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- Abstract — In this paper we discuss an application of genetic
algorithms (GAs) to discrete-time two-degree-of-freedom
control systems design where various design specifications
are required. The design method is based on a pole-zero
placement considering pole-zero cancellations. The tunable
parameters of the controllers are optimized by a new
multiobjective GA (MGA). Combining the MGA with the
design method we construct a computer aided control system
design (CACSD) using MATLAB. The effectiveness of the
proposed CACSD is demonstrated by a numerical design
example. The MGA is compared with an established
optimization algorithm in MATLAB OPTIMIZATION
TOOLBOX. '

1. INTRODUCTION

Control systems design usually requires satisfaction of mul-
tiple design specifications that can not be expressed by a
single scalar performance index. As a pioneering work dealing
with multiple design specifications systematically in comput-
er aided design, Zakian proposed the method of inequalities
[7] where design specifications are given in the form of
inequality constraints. Controller parameters satisfying
these inequalities are searched by a numerical algorithm.
Although the method of inequality has successfully been uti-
lized in various practical control systems, it is difficult in
general to guarantee the convergence.of parameter search.
The convergence difficulty can be overcome by the convex
optimization approach proposed by Boyd et al. {8]. A major
difficulty with this approach is that it generally provides an
extremely high order controller that requires simplification
for practical controller implementation. Recently, multicrite-
ria problems have been formulated as mixed H’/ H~ optimal
control problems [5]. Linear matrix inequality (LMI) and
bilinear matrix inequality (BMI) have been recognized as
useful tools for optimization, but general design method guar-
anteeing the global optimization has not been obtained. In
addition, an optimal controller, if it exists, is extremely high
order controller requiring the reduction of order for practical
implementation.

In this paper, we discuss a systematic method for directly
design a discrete-time controller satisfying multiple design
specifications implementable complexity. We first propose a
flexible design method of discrete-time. two-degree-of-
freedom (2DOF) controllers which contain parameters to be
directly determined by a numerical search. The proposed
method is based on a pole-zero placement with considering
- pole-zero cancellations. The order of the controller can be
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arbitrary larger than the minimum order determined by the
steady state characteristics and the number of the pole-zero
cancellations both of which are specified by a designer.
Although the choice of the controller structure is quite flexible,
fixing controller structure inevitably sacrifices the convexity
of the search space. It is highly possible that a parameter
search with a hill climbing type algorithm is trapped in a
local minimum. To overcome this dilemma, we use a GA
which has potential to elude local minima. So far several
researchers [1]12](3][4] have applied GA to control system .
designs. However, most of them have considered optimization
of a simple controller with a single scalar performance index
and potential ability of GA has not been fully utilized. For
efficient search for multiple performance indices, we propose
a MGA with an improved rank-based fitness assignment
method and a modified multiobjective selection. Using the
proposed controller structure with tunable parameters and
the MGA as a parameter search, we construct a CACSD
system using MATLAB. A numerical design example is
presented to illustrate the effectiveness of the proposed
CACSD system. ’

. 2. DESIGN METHOD

For a better engineering design, complexity of controllers
have to be limited for implementation, therefore we proposed
a design procedure based on a pole-zero placement
considering pole-zero cancellations in which a controller is
given as a fixed but flexible form. Fig. 1 shows the control
system structure set-up. Controller C,,(z) is considered for
guaranteeing desired feedback properties such as robustness,
disturbance rejection and steady state characteristics.
Controller C,.(z) is considered for improving the transient
response to the reference input r(z).

At first, we use the pole-zero placement with considering
pole-zero cancellations to design C,(z) by letting
C,.(z) =0, then construct a general type controller C,.(2).
Suppose we have a plant which is strictly proper and given
as

; G(z)=b,(2)b_(z)/a,(z)a_(2), : M
where a,(z), a_(z), b,(z) and b_(z) are polynomials of z

‘Fig. 1: Discrete-Time Two-Degree-of-Freedom control System
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defined as

a,(z): monic polynomial consists of the poles of the plant
that are permitted to be canceled.

a_(z): monic polynomial consists of the poles of the plant
that are not permitted to be canceled.

b, (z): polynomial consists of the zeros of the plant which
are permitted to be canceled and holds no zeros at
z=1and is prime to a,(z)a_(z).

b_(z): polynomial consists of the Zeros of the plant which
are not permitted to be canceled and hold no zeros at
z=1 and is prime to a,(2)a_(z).

