency matrix, we
should immediately recognize the attractor and easily identify the global optimal tour.
Unfortunately, this "all possible search trajectories" scenario is unrealistic, due to the
enormous amount experimental data required. A more realistic goal would be gather-
ing a moderate sample of local optima to construct the solution attractor and infer
statistical properties of the attractor.

We denote all edges that are contained in the global optimal tour as G-edges.
When a local search process searches for an optimal solution, the search trajectory is
constantly adjusting itself by disregarding unfavorable edges and trying to collect G-
edges. If it successfully collects all of the G-edges, the final tour is the global optimal
tour. If it only collects some of the G-edges, it ends up at a local optimum. If a tour
contains none of the G-edges, the search process can always improve the tour by
exchanging edges. Local heuristic algorithms cause individual search trajectories
explore only a tiny fraction of the enormous solution space when n is large. Thus, it is
difficult for a particular search trajectory to select G-edges globally, and a search

trajectory often ends at a local optimum which contains most G-edges and some un-
favorable edges. The more G-edges a local optimal tour contains, the closer to the
global optimum it is. Local optimal tours are actually linked together by sharing the
G-edges. When a solution attractor is constructed by a large number of local optimal
tours, the attractor should consist of all G-edges and some unfavorable edges, called
noise.

Fig. 2. The procedure for contracting solution attractor of local search in TSP

Fig. 2 presents the procedure for constructing solution attractor for TSP. The pro-
cedure is very straightforward: randomly generating a sample of local optimal solu-
tions to construct the attractor, and then removing the noise contained in the attractor
to identify the core of the attractor. In the procedure, Q is a TSP instance. si is an
initial solution generated by Initial_Tour(). sj is a local optimum outputted by
a local search process Local_Search(). E is the hit-frequency matrix to record M
local optima. Each time when a search trajectory reach a local optimal solution sj, the
function Update() records the edges contained in sj into E. Since a solution attrac-
tor contains G-edges and noise, the function Find_Core() is used to try to remove
the noise. The remaining edges form the core of the attractor and are recorded into the
matrix A. Finally, the matrix A is searched by an exhausted enumeration process Ex-
hausted_Search() to generate all solutions in the attractor core. The hit-
frequency matrix E plays an important role for collecting all information about the
solution attractor. It acts as an input/output data table where the entry eij records the
number of times that the corresponding edge is hit by the set of local optimal tours.

A solution representation is a mapping from the solution space of a possible solu-
tion to a solution space of encoded configuration within a particular data structure.
For a TSP with n cities, there are many ways to represent a tour in the computer. One
way is to make an ordered list of the cities to visit, with a return to the home city
being implied. Another way is with an n×n matrix E = [eij], such that eij = 1 if and
only if city j follows city i in the tour. A tour therefore must always have exactly one
"1" in every row and every column. The matrix E is an effective data structure that
allows the local search process to maintain a functional link among the local optimal
tours. The basic idea of the hit-frequency matrix E used in the procedure is to build a
probabilistic representation of the solution attractor based on the M local optimal
tours and then generate new candidate solutions based on the knowledge contained in
the attractor.

procedure TSP-Attractor(Q)
begin
 repeat
 si = Initial_tour();
 sj = Local_Search(si);
 Update(E(sj));
 until StoppingCriterion = M;
 A = Find_Core(E);
 Exhausted_Search(A)
end

The hit-frequency value in eij represents the probability that the corresponding
edge in the TSP will be hit by a local optimal tour. If M is large enough, this value
also can be viewed as the probability that the corresponding edge is a G-edge. For
example, if an edge is hit by 73 percent of M local optimal tours, although each local
optimum selects the edge based on its neighborhood structure, the edge is globally
superior since the edge is reached by these individual optima from different search
trajectories. The hit-frequency matrix gives us important insights into the nature of
the search space and provides an opportunity for us to concentrate the search in the
region that contains the most promising solutions. When we restrict our attention to a
smaller solution space represented by the attractor, the number of possibilities is no
longer prohibitive.

The hit-frequency matrix E has capacity of learning. The basis of learning in the
matrix is the generation of long-lived memory and statistics-based pattern. The matrix
not only plays a fundamental role in the organization of memory, but also provides a
powerful way of discovering the pattern in the searched edges. We can exploit this
information to generate more local optimal tours, and even the global optimal tour.

