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ABSTRACT

In this paper, we present an evolutionary program for
solving the fuzzy mSTP(multicriteria solid transporta-
tion problem) in which the coefficients of objective func-
tion are represented as fuzzy numbers. The ranking fuzzy
numbers with integral value are used in the evaluation
and selection. The proposed algorithm is incorporated
with problem-specific knowledge and conductive to find
out the set of nondominated points in the criteria-space
based on decision maker degree of optimism.
Keywords: evolutionary program, fuzzy numbers, mul-
ticriteria optimization technique, solid tramsportation
problem, ranking fuzzy numbers.

- 1.:  INTRODUCTION

The STP is a generalization of traditional transporta-
tion problem. The necessity of considering this special
type of transportation problem arises when heteroge-
neous conveyances are available for shipment of prod-
ucts in public distribution systems. Furthermore, in
more real-world cases transportation problems can be for-
mulated as a multiobjective STP(mSTP). In a multiple
objective context, the concept of optimal solution gives
place to one of nondominated solutions. This decision
problems entail analyzing tradeoffs among the objectives
in order to get a satisfactory compromise solution from
the set of nondominated solutions.

Vignaux and Michalewicz firstly discussed the use of
genetic algorithm(GA) for solving linear transportation
problem [8]> They used it as an example of constrained
optimization problem, investigated how to handle such
constraints with GA, and demonstrated the power of GAs
that allow to use any data structure suitable for a prob-
lem together with any set of meaningful genetic opera-
tors. Gen et al. further extended Michalewicz’s work to
bicriteria linear transportation problem and multicriteria
solid transportation problem. They have embedded the
basic idea of criteria space approach in evaluation phase
so as to force genetic search towards to exploiting the
nondominated points in the criteria space.

In real-world situation, due to the complexity of the
social and economic environment as well as some unpre-
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dictable factors such as weather, a common problem is
the difficulty for determining the proper values of model
parameters. Oue way of hand]ing;such uncertainty in
decision making is fuzzy programming. Kaufmann and
Gupta firstly examined fuzzy transportatlon problem [1].

In this paper, we present an evolutlonary 1mplementa—
tion of GA to solve the fuzzy mSTP(£mSTP) in which
the fuzzy numbers are used in the objectivé function. We
use ranked fuzzy numbers with integral values to calcu-
late evaluation ‘and selection: The proposed algorithmis
incorporated with problem-specific knowledge:and con-
ductive to find out the set of nondominated :points in
the criteria space based on decision maker degree of -op-
timism. Finally, the computer 51mulat10n results show
that the proposed algorithm is eiﬁc1ent for solvmg the
mSTP with fuzzy numbers -

2. FORMULATION OF MSTP WITH FUZZY NUMBERS

Assume that there are m origins (or sources), n des-
tinations and K conveyances. At each origin, let-a; be
the amount of homogeneous products which are trans-
ported to n destinations to satisfy the demand for b;
units of the product there. Let ¢x be the units of this
product which can be carried by K different modes of
transportation called conveyances. We consider that the
coefficients of the objective function as fuzzy numbers are
presented as E'-;Zk(q = 1,2,:-.,Q). They are associated
with transportation of a unit of the product from source
t to destination j by means of the k-th conveyance for
the g-th objective function. The fuzzy coefficient could
represent transportation cost, delivery time, quantity of
goods delivered, under-used capacity, and so on. They
may be uncertain due to some environmental impacts.
Therefore, it is necessary to treat these coefficients.

A variable z;;x represents the unknown quantity to be
transported from origin ¢ to destination j by means of the

k-th conveyance. The mSTP with fuzzy numbers can be
formulated as follows:

min  Z,(z) = ZZZ Elemign, 4 =1,2,-+,Q(1)

=1 j=1 k=1
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n K

s. t. ZZzuk=a.’, 1=1,2,---,m (2)

Jj=1 k=1

m K :

ZZzijk:bjs J=12---,n (3)
=1 k=1

m n

Zzzi]‘k=eka k=112y'°'3l‘, (4)
i=1 §=1

Tijk Z 0’ V'.)j$ k.

where a; > 0,¥i; b; > 0, Vj; ex > 0, Vk; &3, > 0,
Vi, j, k,q and the balanced condition

m n K
E a; = E b; = E €k
i=1 i=1 =1

k=

is treated as a necessary and sufficient conditions for the
existence of a feasible solution to the problem.

