Multiobjective criteria for neural network structure
selection and identification of nonlinear systems

using genetic algorithms
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Abstract: An approach to model selection and identification of nonlinear systems via neuvral
networks and genetic algorithms is presented based on multiobjective performance criteria. It
considers three performance indices or cost functions as the objectives, which are the euclidean
distance (L,-norm) and maximum difference (L., -norm) measurements between the real
nonlinear system and the nonlinear model, and the complexity measurement of the nonlinear
model, instead of a single performance index. An algorithm based on the method of inequalities,
least squares and genetic algorithms is developed for optimising over the multiobjective criteria.
Genetic algorithms are also used for model selection in which the structure of the neural networks
is determined. The Volterra polynomial basis function network and the gaussian radial basis
function network are applied to the identification of a liquid-level nonlinear system.

1 Introduction

Nonlinear system identification can be posed as a nonlinear
functional approximation problem. From the Weierstrass
theorem [1] and the Kolmogorov theorem [2] in approx-
imation theory, it is known that the polynomial and many
other approximation schemes can approximate a continu-
ous function arbitrarily well. In recent years, many
nonlinear system identification approaches, particularly
identification using neural networks [3-13] based on the
universal approximation theorem [14], are applications of a
similar mathematical approach.

For nonlinear system ideniification using the approxima-
tion approach, two key questions are important: how to
judge the accuracy for the nonlinear function being
approximated and how to choose nonlinear function units
to guarantee the accuracy. Many of nonlinear system
identification approaches fix the number of nonlinear
function units and use only a single performance function,
e.g. Ly-norm of the difference between the real nenlinear
system and the nonlinear model which results in the well-
known least-squares algorithm, to measure and judge the
accuracy of the identification model and to optimize the
approximation. The assumption behind choosing the L,-
norm is that the noise in the process and measurements has
gaussian (normal} distributions.

However, in nonlinear system identification ihere are
often a number of objectives to be considered. The objec-
tives are often conflicting and no identification which can be
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considered best with respect to all objectives exists. Hence,.
there is an inevitable trade-off between objectives, for
example, the distance measurement and maximum differ-
ence measurement between the real nonlinear system and
the nonlinear model. Model comparison methods, such as
information criterion [15], bayesian model selection [16]
and minimum description length (MDL) [17], consider two
such objectives, namely, Euclidean distance (L,-norm) and
model complexity. These procedures allow the selection of
the best amongst a small number of candidate models [16].
We consider in addition, the L ,,-norm of the difference
between the real nonlinear system and the nonlinear model
because it represents the accuracy bound of the approxima-
tion achieved by the estimated model.

These considerations lead to the study of multiobjective
nonlinear system identification. This paper presents three
multiobjective performance functions to measure the
approximation accuracy and the complexity of the
nonlinear model for noise with mixed distribution. Those
functions are the L-and L .-norms of the- difference
measurements between the real nonlinear system and the
nonlinear model, and the number of nonlinear units in the
nonlinear model. Genetic algorithms are used to search for
a suboptimal set of nonlinear basis fonctions of the model
to simplify model estimation. Two neural networks are
applied for the model representation of the nonlinear
systems. One is the Volierra polynomial basis function
(VPBF) network and the other is the gaussian radial basis
function (GRBF) network. We also develop a numerical
algorithm for multiobjective nonlinear model selection and
identification using neural networks and genetic algo-
rithms. Two examples in identification of a nonlinear
system and approximation of a nonlinear fanction with
mixed noise demonstrate the operation of the algorithm.

2 Nonlinear modelling with NNs

The modelling of nonlinear systems has been posed as the
problem of selecting an approximate non-linear function
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between the inputs and the outputs of the systems. For a
single-input single-output system, it can be expressed by
the NARMAX model [18] that is,

O =f00 =0t =2), ... 00— n),ult - 1),
u(t —2), ..., ult —n,)) + e 1)

where f{.) is an unknown nonlinear function, y is the
output, % is the control input and e is the noise, respec-
tively, n,,, n,, are the corresponding maximum delays. It is
assumed that the noise e(f) is a white noise. For the colour
noise case, the modelling of the system using neural
networks below needs some slight modifications, as
suggested in [19]. The nonlinear function f(-) in the
above NARMAX model can be approximated by a
single-layer neural network, i.e. a linear combination of a
set of basis functions [20].