Now suppose that C,,(z) satisfies the following two

conditions. '

1) The transfer function of C,,(z) is proper, and has [
poles specified by a designer at z =1.

2) C,,(z) does not cancel the poles of the plant given
as zeros of a_(z) and the zeros of the plant given as
zeros of b_(z). ’

Under the above conaitions, by letting C..(z)=0, the
closed loop transfer function T(z) from r(z) to Wz) is realized
as

T(z) = 8(2)b_(2)/ f(2), 2
where f(z) and g(z) are polynomials satisfying certain
conditions given later on. Without loss of generality, the
polynomial f(z) is assumed to be monic. A controller realizing
(2)is obviously given by

Cr(2) = 8(2)a,(2a_(2)/(f(2) - g()b_(Nb.(z). (3)
On the other hand, the conditions 1) and 2) require the
transfer function C,(z) to be in the form
Cra(2) = g(2)a, (2)/(z = 1) d(2)b,(2), €Y
where d(z) is a polynomial. It follows from (3) and (4) that
the controller (4) achieves (2) provided the relation
f(2)=g@b.(2)+(z-1a_(2)d(2) (5)
holds. Elaborating the above observations, we conclude the
following for the pole-zero placement with considering
pole-zero cancellations.
Proposition 2.1
Define

il
i

a, dla,(2)], a. dla_(2)],

B. db, ()1, B. dlb_(2)],
where J[] denotes a degree of a polynomial.
A) Assume that «_ +/2=1. Let m be an integer satisfying
m2o_+1-1. ¢))
Consider a polynomial g,(z) and a stable polynomial f(z)
satisfying the conditions

(6)

it
il

n=dlf()zm+a, +o_-B,, (8)

8,2  +g, 2" et g, 2, (fm>o_+1-1),
g”(Z)z{ 0, Qfm=a_+1-1).
)

Then the Diophantine equation
f(2)=(z=1a_(2)d(z) + g,(2)b_(2)
has unique solutions g (z) and d(z) that satisfies

(10)

dd@))=n-a_-1, a1
dlg. (DN<a_+1-1, (12)
where f,(z) is a polynomial defined by
5 ()= f(z) - g,(2)b_(2). (13)
Define
8(2)=g,(D+g,(2). (14)

Then d[g(z)]=m and the controller C,,(z) defined by (4)
using g(z) and d(z) is proper and achieves the closed-loop
transfer function 7(z) given by (2).

B) Assume that &_ =0 and / = 0. Consider an arbitrary
polynomial g(z) and a stable polynomial f(z) satisfying

m=d[g(z)], (15)
n=df(A)lza, +m-4,. (16)

From (5), one has
d(2)= f(2) - b_(2)g(2). an

Then the controller C, (z) defined by (4) using g(z) and
d(z) is proper and achieves the closed-loop transfer function
T(z) given by (2).

Proof: We give a proof only for the case A) since a proof
for the case B) is easier. Because the transfer function of
plant G(z) is a strictly proper rational, we have the relation
a, +a_> B, + B_. Combining this relation with (8), we can
see that

n>m+f_. (18)
Since the degree of g,(z) is at most m we obtain
df, (@) =dlf(D)]=n (19

from (13) and (18). Besides, from (7) and (18), we have
Af(D=nzm+B +12a_+[+f

=dl(z-1)a_(2)]+db_(2)].

It follows from a well-known result on the Diophantine
equation [14] that (10) have a unique solution pair
{g.(2),d(z)} which satisfies (11) and (12) since we suppose
that (z~1)'a_(z) is prime to b_(2).

Using (7), (9), (12) and (14) we obtain

i dg()=m. @n

In addition, from (10), (13) and (14) we see that the pair
{g,(2),d(2)} satisfies(5). Therefore, the controller (4) achieve
the desired closed-loop transfer function (2).