In a multiobjective context, criteria are usually con-
flicting each other in nature and the concept of optimal
solution gives place to the concept of Pareto optimal so-
lutions (efficient solutions, nondominated solutions, or
noninferior solutions), for which nonimprovement in any
objective function is possible without sacrificing on at
least one of other objective function. Denoting the set of
feasible solutions in decision space by F, for the mSTP
we can get the following definition of nondominated so-
lution: '

Pareto optimal solution:

A solution £ = (Z,;;) is said to be a Pareto
optimal solution if and only if there does not
exist another & € F such that

zo(x) < zg(Z) Vg and z,(z) # z,(z) 3p.

When the coefficients of objectives are represented
with fuzzy numbers, the objective function values be-
come fuzzy numbers. Since a fuzzy number represents
many possible real numbers, it is not easy to compare
among solutions to determine the Pareto optimal solu-
tion. Fuzzy ranking techniques can help us to compare
fuzzy numbers. Pareto optimal solutions are determined
based on the ranked values of fuzzy objectives and genetic
algorithms are used to search Pareto optimal solutions.

3. RANKING FUZZY NUMBERS

Several methods of ranking fuzzy subsets have been
proposed. Here, we introduce a simple and flexible
method of ranking fuzzy numbers with integral value,
which is developed by Liou and Wang [2]. This method
ranks fuzzy numbers which can be triangular, trape-
zoidal, or their other forms with integral value instead of
a relative value. The left integral value is used to reflect
the pessimistic viewpoint and the right integral value is
used to reflect the optimistic viewpoint of the decision

maker. A convex combination of right and left integral
values through an index of optimism is called the total
integral value. It is used to rank fuzzy numbers.

Definition: A fuzzy number A is a triangular fuzzy
number(TFN) denoted by (ai,az,as) if its membership
function p ;(z) is given by

(z —a1)/(az —a1), a1 <z <a2,
pi(e) =< (z—a3)/(az—as), a2<z<as, (5)
0, otherwise,

where @1,a2, and as are real numbers. Denote the
left and right membership functions as p ;(z)f = (z —
a1)/(az —a1), p3(2)F = (2 — a3)/(az — as), respectively.
Based on mathematical theorems, both inverse function
of uz(z)¥ and p;3(z)F exist (see Figure 1).

pa(e)

0 a1 az as

Fig. 1. The membership function 7%}

The corresponding inverse functions of pz(z)’ and
# ;(z)® can be expressed by

9:(0)" = a1 + (a2 — a1)y, (6)
9:(¥)" = a3 + (a2 — aa)y. (7)

y € [0,1], respectively. Thus the left and right integral
value are formulated as follows:

1) = [oi tr=J@+a).  ®

I(A)F = / 9i(y)"dy = %(az + a3). (9)

The total integral value of the TFN A= (a1,a2,a3)
is

aI(A)R + (1 - a)I(A)*
%[aaa +az + (1 — a)ai] (10)

I3(4)

when a degree of optimism « € [0,1] is given. And
when the decision degree of optimism « is 0.5, above
integral value is same as ordinary representives [1].

For any distinct A;, A; € S (S is the set of con-
vex fuzzy numbers), we use the following criteria for
ranking fuzzy numbers. .

(1)if I2(A;) < IZ(A;), then A; < A;.

(2)if I2(A;) = I3(A;), then A; = A;.

(8)if IZ(A;) > IZ(A;), then A; > A;.
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4. EVOLUTIONARY PROGRAM FOR FUZzZY MSTP

4.1 Representation and'iniiial‘p’zatf’oln

Perhaps the natural representation of a solution

for the solid transportation problem is a three-

dimensional array and It creates a matrix of at most
m + n + K - 2 nonzero elements such that all con-
straints are satisfied. The initialization procedure
is used to generated the pop._size initial population
which satisfies all constraints in STP.

procedure: initialization

begin
r<{1,2,---,
repeat

mxnx K}

select a random number [ from set m;
calculate corresponding subscript indices;
i< |(I—1) mod (m-n)/n+1];
j< ({—-1)/m mod n+1;
k< |(I—1)mod (m-n)| +1;
assign available amount of units to &jjx;
zijk < min{a;, b, ex};
update data;
aj <= A5 — Tijk;
b]' -~ b] — Tijk;
€k < €k — Tijk,
m <= m\ {l};
until(7 becomes empty)
end
So, the produced initial solution-matrix has integer
numbers in each element.