N
f1& P =) whixdy) )
k=1

where

x=[{t— 1)yt —2),.... 90 —n,), ut — 1),
u(t —2), ..., ult—n,)] 3)

Jdx,dy) (k=1,2, ..., N) is the basis function and p is the
parameter vector containing the weights wy and the basis
function parameter vectors d;. If the basis functions fi(x,
d;) do not have the parameters dy, then it is denoted by
fi(x). Two sets of basis functions are used in this paper: a
set of the Volterra polynomial basis functions (VPBF) and
a set of the Gaussian radial basis functions (GRBF).

Multivariate  polynomial expansions have been
suggested as a candidate for nonlinear system identifica-
tion using the NARMAX model [3]. The Volterra poly-
nomial expansion [21] has been cast into the framework
of nonlinear system approximations and neural networks
[5, 22]. A network whose basis functions consist of the
Volterra polynomials is named as the Volterra polynomial
basis function network. Its functional representation is
given by

[ =1 p+0K) @
fEp)=a+x"b+xTCx
=a+bx +bx,+... +c”x§ + XX

+c22x%+...
= [a, bl! bz, s €115 012, €y 0 ]
XL, xy, 2%, 0y X0, %020, %5, T
N
=2 w0 (5)
k=1
where
[wy, wa, Wa, oo Wogg, Wagas Wypds -+ -, Wyl
=[a:blsbz,-~~,C11,C|23622--u - (6)
(BE02 TRURI ATy ATy VIS 1)
=10,%, %0, .o X0, X020, X5, ., X2 )]

are the set of linear weights and the set of basis functions
being linearly combined, respectively, and x ¢ R”.

Radial basis functions were introduced as a technique
for multivariable interpolations [23], which can be cast into
an architecture similar to that of the multilayer perceptron
[24]. Radial basis function networks provide an alternative
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to the traditional neural network architectures and have
good approximation properties. One of the commonly used
radial basis function networks is the Gaussian radial basis
function (GRBF) neural network, also called the localised
receptive field network [25]. The nonlinear function
approximated by the GRBF network is expressed by

N
frap) =Y wexp(—(x—d) Cyx - dp)  (8)
k=t

where C, is the weighting matrix of the Ath basis function,
and p is the parameter vector containing the weights w), and
the centres df(k=1, 2, ..., N). For the sake of simplicity,
let C,=1 in this paper.

3 Model selection by GAs

Many different techniques are available for optimising the
design space associated with various systems. In recent
years, the direct-search techniques, which are problem-
independent, have been proposed as a possible solution for
the difficulties associated with the traditional techniques.
One direct-search method is the genetic algorithm (GA)
[26]. (In [26], it is stated that the GA searches from a
population of points, not a single point and uses probabil-
istic and not deterministic transition rules.} Genetic algo-
rithms are search procedures which emulate the natural
genetics. They are different from traditional search meth-
ods encountered in engineering optimisation [27].
Recently, genetic algorithms have been applied to control
system design {e.g. [27, 28]). GAs have also been success-
fully used with neural networks to determine the network
parameters [29, 30], with NARMAX models [31] and for
nonlinear basis function selection for identification using
Bayesian criteria [7]. This paper applies the GA approach
to the model selection and identification of nonlinear
systems using multiobjective criteria as the basis for
selection. The idea used here for model selection is similar
to that proposed in [30] but is independently developed in a
different way [32].

