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Multiobjective Control Systems Design by Genetic Algorithms
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Abstract: For Multiobjective Control Systems Design, we use Genetic Algorithms to find the Pareto
Optimal set of various control system performance indices. We also propose a modified multiobjective
selection scheme and the use of the improved rank-based fitness assignment. By combining multiobjective
genetic algorithm (MGA) with the pole-zero placement algorithm which can avoid specified pole-zero
cancellations, we construct a MATLAB based software package for the computer-aided control system
design (CACSD) system for two degree-of-freedom discrete-time control systems. This CACSD system
provides a large freedom in the choice of controller structure and in the design specifications. Effectiveness
of the proposed CACSD system is illustrated by a design example where the multiobjective optimization by
GA is compared with a goal attainment method in MATLAB OPTIMIZATION TOOLBOX.
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1. Introduction

Applications of genetic algorithms (GAs) to
optimization-based control systems design have been
proposed to optimize a single scalar performance for which
standard hill climbing techniques fail to find the global
minimum [1](2][3)(4]. Recently, numbers of researches
e.g.,[5](6] aimed to design control systems with various
specifications by multiobjective genetic algorithms.

In these researches, the rank-based fitness assignment
methods are used to identify the fitness of individuals
according to the partially less than relations. Furthermore,
in [5] the decision maker (DM) is posed to refine the design
specifications during GAs run. They show the effectiveness
of MGAs. However, the population diversity decreases
quickly, especially while MGA optimizes a multiobjective
problem with a vector index consisting of a large number
of objectives. When all the individuals converge into a single
fitness, GA search acts like a random search. Recently, the
method to maintain diversity during GAs run have stated
by Eshelman [12] and Tsutsui et al. [13]. However, the
objective function used in these researches are scalar, they
are inadequate to handle more realistic designs which usually
require the evaluation of multiple performance indices.

To make multiobjective control systems design feasible,
Zakian (7] introduced the method of inequalities, in which
design specifications are given in the form of inequality
constraints on multiple scalar performance indices. A design
is satisfactory if all the inequalities are satisfied. Zakian
used a relatively simple controller with a simple parameter
search algorithm called the moving boundary process (MBP)
[8]. Using the method of inequality, Satoh et al. [9] have
recently constructed a CACSD system which provides a
unity feedback controller with the order specified by a
designer. This CACSD system is based on a pole-zero
placement algorithm that can avoid pole-zero cancellations
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specified by a designer. However, this CACSD system is
for continuous time systems only. Many modern industrial
control systems are discrete-time systems since they
invariably include some elements whose inputs and/or
outputs are discrete in time. Of course, one can design a
continuous time controller in advance, then employ z
transform to obtain the discrete-time controllers. It should
be careful that the system specifications satisfied by
controllers of continuous type are not necessary satisfied
by those of discrete type.

In this paper, we proposed a computer-aided design
method for two degree-of-freedom control systems
considering the cancellations between plants and controllers.
For efficient use of MGA, we introduce a modified
multiobjective selection. The CACSD we propose here

combines multiobjective GA [6] with the pole-placement
algorithm proposed by Usami [14]. To ensure wide
utilization, we implement the CACSD system as a toolbox
for MATLAB together with MATLAB CONTROL
SYSTEM TOOLBOX.

This paper is organized as follows. In section 2, the
pole-zero algorithm used in a discrete-time two degree-of-
freedom control system is described. In section 3, the
improved rank-based fitness assignment method and the
modified multiobjective selection used in MGA are stated.
In section 4, the effectiveness of the proposed CACSD
system is exemplified by its application to a control design
problem by comparing with an algorithm in MATLAB
OPTIMIZATION TOOLBOX.

Fig. 1: Discrete-time unity feedback system
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2. Discrete-Time Control System Structure

In this section, we consider discrete-time systems where
the signal representing the control effort is piecewise constant
and changes only at discrete points in time.