4.2  Genelic operalors

We define two genetic operators, mutation and
crossover. -
mutation: The mutation is performed in the follow-
ing three steps and so m_size offspring are generated.
step 1: Make a submatrix from parent solution-
matrix. Randomly select {i1,---,%z}, {1, . Jy}s
and {k;,---,k,} to create a (z x y X z) submatrix
W = (wijx), where {iy,--- iz} is a proper subset of
{1,2,---,m}and 2 < z < m, {j1,---,jy} is a proper
subset of {1,2,---,n} and 2 < y < n, {k1, -, k.}
is a proper subset of {1,2,---, K} and 2 < 2z < K
and w;;, takes the value of the corresponding ele-
ment with index ijk in parent matrix.
step 2: Reallocate commodity for the submatrix.
The available amount of commodity a}’, the demands
b7, and the capability of conveyances e}’ for the sub-
matrix are determined as follows:

a;” = Z Z Wik = TR 7 (11)

J€{ir iy} kE€{kr, ks )

by = Z Z wijk; § = g1, 0y (12)
i€{i1, i} K€ by, k) : o
= D Y wgk k=hkyook (13)

i€{iy, iz} J€{d1,dul)

We can use the initialization procedure to assign new
values to submatrix such that all constraints a}’, b
and e} are satisfied.

step 3: Replace appropriate elements of parent ma-
trix by a new elements from the reallocated subma-
trix W.

crossover: Assume that a pair of parents are X1 =
(21;5) and X3 = (zf;;,), the crossover is performed in
following main three steps:

step 1: Create two temporary matrices D = (dyji)
and R = (ryx) as follows:

dijr ;3;[(333]‘1: + I?jk) [2]; ik = (zz%jk""{' ‘ngjk) mod 2

The matrix D keeps rounded ‘average values from
both parents and matrix R keeps the track of
whether any rounding was necessary.

siep 2:" Divide the matrix -R into two matrices
(qu) and R? = (r ”k) such that:

R= R'+ R% : SRR (14)
n K n Koo 1 no K
ST 3 DL 3) St
j=1k=1 j=1k=1. o j=lk=1
i=12,,m (15)
m K m K 1 X '
1 2
DI SIS )
i=1 k=1 i=1 k=1 i=1 k=1
.721127 N (16)
m n m n 1m n
3SR 2 D) 3 Do
=1 j=1 t=1§=1 con =l =l :
F=1,2 K (17)

step 3: Then we can produce two offsprmg of X} and
X as follows: :

'X{ =D+ RY X3 = D+R2

. So, after finishing crossover operation_ c_size off-

spring are generated.

4.8 Selecizon

In many kind of special problems; GAS use dlﬁ'er—
ent scaling methods and different selection schemes
(e.g. propotional selection, ranking, tournarent, eli-
tist selectlon) to strike a balance between two factors
population diversity and. selection pressure [4]-[10].
To find more Pareto optimal solutions, we use the
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registered Pareto optimal solution strategy in this
stage and attempt to get the set of Pareto optimal so-
lutions approximately (near-optimal solutions), and
the elitist selection method is used in each genera-
tion.

Module for Pareto optimal solutions:
begin
for generation index t = 0 to maz_gen;
count number of individuals;
ind_size <= pop-size + m_size + c_size;
for s = 1 to ind.size;
for ¢ =1 to @Q;
calculate each objective function value;
Z(I(X ) <« Z;—l Z]-l Ek =1 I]kxtjk!
endfor
obtain the solution vector Z,;
Z, = [21(X,), 22(Xs), - -, 2Q(Xo)];
rank s solution vectors with intergal value;
register Pareto optimal solutions and
delete non-Pareto optimal solutions;
endfor
endfor
end

As the fitness function for survival, the weighted
sums method is used to construct the fitness function
at hand.

Handling for fitness function:

(1) At ¢-th generation, choose the solution points
which contain the minimum I$(Z*") (or
I$(277%")) that corresponding to each objective
functlon with integral value, then compare with
the stored solution points at the previous gener-
ation and select the best points to store again.

BEP™O) = mn{I5ERCD), (18)
I3(2,(X,)) I s=1,2,.-- indsize},
I12(z%*™) = min{Ig(z7=D), (19)
IF(Z4(Xs)) | s=1,2,.-- indsize},

¢q=12--.Q

~maz(t), ~min(t)y . . M
where 7" (3771} g the maximum (mini-

mum) value of objective function ¢ at generation
t.