The controller transfer function (4) is proper if

(20

I+dld)]+B.2m+a,. 22)
Using (11), we can rewrite(22) as
n—o_ +B.2m+a,, (23)

which is equivalent to (8), so that the transfer function of the
controller (4) is proper. |
The controller C,_.(z) is designed to obtain the desired
response to the reference input, given as follows
Cold)=a,+az +a,z’ + ... +az™, (24)
where {a,,a,,4a,,..,a,} are parameters decided by the
designer. Note that the transfer function (24) is stable for
arbitrary choice of the coefficients { a,a,,a,,... ,a,} since
it is FIR type.
Introducing C,,.(z) into the control system offers us the
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following two advantages:
1) From Fig. 1, the transfer function of disturbance d (1)
and outputy(z) is given by
G,(2)=¥(2)/d,(z)= G(2)/(1+ Cprp()G(2))  (25)
which depends only on C,,(z). The steady state characteristics
of the response to the reference input and to the disturbance
can be guaranteed by specifying the number of integrators
included in C.,(z). Moreover, since the characteristic
equation of the system includes C,,(z) only, the robust
stability of the system can be achieved by a judicious design
of Cpp(2).
2) The transfer function from r(z) to ¥(z) is given as
G, (2) = (2} r(2) = G(2)(Cry(2) + Cop(2)) /(1 + Cp (2)G(2)) .
(26)
Since the characteristic equation of the system is independent
of C..(z), C.-(2) can be designed for improving the transient
response to the reference input /(z) without effecting the
steady state characteristics obtained by C,,(z).

3. MULTIPLE CRITERIA PROBLEM

In this section we will discuss the formulation of the
multiobjective optimization problem. Assume that the
performances of a control system are evaluated by various
~ scalar performance indices ¢:(P)(i=1,2,....M), where p is a
tunable parameter vector. Vector performance index can be
defined as
For performance indices of practical interest, it is hard to
characterize the exact Pareto optimal set since #,(P) is usually
a highly non-linear function of p. Even if we apply MGA
directly to the vector performance index (27), it would require
fine quantization of the parameter space and thus enormous
amount of computations are necessary to obtain a “Quasi-
Pareto-Optimal Set” (QPOS) sufficiently close to the exact
Pareto optimal set.

As initiated by Zakian [7], to deal with muluobjectlve
performance indices, a reasonable practical approach is to
give design specifications in the form of inequalities
#.(p) < g, (i=1,2,...M), where &, is an admissible performance
bound specified by a designer. Assuming that this type of
design specifications are given, we apply MGA for the vector
performance index which is defined as

where
0 Gf ¢(p)<e) |
. = ,i=12 - .M.
vi(®) {¢,-(p)'—8,~- (if ¢(p)>¢) (=12 @9

Since the Pareto optimal set for the vector performance
index (28) is apparently larger than that for (27), the
multiobjective GA can effectively be used for (28) with
reasonable computational burden.

Remark 1: The optimization based on the vector performance
index (28) is closely related to the method of inequalities
proposed by Zakian [7]. If the optimal solution for the vector

performance index (28) is given by ¥(p,)=0, a controller
corresponding to p, (not necessarily unique) could be found
by the method of inequalities using “Moving Boundary
Process” (MBP) [9] with an appropriate initial conditions.
Since the existence of a controller satisfying all the design
specifications ¢,(p) < ¢, (i=1,2,...,.M) can not be guaranteed
a priori, the parameter search in the method of inequalities
often fails to converge. The MGA for the performance index
(28) overcome this difficulty in the sense that it always
generates controllers belonging to QPOS, even if no controller
satisfies the given design specifications ¢, (p)<e¢

(i=1,2,...,M). The performance indices for each controller in

the Pareto optimal set provide useful information to the
designer for modifying the design specifications.

Remark 2: The intention of optimizing the vector performance
index (28) is similar to that of using the goal attainment
method , an optimization procedure of MATLAB, which is
commonly used for obtaining a compromising solution of a
multiobjective optimization problem. However, notice that
the multiobjective GA using the vector performance index
(28) seeks a set of Pareto optimal controllers, while the goal
attainment method provides a single controller possibly
dependent on the initial conditions of the parameter search.
Remark 3: In the vector performance index (28), the M
scalar performance indices are equally weighted. It is possible
to reflect relative importance of the component indices in a
vector performance index by appropriate scaling.