2.1 Control System Structure Considering Pole-zero
Cancellations

Figure 1 shows the configuration of SISO unity feedback
system for which we propose the design method that can
avoid specified pole-zero cancellations. Using this method,
one can guarantee the steady state characteristics of the
system by specifying the number of integrators included in
the controller for a general type control system.

For constructing a discrete-time control system, we
convert the continuous time plant P(s) into the discrete
plant G(z) by z transform with sampling instant T .

Suppose that G(z) is strictly proper and given by

b, (2)b_(z)

G(z) =
@ a, (z)a_(z)

(n

where a,(z), a_(z), b,(z), and b_(z) are polynomials of
Z, and defined as follows.

a,(z): amonic polynomial which consists of the poles of
the plant that are permitted to be canceled.

a_(z): a monic polynomial which consists of the poles of
the plant that are not permitted to be canceled.

b,(z): a polynomial which consists of the zeros of the
plant which are permitted to be canceled, holds
no zeros at z =1 and is prime to a,(z)a_(z).

b_(z): a polynomial which consists of the zeros of the
plant which are not permitted to be canceled, hold
no zeros at z =1 and is prime to a,(z)a_(2).

Now suppose that the controller in the control system
satisfies the two conditions below.

1) The transfer function of the controller C (z) is proper,
and has / poles specified by a designer at z =1.

2) The transfer function of the controller C(z) does not
cancel the poles of the plant which are given as zeros of
a_(z), and also does not cancel the zeros of the plant
which are given as zeros of b_(z).

Under the above conditions, we consider a pole-zero
placement procedure by which the closed loop transfer
function T(z) from r(r) toy(t) is realized as

T(z) :M)_’ 2)

()

where f(z) and g(z) are polynomials which satisfy certain
conditions given later on. Without loss of generality, the

polynomial f(z) is assumed to be monic. It will be shown
that the zeros of f(z) and a part of the coefficients of g(z)
are freely specified by a designer. The transfer function of
the controller realizing the closed loop transfer function
(2)is obviously given by

g(z)a (z)a_(z)

C](Z): .
(f(2)—g(2)b_(2))b, (2)

3)

On the other hand, the above-mentioned conditions 1)
and 2) require the transfer function C;(z) to be in the form

g(z)a (2)

Co)= 80
= b, )

4

where d(z) is a polynomial. It follows from (3) and (4)
that the controller (4) achieves the closed loop transfer
function (2) provided the relation

f2)=g@)b_(2)+(z= D' d(2)a_(2) (5)

holds. Elaborating the above observation, we have the
following result for the pole-zero placement.

Proposition 3.1

Define
a., = da (], a. = da(2) )
B. = db @) B = db()]

where J['] denotes a degree of a polynomial.
A) Assume that _ +/21. Let m be an integer satisfying
m=o_+1-1. (7)

Consider a polynomial g,(z) and a stable polynomial
f(z) satisfying the conditions

n=dlf()lzm+a, +o_ -4, (8)

m o+l :
L R N Gfm>eoc_+1-1)
g0=1% fawto ©)
0 (ifm=a_+1-1).

Then the Diophantine equation
fp(z)=(z*I)'a_(z)d(z)*%g,(z)b_(z), (10)

has unique solutions g,(z) and d(z) that satisfy

dd)] = n-a_ -1 o

Ag @) < a+i-L. (
Where f,(z) is a polynomial defined by

£,(2) = f(2) ~ g,(2)b_(2). (12)
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Define
22) =g, +2,@). (13)

Then d(g(z)]=m and the controller C,(z) defined by (4)
using g(z) and d(z) is proper and achieves the closed-loop
transfer function 7(z) given by (2).

B) Assume that ««_ =0 and / =0. Consider an arbitrary
polynomial g(z) and a stable polynomial f(z) satisfying

n=df(2)}za, +dg)]-B.. (14)

Define
d(z) = f(z)—b_(2)g(2). (15)

Then the controller C,(z) defined by (4) using g(z) and
d(z) is proper and achieves the closed-loop transfer function
T(z) given by (2).