(2) Solve the following equations to get weights for
evaluation function:

smaz(t) _ ~mm(t)
q

Sq':zq q=1)23"'7Q

12(3,)

ﬂqW

q=1:27'”aQ

(3) Calculate the fitness value for each chromosome
as follows:

Q
eval(X,) = Y B I5(5,(X,)), s=1,2,--,

g=1

4.4 The best compromise solution

To provide the optimal solution for the decision
maker, the method of Technique for Order Preference
by Similarity to Ideal Solution (called TOPSIS) was
combined into GA implementation of solving mSTP
which is based upon the principle that the chosen
alternative should have the shortest distance from
reference point as the positive ideal solution and the
farthest other point as the negative ideal solution.

We define positive ideal solution(PIS) and neg-
ative ideal solution(NIS) from egns. (18) and (19)
denoted as PIS=Ig(3}) = IF(E7"(™***") and
NIS=I7(z;) = I%(E;""(m“'ge")) respectively.

Now, the computation of the weighted Euclidean
distance can-be carry out from the following steps:

step 1. Construct the normalized values:
_ 1%(25)
VUSRI + IS + U572

where p is the index for the set of Pareto optimal

solutions and 2§ is the g-th objective function

value with fuzzy numbers which corresponding
to the p-th Pareto optimal solution.

(21)

step 2: Calculate the separation measures:

Q
Zw%(h; - h’;)z, k=1,2,---,v (22)

sp =
q=1
Q

o= | Do wEs R, k=120 (23)
g=1

where hy, hy are the normalizations of z7,
z,;, respectively and the relative importance
(weights) of objectives™w, € [0,1] , ¢ =
1,2,---,Q satisfies the equation Z(?:l w, = 1.

step 3: Calculate the Euclidean distance dj:

-
dp= —%— k=12, 24
k sy + s, (24)

where the solution di closest to 1 is selected.
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Table 1. Fuzzy coefficients in numerical example -

q 1 2 3

k 1 2 3 1 2 3 1 2 3
3, [ (8,9,10) [ (10,12,14) | (7,9,11) | (3,6,9) | (3,9,10) | (5,7,9) | (2.3,4) | (6,7,8) (5, 7, 9)
51‘}k (4, 5, 6) (5,6,7) (3,5,7) | (7,9,11) | (8 11,14) | (1,3,5) | (5,6,7) | (6,8,10) (5,6,7)
61‘Zk (1, 2, 3) (1,2,3) (1,1,1) | (1,2,3) | 6,7,8) | (6,7,8 | (1,1,1) | (8,9,10) | (1,3,5)
i, [ (1.2,3) | (89,100 [(6810) | (L,1,1) | (2,4,6) | (1,1,1) | (7,9, 11) [ (7,9,11) | (4, 5,6)
52‘3,C (1,2 3) (7,8,9) (1,1;1) | (3, 4,5) (3,57 (1,2,3) | (6.8 10) | (5,6,7) (8, 9, 10)
e,‘zk (4, 5, 6) (1,2,3) (5,7,9) | (6,810) | (8,9,10) | (6,7,8) | (3,5, 7) | (1,2, 3) (3,5, 7) °
Esqk 1,2, 3) (2, 4, 6) (5,6, 7) (2,3,4) {4, 6, 8) (3,4,5) | (6,8,10)] (2,4, 6) (7,79, 11)
&e | (1,2,3) 3,5, 7) (1,35 | (3,57 | (4,68 | (46,8 | (7,9 11) | (4/6,8) (1,73;15)
éq‘zk (1,1,1) (8, 9, 10) (1,1,1). | (7, 8,9) (2,349 | (,91)}] (35,7 (10, 11, 12)

5. 'NUMERICAL EXAMPLE

We use the following example to show the effective-
ness of the proposed method. There are three origins,
three destinations and three conveyances. The sup-
plies, demands, and capacities of transportation are
given as a; = 8, a3 = 9, a3 = 5; by = 7, by = 6,
b3 = 9;e; = 10, e; = 5, e3 = 7, respectively. Table
1 shows the fuzzy coefficients ¢,,(¢ = 1,2,3).

In our experiment, we set the parameters as
maz_gen = 2000, pop_size = 20, p,, = 0.2, p. = 0.4,
w; = 0.5, wy = 0.3, wg=0.2 and our program have
ran 10 times with different values of @« = 1, 0.5, 0,
respectively.