4. MULTIOBJECTIVE OPTIMIZATION BY
GENETIC ALGORITHM -

As an optimization approach to the multiple criteria
problem we use a new MGA. Two main parts, the improved
rank-based fitness assignment and the modified multiobjective
selection, are included.

4.1 Improved Rank-Based Fitness Assignment

In Pareto optimization, a set F={f,f,, .- f}where
£ ={f.,f:fs, [ }is a vector, £ is said to be partially
less than f,, when the following condition holds:

£ <p £) e DU, S fIENS, < f)- 30)

This relation is used in MGAs to determine the fitness of
individuals. However, in previously suggested method, when
the population size is large, the comparison for determining
partially less than relations requires heavy computational
efforts. For a better way to calculate the fitness, we consider
a simple way to decide ranks of individuals. Recalling Section
3, our present vector performance index (28) whose element
shown in (29) is nonnegative. Therefore, the relationship
(30) is satisfied only if

SL ST, 31)

holds. Using this characteristic we propose an improved rank-

based fitness assignment to save the computing time and
show it as follows. _
Stepl: Sort F from the least to the largest according to

1620



summations of X7, f; .
Let the first element f, be the criterion. The inferior
or dominated members f, are detected if

Mjax 8, S0A@EiXg, <0), (32)

where g, are components of g =f ~f,i=23,...n

Step2:

j=12.3,.m.
Step 3: Take out f, and the inferior members f, from F.
9 Save f, to a temporary non-dominated set @ , £, to
a temporary dominated set G. Let the remaining

vectors of F be F.

Treat F by repeating Step 2 and Step 3 until all
dominated set of F are removed.

Here, the non-dominated vectors of F and the
temporary non-dominated set ¢ become the non-
dominated set of F. ‘
The members in non-dominated set are assigned -
rank of 1. These points are then removed from
contention and the next set of non-dominated
individuals of G gained from Step 2 to Step 4
are identified and assigned as rank 2.
All the newly ranked individuals in Step 5 are
classified as the same partial population. Continue
Step 2 to Step 5 until the entire population is
ranked.
The fitness is given by

F(i) = 2(max —1)(N — rank(i))/(N ~1), (33)
where rank(i) is the rank of the individual, max is
a user defined constant satisfying 1 < max <2, and
N is the population size.
Remark 4: In previously suggested multiobjective GAs [6],
to determine the rank-based fitness of a set with n vectors
requires the partially less than relation to be compared
S'(n~i) times; here i means the ith comparison. However,
in our study, we firstly sort all individuals from the least to
the largest according to their summations, then choose the
first individual as a criterion. Because this criterion is not
dominated by any opponents, it detects most dominated
individuals and removes them before next contention.
Consequently, the ith comparison is less than or equal to
(n-i) iterations. This causes the fastest convergence of the
comparison iterations.

Step 4:

Step 5:

Step 6:

Step 7:

4.2 Modified Multiobjective Selection

Now we focus on the multiobjective selection deciding
which individuals should be remained and which ones should
be removed during the calculations by GA. This is a difficult
problem for the multicriteria optimization. Many researchers
have paid their attentions to this problem, e.g., CHC [11]
proposed by Eshelman and forking GA (fGA) [12] proposed
by Tsutsui et al.. However, the projections from the search
space to the evaluation space are not uniqué. Even if they
keep different binary strings in parameter space, the objective
population diversity cannot be assured. In addition, the

threshold constants used in fGA are detectors on the genetic
domain. It needs enormous memory and time to calculate.
Therefore, in this research we propose a modified
multiobjective selection scheme base on a objective domain
threshold constant (ODTC). This scheme use two alternative
selection methods based on ODTC. ’

The concept of this method is shown in Fig. 2, “SubP(Rank
i)” means the sub-populations consist of the individuals gained
from the Step 6 of the improved rank-based fitness assignment
stated in 4.1. The selection methods “select,“ and “select,*
are under the conditions whether the ODTC is reached or
not. Pop, C(r) and N are the population size, the child
population and the total number of ranks, respectively. The
value of ODCT given as V, /h is calculated by a diversity
maintaining parameter h and the initial population diversity
V.. When the threshold constant is reached, we use select,
to choose the number Pop(N +1-Rank,)/¥" Rank, of
children from every sub-populations in proportion to their
ranks into next generation. Otherwise, we simply select the
best N individuals.