Proof: Omitted, see[14].
2.2 Two Degree-of-Freedom Control System

For designing a more efficient control system, we add
the following controller C,(z) to Fig. 1 and restructure the
system as Fig. 2.

Cz(z):ao+§i+—a%+ + o (16)
z z

where { a,, a;, a,, ..., a,} are the parameters decided
by the designer. Introducing C,(z) into the control system
offers us the following two advantages:

1) Since the open loop transfer function shown in Fig. 2 is
given by

H(z) = C(2)G(2), (17)

it does not be effected by C,(z). Consequently, one can
design the controller C,(z) to obtain desired response of
the function from r(t) to y(r) without effecting the open
loop characteristics.

2) From Fig. 2, the transfer functions from disturbance
d(t) to output y(r) is presented by

din)
o' toe +’L ! ++ Pls) T
o+>7—> 6 »O)QH 208 »g " ).MO

Fig. 2: Two degree-of-freedom discrete-time system

G(z)

Flz) = ——l
®=1Tcow

(18)

and is effected by C,(z) only. The robustness of the control
system can be guaranteed by a good design of C(z)
independently.

Therefore, with the advantages mentioned above, one
can design the controllers C,(z) and C,(z) to guarantee
the steady state and robust characteristics and to optimize
the response of the function from r(t) to y(r) independently
by the following two steps.

Step 1: First, design the parameters included in C;(z) to
guarantee the steady state and robust characteristics
of systems.

Step 2: Secondly, tuning the parameters included in C,(z)
to optimize the response of the function from r(¢) to

¥().

3. Multiobjective Optimization Problems

For a control system with various specifications, the
scalar evaluating functions are no more useful, however,
fitness defining methods, such as Pareto-based ranking
approach of Goldberg [11] and the modified MO ranking
scheme [5], are used in GAs. These approaches suffer from
too many comparing iterations in deciding the ranks of
each individual, To reduce the executing time for the Pareto-
based ranking process, the authors have proposed an
improved algorithm[6], called improved rank-based fitness
assignment. Furthermore, to prevent premature we introduce
the modified multiobjective selection to maintain the
diversity during GA runs.

3.1 Improved Rank-Based Fitness Assignment

First, we briefly review the improved rank-based fitness
of Liu et al. [6] For a set of vectors F={f f, L f},
where f; ={f,, f, fa.L , fin}. f; is said to be partially less
than f,, when the following conditions hold:

(£ <p )N LG, <) (19)

By modifying (19) authors have proposed a less
computationally demanding ranking scheme [6] shown
as follows

Step 1: SortF from the least to the largest according to

m

j=1 fi/ .
Step 2: Let the first element f, be the criterion and the
inferior or dominated members f; are determinated
by following equation

max g; S0A (Ei)(g,/ <0) 20)
J
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where g, =f, —f; and with the components g,
i=2,3,...0, =123, m.

Step 3: Take out f, and the inferior members f; from F
and save f, to a temporary non-dominated set @ ,
f, to a temporary dominated set G. Let the remaining

vectors of F be F.

Step 4: Treat F by repeating Step 2 and Step 3 until all of
the dominated set of F to be removed. Here, the

non-dominated vectors of F and the temporary
non-dominated set @ become the non-dominated
setof F.

Step 5: The members in non-dominated set are assigned
ranks of 1. These points are then removed from
contention and the next set of non-dominated
individuals of G gained from Step 2 to Step 4 are
identified and assigned as rank 2.

Step 6: Continue Step 2 to Step 5 until the entire population
is ranked.

For the modified multiobjective selection scheme
maintained later on, all the newly ranked individuals in
Step S are classified as the same partial population. From
these partial populations we perform the modified
multiobjective selection to choose individuals in proportion
to their ranks. Consequently, the diversity of current
population can be maintained for the next generation.

After the ranking procedure and the modified
multiobjective section, the rank-based fitness function for
GA implementation can be obtained from a linear function

~ 2(max —

V., () l)(N—rank(i)), 2D

u N_1

where rank(i) is ranked individual, max is a user defined
value, 1 < max <2, and N is the population size.