120
3 110 . %Pessimistic case
§ 100 Moderate case
g 90 e ¥
'§ 80 . Optimistic case
s 0t
960

50

0 500 1000 1500 2000
Generation

Fig. 2. Convergence process for o« =1, 0.5, 0

Figure 2 shows the convergence process for a =
1, 0.5, 0. Figure 2 indicates that when the de-
cision maker determine this transportation project
based on the optimistic degree(a = 0) and the ob-
jective function value is the smallest, otherwise, it
is the most biggest when based on the pessimistic
degree(a = 1). Hence, the decision maker can obtain
the range of objective value that he/she expected
under imprecise conditions by our proposed method.
Table 2 shows Pareto optimal solutions obtained in
our example, where the z, represents crisp data with

integral value for TFN Z,. And the determined com-

pr\@mise solution is marked with notation *. Accord-
ing to results which the degreeis & = 0 and o = 0.5,

(51 7, 9)

the solutions are as follows:

Z121 = 6, 2331 = 4, 2132 = 2,
Tazz = 2, @3z = 12913 =7,

and Z121 =D, T3m = B, Tya= 1,7

zi32 = 2,282 = 2,23 =1

respectively, with Euclidean measures dg :f().8383
and d0.5 = 0.8344.

From Table 2 the determined compromise solu-
tions are different with different degree.. In moder-
ate case, the set of Pareto optimal solutions involved
the best compromise solution of optimistic case, but
was not selected as the best determined compromise
solution. It shows that the evolutionary program is
efficient in searching good solutions and the obtained
Pareto optimal solutions set is practical for decision
support systems, resulted from its flexibility with de-
gree of optimism.

6. CONCLUSIONS

In this paper, we presented an evolutionary pro-
gram to solve the fuzzy mSTP in which the coef-
ficients of objective function are presented as fuzzy
numbers, Particularly, the ranking fuzzy numbers
with integral value is used in the evalnation and se-
lection. And the registered Pareto optimal solution
technique was considered in our evolutionary im-
plementation. Therefore the proposed evolutionary
program more suitable to multicriteria optimization
problem that the algorithm conductive to find out
the set of Pareto optimal solutions approximately in
nondominated hyper-plane of the criteria space with
degree of optimism as simulation results shown. Fur-
thermore, the evolutionary program have a charac-
teristic which can use other kind of method instead
of TOPSIS to determine the satisfactory nondomi-
nated solution. ’
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Table 2. Obtained Pareto optimal solutions

optimistic case (a = 0)

No. BN 2 Z3 Z =(51,22,23)
1 (67,100,133) _ (97,123,149) __ (82,120,158) | (83.5,110.0,101.0)
2 (75,98,121) (87,112,137) __(70,107,139) (86.5,99.5,88.5)
3 (71,103,135) _ (78,106,134) __ (70,107,144) (87.0,92.0,91.0)
4* | (75,114,153) (50,65,80) (48,86,124) (94.5,57.5,67.0)
5 (89,129,169) _ (95,113,131) __ (52,78,104) | (109.0,104.0,65.0)
6 (89,130,171) _ (48,63,78) __ (90,126,162) | (109.5,55.50,108.0)
7 | (103,141,179) _ (43,59,75) __ (83,118,153) | (122.0, 51.0, 100.5)
8 | (109,139,169) (115,143,171) _ (47,78,109) | (124.0,129.0, 62.5)
9 (106,143,180) 42,56,70 61,94,127) (124.5,49.0,77.5
10 (117,152,1871 38,55,72 (76,110,144) (134.5,46.5,93.0
11 (134,158,182) (116,139,162) (40,71,102) (146.0,127.5,55.5)
12| (136,159,182)  (114,138,162) __ (47,78,109) (147.5,126.0,62.5)
Z* = (83.5, 46.5, 55.5) Z- = (155, 155.5, 142.5)
moderate case (o = 0.5)
No. 21 29 23 z :(21 , 22, EgL
1 (73,78,123) __ (132,162,192) _ (105,147,189) (98,162,147)
2 (74,103,132) _ (100,130,160) _ (86,125,164) (103,130,125)
3 (71,104,137) __ (94,121,148) _ (80,118,156) (104,121,118)
2" | (73,100,145) (53,71,89) 48,87,126) (169,71,87)
5 (75,114,153) __ (50,65,80 48,86,124) (114,65,86)
6 (81,122,163) (46,59,72 60,98,136) (122,59,98)
7 | (128,153,178)  (125,149,173) __ (41,74,107) (153,149,74)
8 | (130,156,182)  (100,125,150) __ (36,69,102) (156,125 69)
7° = (98, 59, 69) Z- — (183,176,161)
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