Combining this multiobjective selection method with the
improved rank-based fitness assignment mentioned in 4.1,
we construct a modified MGA shown as follows.

Step 1: Initialize GA population P(z). Decide the diversity
maintaining parameter 4. Let 1= 0.

Evaluate individuals in P(¢) and determine their
fitness by the improved rank-based fitness
assignment. If the termination condition is not
satisfied go to Step 3, else Stop.

Step 2:

Step 3: Detect the diversity V, of P(#). Let the initial diversity
att=0be V,.

Step 4: Apply GA operators, two-point crossover and
mutation, to P(z). Put the new individuals into
P().

Pt )
‘N

SEPRmED | FP N/ Rark 0]
- | [SoPRak2) \
i remmmmy ]
2 y Pop
S Pop( N +1-Rark, )
= T
L .
| | SwPRakN-» |

SwP(Rank N) Fo/ % Rk,

Pe-1) Selecian, :V, <Y /h

SwbP(Rank 1) . Py

SwP(Rank 2)
§
§ SbP(Rank 3) The Best Pop
3 Individwls
s » Pop
p
&
1 | SswP(Rank N-1

SwP(Rank N)

Selectian . ' V, >V°/h

) Fig. 2: Modified Multiobjective Selection
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Step 5: Evaluate individuals in P’(r) and determine the
fitness of P(t) + P’(¢) by the improved rank-based
fitness assignment. '

Detect the diversity V, of the whole population.

If V<V /h select, is used to select C(z) from P(z)
+ P’(2), else select, is used to select C(z) from
Pe)+ P'(t). Let t=r+1and P( = C(s-1). If
termination condition is not satisfied go to Step

4, else Stop.

Step 6:
Step 7:

5. DESIGN EXAMPLE
In this section, we present a design example. We apply
our design method to the control of a mobile robot. The
transfer function of the motor and power amplifier is given
as

P(s)=10/s(s +10)(s +20). 34
The control system structure is shown in Fig. 1. For discrete-
time controllers, we convert the continuous time plant transfer
function P(s) into a discrete-time form using z transform
with a zero-order holding device and the sampling time period

T =0.025. The discrete-time transfer function is shown as
G@z) = 2.1681x107°(z +3.1095)(z + 0.2211) . Gs)

(z—1)(z-0.7788)(z — 0.6065)
The system specifications are set according to the number
of performance requirements. Six objective are used
¢ Settling time: 7, < 0.75s.
sOvershoot: 0, < 10%.
* Maximum value of controller output: U, < 200.
¢ Maximum value of y(¢) response against a step
disturbance input : D, < 0.5.
e Maximum value of controller output against a step
disturbance input : U, < 200. '
These five system specifications are set into a vector
performance index in the form given in (28). Using the MGA
stated in 4.2, GA parameters are chosen as follows: 1) modified
multiobjective selection (Let #=3), 2) two-point crossover
and 3) mutation. Population 100, reproduction rate 0.8,
crossover probability 1.0 and mutation probability 0.001 are
used. Furthermore, to avoid the pole-zero cancellations of
G(z), we define the polynomials included in the plant transfer
function (1) as follows

a,()= 1
a_(z)= (z—-1)(z-0.7788)z - 0.6065)

b(z)= 1 (36)
b (z)= 2.1681x107°(z+3.1095)(z +0.2211).

In addition, for considering disturbance rejection, we
specify one integrator in controller C,,(z). From (7), we
have inequality m 2 3. Let m =3 and substitute it into (8),
then the inequality n = 6 should be satisfied. Let n =6 and
specify the order of the controller C,,(z) to be 6. In this
case, the tuning parameters of C,,(z) include six roots of
f(z) represented by re™®, re*® and re*™ in polar
coordinate only, having no coefficient of gp(z). The tuning

parameters of C,..(z) are {a,,q,,a;,4q,,a,,a,,a,}. Here, we
set a, = 0. Thus twelve parameters are needed to be tuned
for the optimal controllers. For GA calculating we discretize
each radius(r,), angle(8,) and the coefficients a, by mapping
from a smallest possible value to a largest possible value.
This mapping used a 10-bit binary unsigned integer. In this
coding, a string code 0000000000 maps to the smallest possibie
value and a code 1111111111 maps to the largest possible
value with a linear mapping in between. Next, the six 10-bit
parameter sets of r and 6, are chained together to form a
60-bit string represents one of the 2% =1.1529x10"
alternative solutions for controller C,,(z). The coefficients
a, of C,.(z) is set by the same way.