Fig. 3 uses a simple 20-city TSP example to explain the attractor-construction pro-
cedure. This example generates M = 100 random initial tours. Since these initial tours
are randomly produced, the edges should have an equal probability to be selected.
The darkened elements in the matrix shown in Fig. 3(a) represents the union of the
edges found in these initial tours. After applying the 2-opt local search algorithm to
the initial tours, we obtain 100 local optimal tours. Fig. 3(b) marks the union of the
edges hit by these 100 local optimal tours. Each of these marked elements also con-
tains a value which is the number of hit by the local optimal tours.

It is interesting to see how the search space is reduced. During the local search
process, the only thing the process is doing on a particular search trajectory is to re-
place bad edges with good ones. As result, the search process causes the elements in
the matrix E to have unequal hit frequency. Good edges are selected by many search
trajectories; bad edges are displaced and therefore contain low or zero hit frequency.
After search trajectories reach their local optimal points, they leave their "final foot-
prints" in E. The darken area in Fig. 3(a) is reduced to the one shown in Fig. 3(b),
which exhibits the structure of solution attractor for the TSP. Comparing to the full
solution space, the size of the attractor is very small.

The attractor constructed by local optima contains G-edges and noise. The function
Find_Core() groups the edges into clusters in an attempt to remove the noise. A
cluster is defined here as a set of edges that contain the hit frequency within a certain
range. The cluster with the highest range of hit frequency constitutes the core of the
attractor, while the cluster with the lowest range can be regarded as noise. In each
column (or row) of the hit-frequency matrix E, the value of the maximum hit MaxV is
identified. Knowing that the range of possible value for an edge in that column can
vary from zero to MaxV, we could divide this range into r equal portions. Our exam-
ple chooses r = 3 to cluster the edges in each column. Fig. 3(c) illustrates the cluster-
ing process for the column 18 in E. Fig. 3(d) displays the cluster in which the edges
are within the highest range of hit frequency. The darkened elements form the attrac-
tor core. In this way the attractor is further reduced into a core, an even smaller re-
gion. The most-hit edges in the core form the most promising region for search. Now

it is possible to use an exhausted-enumeration algorithm to find all solutions in the
core. In our example, the function Exhausted_Search() found 32 solutions in
the core.

Fig. 3. A 20-city TSP example for illustrating attractor construction. (a) presents the union of
the edges in the initial tours; (b) marks the union of the edges hit by the local optimal tours; (c)
illustrates the clustering process for the column 18 of E; and (d) displays the attractor core.

3 Finding Pareto-Optimal Set for a Bi-Objective TSP

3.1 The TSP and Search Procedure

In a multi-objective setting, the TSP becomes even more difficult and complex. The
general multi-objective TSP can be formulated as follows:

(a) (b)

(d)

(c)

2019181716 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

18

16

22

0 0

12

0 0 0 0
1 1

8

2

0
1

0 0

19

0

Elements in Column 18

H
it

Fr
eq

ue
nc

y































=++=

=++=

=++=

=

∑

∑

∑

−

=

−

=

−

=

1

1

1

1
2222

1

1
1111

)1,()1,()(

)1,()1,()(

)1,()1,()(

)(min

n

i
kkkk

n

i

n

i

ziicncxf

ziicncxf

ziicncxf

xf
M

Xnxtosubject ∈),,2,1(K

(3)

where n is the number of cities, cq(i, j) is the cost between city i and j according to the
q-th objective, q = 1,…k, and the decision variable x holds a cyclic permutation of the
n cities. In practical applications the cost factors may correspond to distance, travel
time, expenses, tourist attractiveness, energy consumed, degree of risk, or other rele-
vant considerations for the tour. The goal is to find the "minimal" Hamiltonian circuit
of the graph in terms of Pareto optimality. In a TSP, if the cost weights of the edges
satisfy the triangle inequality, the problem is called the metric TSP. A special case is
when the cities are points on the plan, and the cost weights are the Euclidean dis-
tances between the points. When the cost weights satisfy c(i, j)=c(j, i), it is called the
symmetric TSP, which has many practical applications.