The model selection can be seen as a subset selection
problem. For the model represented by the VPBF network,
the principle of model selection using the genetic algo-
rithms can be briefly explained as follows: For the vector
x € R", the maximum number of the model terms is given
by N=(n+ 1)(n+2)/2. Thus, there are N basis functions
which are the combination of 1 and the clements of the
vector x. Then there are 2V possible models for selection.
Each model is expressed by an N-bit binary model code ¢,
i.e. a chromosome representation in genetic algorithms. If
some bits of the binary model code ¢ are zeros, it means
that the basis functions corresponding to these zero bits are
not included in the model. For example, if the vector
% € R, the maximum number of the model terms is 10.
Then there are 1024 possible models. Each model can be
expressed by a 10-bit binary model code. Thus the Volterra
polynomial basis functions are

7 =[f.for s Sial
:[l,xl,xz,x3,x1x2,x2x3»x1x3:x%:x%vx§] ©)

If the 10-bit binary model code is e=[1001 00101 0],
the model can be written as

f*x.p) =p’ diag ()f
= [P1’P4’P7vP9][f1,ﬂ’f7~f9]T
= Pyt PaXs + Pexyx; +p9x% (10
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For the model represented by GRBF network, the maxi-
mum number of the model terms is given by N, the number
of the Gaussian functions, and there are 2" possible models
for selection and also N possible radial basis functions with
their centres d;. Thus a chromosome representation in
genetic algorithms consists of an A-bit binary model
code ¢ and N real number basis function centres d;
k=12,..., N), ie.,

[e.d],df,....d}] (1)
For example, if N=35, x € H; and the chromosome
[O100] [d, dials - - -5 [ds1, dsp]] (12)
then the model is given by

SrE.p)=w, exp( Z( — dy) )
2
+ w; exp (— Z(xj - d5,)2) (13)

i=1

Tt is evident that only the basis functions corresponding to
the nonzero bits of the binary mode! code ¢ are included in
the selected model. Given a parent set of binary model
codes and basis function parameter vectors, a model
satisfying a set of performance criteria is sought by the
numerical algorithm in Section 5.

4 Multiobjective performance criteria

This section presents multiobjective performance criteria
for nonlinear model selection and identification. Let us
define the following performance functions:

Oy = f(x) —"(x, pll2 (14)
$(p) = I () ~ (%, Plieo (15
$3(p) = o(c) (16)

where ||-||l» and ||-|| o are the L- and L ,-norms of the
function (), a(c) is the number of the non-zero elements in
the binary model code ¢. For model selection and identi-
fication of nonlinear systems, there are good reasons for
giving attention to the performance functions ¢,(p)(i=1,
2, 3). The practical reasons for considering the perfor-
mance function ¢(p) is even stonger than the other
petformance functions ¢.(p) and ¢5(p). Statistical consid-
erations show that it is the most appropriate choice for data
fitting when errors in the data have a normal distribution.
Often the performance function ¢,(p) is preferred because
it is known that the best approximation calculation is
straightforward to solve. The performance function ¢a(p)
provides the foundation of much of approximation theory.
It shows that when this is small, the performance function
@ 1(p) is small also. But the converse statement may not be
tiue. A practical reason for using the performance function
d4(p) is based on the following. In practice, an unknown
complicated nonlinear function is often estimated by one
that is easy to calculate. Then it is usually necessary to
ensure that the greatest value of the errer function is less
than a fixed amount, which is just the required accuracy of
the approximation, The performance function ¢3(p) is used
as a measure of the model complexity. A smaller perfor-
mance function ¢s(p) indicates a simpler model in terms of
the number of unknown parameters used. Under similar
performances in @;(p) and ¢,(p) by two models, the
simpler model is statistically likely to be a better model
[33].
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To give a feel for the usefulness of the multiobjective
approach as opposed to single-objective design techniques,
let us consider the minimisation of the cost functions
Y {Pi=1, 2, 3). Let the minimum value of ¢; be given
by ¢y, for i =1, 2, 3, respectively. For these optimal values
¢; there exist corresponding values given by d),[q& 1G#6,
Jj=1,2,3), fori=1, 2, 3, respectively, and the following
retations hold:

min{¢h, [$3], $,[43]} = &1 (17)
min{$,[$1], (3]} = ¢3 (18)
min{gs[$1], ds[d21} = ¢3 (19)