By the procedural flow using GA in Section 4.2, we obtained
the controllers Cfy(z) and C{#(z) which achieve all the
system specifications after 53 and 30 generations,
respectively.

C%(z) =1.7869 x 10%(z - 0.9844)(z — 0.9091)

(z~0.5927)/(z - 1)(z - 0.7626 £ j0.2396)

Cor(z) =-1.9795z7" +4.0225z ~10.0929z 38)
—8.5288z™ +10.53277° —18.49957°

Furthermore, to compare MGA with an established
optimization algorithm, the goal attainment method, attgoal,
in MATLAB OPTIMIZATION TOOLBOX (OPT) is used
to design controllers for the same plant with the same
specifications and design condition. The initial values of
f(z) are given as a 6th-order Butterworth pattern whose
radius is 1 and the initial coefficients of C,,(z) are given as
0's. This search terminates after 4949 iterations for Cgr (z)
and 2120 iterations for Cg (z), respectively, without
satisfying all the system specifications.

Co(z) = 1.0352(z — 0.9488 + j0.1439)(z — 0.8687 + j0.0388)
J(z = 1)(z - 0.9229)(z — 0.5437)((z — 0.8259 * j0.2940))

39
Cr'(2) =1.0897z7 +0.7256z" + 0.45417 (40)
+0.13427™ - 0.58867 —1.45667™° '
The system performances -obtained by MGA and OPT are
shown in Tab. 1. Figs. Al to A4 show the step responses,
the controller outputs, responses of y(zr)and u(r) when the

(37

Table 1: Performances of Examples

Cil(z) { Cit(z) C;’;T(z){C;’;’(z)

Crr (2) Cor (2)
Rise Time 0.2250 0.2000 0.8250  2.6000
Overshoot 9.9545 49821 139422 04727
Setting Time 3.1000 0.7250 4.8250  3.3750
Max. Controller
Output 184.9863 194.3785 199.6426 199.6426
Gain Margin (dB) 9.6861 9.6861 13.8397 13.8397
Phase Margin (deg) 83.7208 83.7208 82.9090 82.9090
Crossover Frequency
(rad/s) 39984 39984 1.8199  1.8199
Peak Value
(to Disturbance) 00117 00117 00202 0.0202 .
Max. Controller
Output(toDisturbance)] 1.0995 1.0995  1.1394  1.1394
_Execute Iterations 2500 4949 2120

4340
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Fig. Al: Step response of y(t} to r(t)
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Fig. A2: Controller output

system suffers a step disturbance d,(z), respectively. From
Tab. 1 we see that MGA calculates in less times as compared
with OPT (6840 and 7069, respectively). However, MGA
satisfies all specifications. On the other hand, OPT gains an
excellent overshoot characteristic but violates the rise-time
and

settling-time constraints. Furthermore, from Fig. A3 we find
that the maximum value of the step responses against a step
disturbance is 0.0117 of MGA and is 0.0202 of OPT. It can
be said that in this example MGA proposes both better transient
response and disturbance rejection characteristics than OPT.

6. CONCLUSIONS

In this paper, we have discussed a systematic approach for
directly designing discrete-time 2DOF controllers using
multiobjective genetic algorithm. The proposed method
based on the pole-zero placement with considering pole-zero
cancellations designs controllers with simple and flexible
structure. For efficient parameter search, we have proposed
a new multiobjective GA (MGA) with an improved rank-based
assignment method and a modified multiobjective selection
scheme to elude local minima. Combining the design method
with the MGA we construct a computer aided control systems
design system using MATLAB. We compare the MGA with
an established optimization algorithm, the goal attainment
method, attgoal, in MATLAB OPTIMIZATION TOOLBOX
by a numerical design example. The result shows that
comparing with OPT, MGA is highly possible to find the
optimization solution.
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