The design of a test problem is always important in designing any new search al-
gorithm. The context of problem difficulty naturally depends on the nature of prob-
lems that the underlying algorithm is trying to solve. In the context of solving multi-
objective optimization problems, we are interested in designing the features that
makes a problem difficult for the proposed multi-objective optimization algorithm. In
this study, the test problem instance is designed based on several considerations.
First, the size of problem should be large, since the TSP instances as small as 200
cities must now be considered to be well within the state of the global optimization
art. The instance must be considerably larger than this for this study to be sure that
the proposed approach is really called for. Second, the instance should be multi-
modal, that is, with many local Pareto-optimal regions. Third, there is no any pre-
known information related to the result of the experiment, since in a real-world prob-
lem one does not usually have any knowledge of the Pareto-optimal front. Fourth, the
problem instance should be general, understandable and easy to formulate so that the
experiments are repeatable and verifiable, but difficult to solve.

This study generates a general symmetric TSP instance, which consists of n = 1000
cities with two cost matrixes c1 and c2. The cost matrices are generated at random,
where each cost element c(i, j) = c(j, i) is assigned a random number in the interval
[1, 1000]. This study uses two objectives primarily because of the ease in which two-
dimensional Pareto-optimal front can be visually demonstrated.

Fig. 4 presents a general search procedure used in this study. Q is a TSP instance
with a set of cost matrices {c1, c2,…, ck} with respect to objective f1, …, fk. The func-
tion TSP_Attractor() finds the core of the attractor for each of objective func-
tions respectively. This study uses the 2-opt algorithm [13], which is one of the earli-
est local search algorithms for the TSP.

Fig. 4. The procedure for searching Pareto-optimal set in multi-objective TSP

The information about the attractor core for objective q (q = 1,…, k) is stored in
matrix Eq, in which we mark the elements to represent the corresponding edges that
are hit by the core. In this study, only 15 best solutions in each attractor core are se-
lected and stored in Eq. And also the objective vector values Zq(z1,…,zk) for the best
solution in the Eq is calculated. The vector Zq(z1,…,zk) can help us to determine the
ideal objective vector z* and nadir objective vector znad. After k attractor cores with
respect to objective f1, …, fk are constructed, the function Merge() stores the union
of all marked elements in the matrixes E1,…,Ek into the matrix E. Then the function
Find_Pareto-Set() finds all solutions in E through an exhausted search
method, and outputs all non-dominated solutions into list L. Finally, the function
Analize_Paroto_Set() analyzes the Pareto set and generate the information
about each of the solutions.

This procedure intuitively reflects the idea of finding solutions around the extreme
ends of the Pareto-optimal front and then mixing their characteristics (edges) to find
other trade-off solutions in the Pareto-optimal region. By considering each of objec-
tive functions separately, this procedure generates high-quality solutions in the solu-
tion attractor corresponding to that objective. The merge of these attractors will form
a well-distributed set of the Pareto-optimal solutions, each of which takes part of
high-quality edges from each of the attractors. Fig. 5 illustrates examples. Suppose
that there are two local optimal tours (1,2,3,4,5,6) and (5,1,2,4,3,6) in the attractor 1
that corresponds to objective f1 (see Fig. 5(a)), and there is one local optimum
(5,3,1,4,2,6) in the attractor 2 corresponding to objective f2 (Fig. 5(b)). If we merge
these two attractors into one matrix, as illustrated in Fig. 5(c), we can identify other
two solutions (1,2,4,5,3,6) and (1,4,2,3,6,5). The first solution takes four edges from
attractor 1, one edge from attractor 2 and one common edge shared by both attractors.
The second solution takes three edges from attractor 1, one edge from attractor 2 and
two common edges. Even in the case in which two objectives are mutually exclusive
(i.e., the two cost matrixes are mutually disjunctive), we will see that solutions in
different attractors do not share edges, but we still can find the solutions that mix
edges from attractor 1 and 2. For example, suppose that there are two solutions
(1,3,5,2,6,4) and (1,3,6,4,2,5) in attractor 1 (Fig. 5(d)) and one solution (1,2,3,4,5,6)
in attractor 2 (Fig. 5(e)). When we merge these two attractors into a matrix, as shown