If one of the performance functions ¢; (=1, 2, 3) is
minimised individually (single-objective approach), unac-
ceptably large values may result for other performance
functions ¢;(j#4, j=1, 2, 3). Generally, there does not
exist a solution for all performance functions ¢(p) for
i=1, 2, 3 to be minimised by the same parameter vector p.
Following the method of inequalities [34, 35], we refor-
mulate the optimisation into a multiobjective problem as

op) =g, fori=1273 2o

where the positive real number ¢; represents the numetical
bound on the performance function ¢(p) and is deter-
mined by the designer. Generally speaking, the number &; is
chosen to be a reasonable value corresponding to the
performance function ¢, according to the requirements of
the practical system. For example, ¢, should be chosen
between the minimum of ¢; and the practical tolerable
value on ¢;. The minimum of ¢, can be known by the
least-squares algorithm. The practical tolerable value
means if ¢, is greater than it, the modelling resuit can
not be accepted. In addition, if & is chosen to be an
unreachable value, Section 5 shows how to deal with this
problem,

5 Numerical algorithm

With three objectives (or cost functions) for model selec-
tion and identification, the numerical algorithm is not a
straightforward optimisation algorithm, such as for the
least-squares algorithm. This section develops the numer-
ical algorithm which uses genetic algorithm approaches
and the method of inequalities to get a numerical sotution
satisfying the performance criteria.

Now, we normalise the multiobjective performance
functions as the following:

U(p) = AE)]

I

@en

Let T'; be the set of parameter vectors p for which the ith
performance criterion is satisfied

O={p:yp) =1} (22)

Then the admissible or feasible set of parameter vectors for
which all the performance criteria hold is the intersection

r=r;nlhnNT; (23)
Clearly, p is an admissible parameter vector if and only if

which shows that the search for an admissible p can be
pursued by optimization, in particular by solving

min{max {i,(p), ¥ (), 3 (M1} (25)
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subject to Eqn. 24, The optimisation needs to be carried
out using iterative schemes, let p? be the value of the
parameter vector at the gth iteration step in optimisation,
and define

M={p:yp)<A?), for i=1,23 (26)

where
AY = max{,(p?)} @n
and also define
r=rinrinri (28)
E = (") + 2 (p?) -+ 5 (p%) (29)

I'? is the gth set of parameter vectors for which all
performance functions satisfy

Y p) <A for i=1,2,3 (30)

It is clear that T'? contains both p? and the admissible set I".
E? is a combined measurement of all performance func-
tions. If we find a new parameter vector p?, such that

A? < AY (31
or
AY =AY and E7 < EY (32)

where A? and E7 are defined similarly to A? and EY, then
we accept p? as the next value of the parameter vector.
Then we set p? t! =p?. We then have

wp*h <y (pY), for i=1,2,3 (33)

and
[ cret cre (34)

so that the boundary of the set in which the parameters are
located has been moved towards the admissible set, as
shown in Fig. 1. The process of finding the optimisation
solution is terminated when both A? and E? cannot be
reduced any further. But the process of finding an admis-
sible parameter vector p stops when

A <1 (35

i.e., when the boundaries of I'? have converged to the
boundaries of T'. Eqn. 35 is always achievable if ¢; properly
set, for i=1, 2, 3. On the other hand, if the A? persists in
being larger than 1, this may be taken as an indication that
the performance criteria may be inconsistent, while their
magnitude gives some measure of how closely it is possible
to approach the objectives. In this case, some of the
parameters ¢; need to be increased. Generally speaking,
the parameter ¢; corresponding fo the largest normalized

Fig. 1 Movement of boundary of set I'?
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performance function ¥, (p?) should be considered to
increase first and then that corresponding to the second
largest one and so on. This means that some of the
performance criteria should be relaxed until they are
satisfied. From a practical viewpoint, the approximate
optimal solution is also useful if the optimal solution is
not achievable. Genetic algorithms have been used in
multiobjective optimisation and have provided Dbetter
results over conventional search methods [27, 36, 37]
Here, we combine genetic algorithms with that of least
squares in deriving the estimation algorithm.

The steps of the identification algarithm to be executed
for the GA implementation are as follows:

Step 1: Chromosomal representation

Each chromosome in the population consists of an N-bit
binary model code ¢ and a real number basis function
parameter vector I, where N is the number of the basis
functions for the nonlinear model selection. For example,
for the VPBF network there is not the vector D and for the
GRBF network the vector D contains all basis function
centres dy(k=1,2, ..., N), i.e, D=[d}, dJ, ..., df]

Step 2: Generation of initial population

The M chromosomes [e, D] for the initial population are
randomly generated, where M is the population size and is
often chosen to be an odd number.