3.2 Modified Multiobjective Selection

The method to prevent premature during GAs run have
stated by Eshelman [12] and Tsutsui er al. [13). However,
the objective function used in these researches are scalar,
they are inadequate to handle more realistic designs which
usually require the evaluation of multiple performance
indices. In the design of a multiobjective control system
with multiple specifications we introduce a modified
multiobjective selection. To maintain population diversity
during MGA runs, we used the following outline of GA

Step 1: Initialize GA population P(¢). Here, let r=0.

Step 2: Evaluate individuals in P() and determine their
fitness by the improved rank-based fitness
assignment. While termination condition is not
satisfied go to Step 3. Stop.

Step 3: Detect the diversity V, of P(1). Let the initial diversity
at =0 be V.

Step 4: Apply GA operators, two-point crossover and
mutation, to P(#). Put the new individuals into P'(¢).

Step 5: Evaluate individuals in P'(r) and determine the
fitness of P(r)+P’(t) by the improved rank-based

fitness assignment.
Step 5: Detect the diversity V, of the whole population.

1
Step6: If V, < - V., select, C(r) from P(1)+P’ (1) else
1

select, C(t) from P(1)+P'(r). Let r=+1 and P(1)=
C(t-1). While termination condition is not satisfied
go to Step 4. Stop.

Here, in Step 6, A is a integer defined by the designer,
select, is the reproduction selection which is biased toward
selecting the better performing individuals, and select, is
the modified multiobjective selection which select the
individuals from each partial population in proportion to
the ranks.

4. Design Example

This section presents an application of GAs to the
following plant

i
P(s) = . 2
)= i D61054512) @2

To construct a two degree-of-freedom discrete-time control
system, shown in Fig. 2, we convert the continuous time
plant transfer function P(s) into a discrete-time transfer
function by z transform with a zero-order holding device
and the time sampling period 7 = 0.1 shown in (23).

-3
Glz) = 1.584 %10 (z+3.5485)(zf0.2551)‘ 23)
(z—0.9004)(z - 0.9466 £ j0.1149)

The system specifications are set according to a number of
performance requirements. Six objectives are used:

e Rise time: f <1.6s

» Settling time: 1, < 8s.

» Overshoot: O, <12%.

» Maximum value of controller output: U, <20

e Maximum value of y(r) response against a step
disturbance input : D, <0.04.

¢ Maximum value of controller output against a step
disturbance input : U, <20

To solve this problem, a multiobjective optimization GA
was chosen with the following operators: 1) modified
multiobjective selection (h =3, see 3.2), 2) two-point
crossover and 3) mutation. Population 80 for designing
C,(z) and 200 for designing C,(z), reproduction rate 0.3
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Fig. A2: Controller output

for C(z) and 0.8 for C,(z), crossover probability 1.0 and
mutation probability 0.001 are used. Furthermore, in this
example the poles (0.9900, 0.9949£j0.0119) of the plant
.G(z) are not permitted to be canceled by the controllers.
The polynomials included in the plant transfer function (1)
are chosen as follows

a(y)= 1
a (z)= —0.9004)(z —0.9466 £ j0.1149
( (z Xz J ) 24)
b ()= 1
b_(z)= 1.584x107(z+3.5485)(z +0.2551).

In addition, one integrator is specified to be included in
controller C,(z). From (7), we have inequality m 2 3. Let
m =4 and substitute it into (8), then the inequality n =8
should be satisfied. Let n =8 and specify the orders of the
controller C,(z) to be 6. In this case, the tuning parameters
of C,(z) are one coefficient of g,(z) and eight roots of
f(z) represented by re*’®., re*®, re® and re**
polar coordinate. On the other hand, the tuning parameters
of C,(z) are(ay, a,, a,, a,, a,, as, a,). Here, we set
a, =0 to make C,(z) to be proper. Thus fifteen parameters
need to be optimized for the optimal controllers. Each radius(
r.). angle( 6,), and the coefficients in the parameter set is
represented by a 10-bit binary code, and the binary codes
are concatenated to produce a 90-bit string for C;(z) and a
60-bit string for C, (z).