procedure TSP_Pareto_Set(Q)
begin
 q = 1;
 while (q ≤ k) do
 Eq = TSP_Attractor(cq);
 q = q + 1;
 end while
 E = Merge(E1,…,Ek);
 L = Find_Pareto_Set(E);
 Analize_Pareto_Set(L);
end

in Fig. 5(f), it is easy to see that no common edge is shared by both attractors. In
addition to the three original solutions, we can find other four new solutions
(1,2,3,5,6,4), (1,2,3,6,4,5), (1,3,4,2,5,6) and (1,3,4,5,2,6), each of them combines
three edges from attractor 1 and three edges from attractor 2.

Fig. 5. Examples of merging two attractors

3.2 The Experiment Results

To guarantee the diversity of the sample of local optima, this study generated M =
2000 initial points, and, as a result, generated 2000 local optima for each objective.
This experiment also relied heavily on randomization. All initial tours were randomly
constructed. In the 2-opt local search, the algorithm randomly generated a solution in
the neighborhood of the current solution. A move that gave the first improvement was
chosen. The great advantage of first-improvement pivoting rule is to produce random-
ized local optima. The local search process on each search trajectory terminated when
no improvement had been achieved during 1000 iterations.

This study used two 1000×1000 matrixes, E1 and E2, to store 15 best solutions
taken from each of the attractor cores, respectively. Of course, the number of solu-
tions selected from the attractor core affects the size of the Pareto-optimal set, the
coverage of the set, and the computational resources needed to generate the set. Fig. 6
illustrates the solution points from each objective in the objective space. This figure
also indicates the lower bound z* and upper bound znad on the Pareto-optimal set to
display the topology of the set.

Then these solutions were combined into the matrix E, in which 40.4% of the
marked edges belong to attractor 1, 41.1% to attractor 2, and 18.5% are shared by
both attractors. The fraction of edges that are common to both attractors can be de-
fined as the overlap between the two attractors. This study then used an exhausted
search algorithm to find all solutions in E. After discarding all dominated solutions,
we obtained 31 Pareto-optimal solutions, as illustrated in Fig. 7.

Fig. 6. Solutions in each of the attractor core

For the purpose of comparison, this study also applied the aggregation approach to
the same TSP instance. This study varied systematically the weights in the fashion of
[0, 1], [0.04, 0.96], [0.08, 0.92], …, [1, 0], and then use the 2-opt algorithm to search
on the aggregated objective function. The search process in each run terminated when
no improvement had been made during 1500 iterations. These multiple runs gener-
ated 26 points, among which 23 points were nondominated. These nondominated
points are also displayed in Fig. 7. It is clear that the solutions generated by the pro-
posed procedure maintain good properties of convergence and diversity. These solu-
tions probably provide a more accurate description of the true Pareto-optimal set.

Mathematically, the multi-objective optimization problem is considered to be
solved when the Pareto-optimal set is found, and all the Pareto-optimal points are
equally acceptable solutions to the problem. However, it is not enough in many prac-
tical cases. The ultimate goal is to select the single best compromise solution. Select-
ing one solution out of the Pareto-optimal set calls for a decision-maker, who has
better insight into the problem and can express preference relations between different
objectives. However, finding a reliable important solution is difficult in the absence
of any knowledge about the Pareto-optimal solutions. An important question related
to this issue is how to present the Pareto-optimal solutions to the decision-maker in a
meaningful way. This requires a multi-objective optimization algorithm not only to be
capable of finding multiple and diverse Pareto-optimal (or near Pareto-optimal) solu-
tions, but also to be able to provide necessary information about the obtained solu-
tions. In our case, what would be more desirable is the information about each ob-
tained tour. More specifically, we want to know that in a particular tour, what per-
centage of edges comes from attractor 1, what percentage from attractor 2, and what
percentage are shared by both attractors. This kind of information can aid the deci-

z1(7421, 24287)

z2(23209, 7512) z*(7421, 7512)

znad(23209, 24287)

sion-maker in arriving at a final decision. The characteristics of the solutions are
essential decision elements when people look for the best compromise solution, and
they are implicitly included in the common-sense notion of optimality.

