A Distributed Genetic Algorithm for Multivariable Fuzzy Control
Derek A. Linkens H. Okola Nyongesa

Introduction

The traditional approach to multiple parameter optimization in GA practice is to
combine the coding of the parameters into a single compound bit-string; the so-called
concatenated binary mapping. This approach has some shortcomings; the GA is a
competition-based technique that has a natural tendency to evolve one winner which in
complex problems yields a solution that is a better on some parameters than the others.
An extension to the simple GA, called Vector Evaluated Genetic Algorithm (VEGA),
has been used in multiobjective optimization where one is not interested in a single
solution, but a family of optimal solutions. In VEGA each member of the population
is evaluated and assigned a weighted fitness value dependent on how it relates to
each objective criteria. The reproduction plan then develops groupings within the
populations for each of the objectives to be optimized, ensuring that the improvement
of one objective does not adversely affect the others. This, however, requires large
population sizes and can be quite ineffiecient. In cases where the complex task is
divisible into simpler optimization problems, a better solution set may be obtained
using paralle] genetic algorithms to search for the optimal solution to each sub-problem.

Multivariable Fuzzy Control problem

Our problem is to derive fuzzy control rules for multivariable processes in which there
are interactions between the effects of the inputs. Considering a 2-input 2-output pro-
cess, the usual fuzzy control approach will derive rules that use 4 input state variables
and 2 outputs. These rules can be divided into two groupings, for each output. It can
further be shown that a "complex fuzzy controller” with 2*M-inputs and N-outputs can
be implemented by not more than M*N 2-input l-output "simple fuzzy controllers”.
Thus, to avoid rule-bases of very large dimensions the control algorithm can be sim-
plified by using decomposed rule-bases. In this case two simple rule-bases deal with
the direct effects of the inputs, and another two deal with their interactions. The rules
that deal with the interactions are however, dependent on those used for the direct
actions. Learning of the fuzzy control rules is then divisible into tasks of discovering
these decomposed rule-bases.

Distributed Genetic Algorithms

Parallel Genetic Algorithms have been used to deal with the need for larger population
sizes, costly evaluation functions or simply to speed up the learning process. One of
the most common parallelization models is to subdivide the population into isolated
groups, each operating its own GA but solving the same problem. Migration of good
individuals is carried out from time to time between the sub-populations. Studies have
shown this form of parallelization to be in many cases superior to a GA using a single
population, although this is not true in all cases [3]. Our approach to the multi-variable
fuzzy control problem is a Distributed Co-operating GA (DCGA), so called to differen-
tiate from the other types of parallel GAs. In a DCGA, different sub-populations are

Department of Automatic Control & Systems Engineering,
University of Sheffield,
Sheffield S1 4DU, UK.

9/1




maintained but the evaluation functions are also different from each other, since they
represent decomposed partial problems. Each sub-population is only concerned with
finding the best solution to its part of the composite problem, using the best available
solutions from the other GAs. Thus, instead of occasional migration of individuals
between the sub-populations, candidate solutions are communicated between the sub-
populations at the beginning of each generation. As an example, a GA learning the
rules to control the interaction between inputs will use the best rules derived for their
direct actions.

Distributed Genetic Algorithms are a learning environment in which the learning agents
cooperate to perform a particular task. The advantages of a distributed learning system
include,

o A centrally organized system may have to deal with an overwhelming amount of
data. In the 2-input 2-output multivariable system considered this can be a total
of about 256 fuzzy rules, while a decoupled agent deals with a maximum of 64
rules.

¢ Changes in a complex system will more often be local, for example occurring in
a particular control loop or region of operation. These changes are more easily
identified and dealt with in a distributed system.

¢ A global optimum is obtainable by reaching local optima, although this is not
necessarily true in all cases.

Implementation of Distributed Co-operating Genetic Algorithm (DCGA)
Parallel distributed genetic algorithms are best suited to a parallel station, although
it is feasible that the concept of task distribution can be realized on a single processor
serial machine. Pseudo-parallelism can, for example, be achieved on a Unix system
using task threading, with fork commands. One processor is assigned to each learning
agent, operating a GA population. Where more processors are available task forces
can be formed to speed up the processing of the genetic plan. In real-time derivation
of the rules, each of the learning agents can in addition operate parallel populations
that partition their input spaces [2].

We have compared the distributed co-operating GA approach with the traditional GA
using one population with a concatenated coding representing all the rules. Previous
studies of similar problems have used this approach [1]. We also give a comparison with
a series distributed approach, where the partial solutions are derived in sequence. This
is, of course, only applicable where there are no two-way communication between the
learning agents. The factors of performance that we are interested in include; execution
times, number of trials to obtain a good solution, number of evaluations to reach
convergence, the process control performance of the best solutions, population size
effects. Because the structures of the GAs in the different approaches are different, it is
not possible nor is it desirable to make an objective comparison based on these factors.
We can, however, make some observations. Total execution time per generation, for
the same population sizes, is slightly more in the DCGA than using one composite
population. However, much larger population sizes and hence more generations are
required using a composite GA. A learning agent which depends on other agents does
not reach a final solution until those on which it depends have converged. Thus, the

9/2



number of evaluations to convergence is larger than operating a single learning agent.
The performance of the rules obtained in the DCGA is more robust than that of those
obtained from a single population, for the same learning criteria. This can be attributed
to the fact that over the learning cycle a distributed learning agent will be presented
with candidate solutions from other co-operating agents, many of which are not good,
and hence it learns to cope with them. Finally, the application of the genetic operators
(reproduction, crossover and mutation) is critical to the DCGA. We have devised a
genetic plan that delivers rapid improvement in candidate solutions, while at the same
time allowing for continued experimentation with new trials. This is achieved with an
elitist plan that retains all members of a population until an offspring appears that is
better. In this way we can afford high rates of mutation to produce new trials without
degrading the on-line performance.

The interacting environment in this study is modelled by simulation of a multivariable
anaesthesia environment, that is, closed loop administration of two drugs to control
muscle relaxation and the depth of unconciuosness in surgical patients. The published
pharmacokinetics and pharmacodynamics of the muscle relaxant drug, atracurium, are
given by a third-order transfer function with a dead time of 60 seconds and nonlinearity
describable by a Hill equation. The depth of unconciuosness is controlled using a drug,
isoflurane, whose effect on mean arterial pressure (MAP) can be represented by a
first-order transfer function with a dead time of approximately 30 seconds.

References

(1] Karr, C.L., et al(1989); Improved fuzzy process control of spacecraft autonomous
rendezvous using a genetic algorithm. SPIE Intelligent Control and Adaptive Sys-
tems Vol. 1196, pp 274-288.

[2] Linkens D.A., Nyongesa H. O. (1992); Real-time acquisition of fuzzy rules using
genetic algorithms. IFAC/IFIP/IMACS Int. Symp. AIRTC-92, preprints pp599-605.

[3] Starkweather, T., et al(1991); Optimization using distributed genetic algorithms.
Proc. 1st Workshop Parallel Problem Solving from Nature, PPSN 1, pp176-85.

< 1993 The Institution of Electrical Engineers.
Printed and published by the IEE, Savoy Place, London WC2R 0BL, UK.

9/3