By the procedural flow using GA, we obtained the
controllers CIG"‘(z) and C:GA(z) which achieve all the system

on
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Fig. A3: Step response to disturbance
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Fig. A4: Controller output to disturbance

specifications after 28 and 4 generations, respectively.

1.1095(z +9.5835)(z = 0.9459 £ j0.1022)(z — 0.8900) 25)

CGA(',.) -
DT S 1.0000)(z ~ 0.6631 £ j0.4384)(z - 0.4837 £ j0.2609)

70.5‘440 . 0.5147 +0.7815 - 0.5968  1.0601 +0AOO-’I—4
- 2 T T T3 6

Ct) =
(26)

In addition, to compare GA with an established
optimization algorithm, the goal attainment method (attgoal)
in MATLAB OPTIMIZATION TOOLBOX is used to design
controllers for the same plant with the same specifications
and design condition. Differing from GA, the initial values
of the roots of f(z) by means of the 8th-order Butterworth
pattern whose radius is 2 are given. The coefficient of
g,(z) and is given as 1 and those of C,(z) arte given as
0’s. This search terminates after 267 iterations without
satisfying all the system specifications, and gains the
following controllers

1.0352(x ~0.9488  j0.1439)(: - 0.8687 + ;j0.0388)

- = 27
(212 ~092291)(z - 0.5437)(z ~ 0.8259 £ j0.2940)

o) =

T (2) =

s

1.0897 0.7256 0.4541 0.1342 0.5886 1.4366
e e e -——(28)

The results obtained are shown in Table 1. Figs. Al to
A4 show the step responses, the controller outputs, responses
of y(r)and u(r) when the system suffers a step disturbance
d(r), respectively. From Fig. A2, one can see that the



Table 1: Design performances

Controllers ct) | Cct | e
+ ) +CY7(2)

= |Rise time (s) 0.8000 0.7000 2.2030 1.5470
= |overshoot (%) 2.7812 | 10.7119 | 28.6800 | 12.0000
£ |Seuling time (s) 3.7000 2.5000 | 11.1000 { 6.6400
5 | Max. Controlter 17.4895 | 182418 | 2.1570 | 40480
o [output
; }Zfoa%?/sﬁﬁgzmcc) 0.0289 0.0485
2
ggﬁgutc(?glg)ilsllcurrbancc) 0.1076 0.1287

system designed by GA uses higher energy than MATLAB
OPTIMIZATION TOOLBOX (attgoal), but obtain much
better system performances shown in Figs. Al, A3, and
A4. Furthermore, from Table 1 we find that by adding
C,(z) to systems the performances of the input to output
response can be improved without effecting the robust
characteristics against the disturbance. This provides
designers with a large freedom in the design of controllers
for a multiobjective control system.

5. Conclusions

An application of a multiobjective GA to realistic control
systems design has been discussed. By combining the
multiobjective GA with the pole-zero placement algorithm
which can avoid specified pole-zero cancellations, we have
developed a MATLAB based CACSD system software
package for two degree-of-freedom control systems. This
CACSD system provides a large freedom in the choice of
controller structures and in the design specifications. We
design the controllers to guarantee the characteristics of the
steady state and robust of the system independently. For
efficient use of a MGA, we introduce an modified
multiobjective selection to prevent premature convergence.
To illustrate the effectiveness of the proposed CACSD
system, we have given a design example where the
multiobjective optimization by GA is compared with an

" existing parameter optimization algorithm, the goal
attainment method in MATLAB OPTIMIZATION
TOOLBOX. The results show that genetic algorithm works
better in multiobjective control systems design.

The values of the vector performance index given by
the multiobjective GA provide information on the achievable
performances. The effective use of the information to
automate decision making is under current investigation.
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