The function Analize_Pareto_Set() calculated the distribution of edges for
each obtained tour, as illustrated in Table 1. For instance, among 1000 edges in the
tour 1, 28 edges are shared by both attractors, and other 972 edges are taken from
attractor 1. For the tour 12, 164 edges are shared by both attractors, and among other
edges, 574 edges are taken from attractor 1 and 262 edges are taken from attractor 2.
It can be interpreted as: If we choose the tour 12, it will correspond to 57.4% prefer-
ence of the objective f1, 26.2% preference of the objective f2, and 16.4% preference of
both objectives at same time. However, if we choose the tour 1, 97.2% of this solu-
tion will satisfy the objective f1, and 2.8% will satisfy both objectives simultaneously.
No doubt, such information is useful to the decision makers for comparing multiple
optimal solutions and choosing the best compromise solution, as and when required.

Fig. 7. The Pareto-optimal sets for the test TSP

znad

Table 1. Characteristics of the obtained Pareto-optimal set

Solution Value for Edges from
Tour # Objective 1 Objective 2 Attractor 1 Attractor 2 Shared

1 7421 24287 972 0 28
2 7435 23731 967 0 33
3 7465 22343 934 0 66
4 7529 22060 919 0 81
5 7551 21838 906 0 94
6 7645 20629 893 0 107
7 9285 18021 744 97 159
8 9698 16001 698 153 149
9 9963 15530 661 172 167
10 10205 15120 634 214 152
11 10648 14205 587 248 165
12 10720 13789 574 262 164
13 10978 13075 531 312 157
14 11054 12775 512 334 154
15 11155 12335 495 353 152
16 11674 12001 446 399 155
17 11973 11847 433 401 166
18 12456 11007 409 425 166
19 12986 10548 374 452 174
20 13099 10048 329 507 164
21 13294 10001 286 552 162
22 13455 9987 260 577 163
23 14976 9877 227 615 158
24 15987 9645 205 644 151
25 17654 9465 147 702 151
26 20101 8073 14 871 115
27 20170 7719 0 901 99
28 20651 7697 0 906 94
29 21644 7639 0 917 83
30 21675 7553 0 933 67
31 23209 7512 0 964 36

4 Conclusion

The multi-objective nature of most real-world problems makes multi-objective opti-
mization a very important research topic. The increasing complexity of typical search
space demands new strategies in solving multi-objective optimization problems. This
study provides one possibility. This study shows that the use of simple local search,
together with an effective data structure, can identify high quality Pareto-optimal
solutions. Although the procedure was applied to a bi-objective TSP in this study, it
can be expected that, with little modification, this procedure can be used to deal with

the TSP with three or more objectives. Even if generalization cannot be claimed, this
work provides a new search strategy that casts new light into multiple-objective opti-
mization and might serve as a basis to build new algorithm for solving other multiple
objective problems.

References

1. Angel, E., Bampis, E., Gourvès, L.: A Dynasearch Neighborhood for the Bicriteria Traveling
Salesman Problem. In: Gandibleux, X., Sevaux, M., Sörensen, K., T’kindt, V. (eds.): Meta-
heuristics for Multiobjective Optimization, Lecture Notes in Economics and Mathematical
Systems 535. Springer-Verlag Berlin (2004) 153-176.

2. Borges, P. C., Hansen, M. P.: A Study of Global Convexity for a Multiple Objective Travel-
ing Salesman Problem. In Ribeiro, C. C., Hansen, P. (Eds.): Essays and Surveys in Meta-
heuristics. Kluwer Academic Publishers Norwell, MA (2002) 129-150.

3. Boese, K. D., Kahng, A. B., Muddu, S.: A New Adaptive Multistart Technique for Combina-
torial Global Optimizations. Operations Research Letters 16:2 (1994) 101-113.

4. Collette, Y., Siarry, P.: Multiobjective Optimization – Principles and Case Studies. Springer-
Verlag Berlin (2003).

5. Ehrgott, M.: Multicriteria Optimization. Springer-Verlag Berlin (2000).
6. Ehrgott, M.: Approximation Algorithms for Combinatorial Multi-Criteria Problems. Interna-

tional Transactions in Operations Research 7 (2000) 5-31.
7. Ehrgott, M., Gandibleux, X.: A Survey and Annotated Bibliography of Multiobjective Com-

binatorial Optimization. OR Spectrum 22:4 (2000) 425-460.
8. Fisher, R., Richter, K.: Solving a Multiobjective Traveling Salesman Problem by Dynamic

Programming. Mathematische Operationsforschung und Statistik, Series Optimization 13:2
(1982) 247-252.

9. Gupta, A., Warburton, A.: Approximation Methods for Multiple Criteria Traveling Salesman
Problems. In: Sawaragi, Y. (ed.): Towards Interactive and Intelligent Decision Support Sys-
tems: Proceedings of the 7th International Conference on Multiple Criteria Decision Making.
Springer-Verlag Berlin (1986) 211-217.

10. Hansen, M. P.: Use of Substitute Scalarizing Functions to Guide a Local Search Based
Heuristics: The Case of MOTSP. Journal of Heuristics 6 (2000) 419-431.

11. Jaszkiewicz, A.: Genetic Local Search for Multiple Objective Combinatorial Optimization.
European Journal of Operational Research 137:1 (2002) 50-71.

12. Li, W.: Attractor of Local Search in the Traveling Salesman Problem. Journal of Heuristics,
Forthcoming.

13. Lin, S.: Computer Solutions to the Traveling Salesman Problem. Bell Systems Technical
Journal 44 (1965) 2245-2269.

14. Melamed, I. I., Sigal, I. K.: The Linear Convolution of Criteria in the Bicriteria Traveling
Salesman Problem. Computational Mathematics and Mathematical Physics 37:8 (1997)
902-905.

15. Mezard, M., Parisi, G.: A Replica Analysis of the Traveling Salesman Problem. Journal of
Physique 47 (1986) 1285-1296.

16. Miettinen, K. M.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers
Dordrecht (1999).

17. Paquete, L. Chiarandini, M., Stützle, T.: Pareto Local Optimum Sets in the Biobjective
Traveling Salesman Problem: An Experimental Study. In: Gandibleux, X., Sevaux, M.,
Sörensen, K., T’kindt, V. (eds.): Metaheuristics for Multiobjective Optimization, Lecture
Notes in Economics and Mathematical Systems 535. Springer Berlin (2004) 177-199.

18. Paquete, L., Stützle, T.: A Two Phase Local Search for the Biobjective Traveling Salesman
Problem. In: Fonseca, C. M., Fleming, P. J., Zitzler, E., Deb, K., Thiele, L. (eds.): Evolu-
tionary Multi-Criterion Optimization, Proceedings of Second International Conference,
EMO2003. Springer, Berlin (2003) 479-493.

19. Raidl, G. R., Kogydek, G., Julstrom, B. A.: On Weight-Biased Mutation for Graph Prob-
lems. In: Merelo-Guervós, J. J., Adamidis, P., Beyer, H. G., Fernáandez-Villacaňas J. L.,
Schwefel, H. P. (eds.): Parallel Problem Solving from Nature: PPSN VII, LNCS2439.
Springer Berlin (2002) 204-213.

20. Sigal, I. K.: Algorithm for Solving the Two-Criterion Large-scale Traveling Salesman
Problem. Computational Mathematics and Mathematical Physics 34:1 (1994) 33-43.

21. Steuer, R. E.: Multiple Criteria Optimization – Theory, Computation and Application. John
Wiley & Sons New York (1986).

22. Tan, K. C., Lee, T. H., Khor, E. F.: Evolutionary Algorithms for Multi-objective Optimiza-
tion: Performance Assessments and Comparisons. Artificial Intelligence Review 17 (2002)
253-290.

23. Tung, C. T.: A Multicriteria Pareto-optimal Algorithm for the Traveling Salesman Problem.
Asia-Pacific Journal of Operational Research 11 (1994) 103-115.

24. Yan, Z., Zhang, L., Kang, L., Lin, G.: A New MOEA for Multi-objective TSP and Its
Convergence Property Analysis. In: Fonseca, C. M., Fleming, P. J., Zitzler, E., Deb, K.,
Thiele, L. (eds.): Evolutionary Multi-Criterion Optimization, Proceedings of Second Inter-
national Conference, EMO2003. Springer Berlin (2003) 342-354.