Step 3: Evaluation of performance functions

Given the j-th binary model code ¢; and basis function
parameter vector I;, then the jth nonlinear model is known.
Using the least squares algorithm, the jth weight vector w;
can be computed easily, based on the data of the vector x,
the binary model code ¢; and the basis function parameter
vector Dy Then evaluate the normalised performance
functions ¥,(sp(i=1, 2, 3}, where s;,=[w;, ¢;, D,], and

A= ig}?ﬁ ils) (36)
3

E =Y i) 37)
i=1

These computations are completed for all M sets of
chromosomes, ie. j=1,2, ..., M.

Step 4: Selection

According to the fitness of the performance functions for
each chromosome, delete the (M — 1)/2 weaker members
of the population and reorder the chromosomes. The
fitness of the performance functions is measured by

l .
Ff:A_j forj—=1,2,....M (38)
Step 3: Crossover
Offspring binary model codes are produced from two-
parent binary model codes so that their first half elements
are preserved. The second half elements in each parent are
exchanged. The average crossover operator is used to
produce offspring basis function parameter vectors. The
average crogsover function is defined as

d, +d; M1
J—“jﬁf, forj=1,2,....~5— (39)

Then the (M — 1)/2 offsprings are produced.

Step 6. Mutation

A mutation operator, called creep [27], is used. For the
binary model codes, it randomly replaces one bit in each
offspring binary model code with a random number 1 or 0.
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For the offspring basis function parameter vectors, the
mufation operation is defined as

. M-—1
D; + B, forj:1,2,,..,T (40)
where f is the maximum to be altered and £; € [— 1, 1]is a
random variable with zero mean.

Step 7: Elitism

The elitist strategy copies the best chromosome into the
succeeding generation. It prevents the best chromosome
being lost in the next generation. It may increase the
speed of domination of a population by a super indivi-
dual, but on balance it appears to improve genetic algo-
rithm performance. The best chromosome is defined as
one satisfying

Ey= le[Ln%,l.lr.l.,M}{Ei tE < B, —alA — A
and A, <A, + ) 1)
where
A, = _min (A} (42)

FE,, and E; are corresponding to A,, and A, which are
defined in Bqn. 37. > 1 and d & is a small positive
number, which are given by the designer. o and § are
chosen such that ¢d > 4, e.g. a=1.1 and § =0.05. This
means that sacrificing A,, a bit makes significant improve-
ment on E;. Thus, the best chromosome is one that has the
smallest Ej, at the neighbourhood of the E,.

Step 8: New offsprings

Add the (M — 1}/2 new offsprings to the population which
are generated in a random fashion. Actually, the new
offsprings are formed by replacing randomly some
elements of the best binary model code and mutating the
best basis function parameter vector with a probability

Step 9: Stop check

Continue the cycle initiated in Step 3 until local conver-
gence of the algorithm is achieved. This local convergence
is defined as the population satisfying

A—Ay<e for j=1,2,.,(M—-1)/2  (43)

where A, is corresponding to E,, and ¢ is a positive
number. This implies that the difference between the
chromosomes in the first half population and the best
chromosome is small in the sense of their performance
measurement Ay,

Take the best solution in the converged generation and
place it in a second ‘initial generation’. Generate the other
M — 1 chromosomes in this second initial generation at
random and begin the cycle again until a satisfactory
solution is obtained or A, and Ej, cannot be reduced any
further. In addifion, for mixed noise distribution, the least
squares algorithm in step 3 should be replaced by a more
robust modified least squares algorithm as suggested in
[38].

6 Examples

The first example one considers identification of a real
system. The second demonstrates approximation of a
nonlinear function with a mixed noise with different
variance.
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Table 1: Algorithm parameters

Parameter VPBF Network GRBF Network
Mode! term number N a5 RE
Chromosome length 45 50
yit—1)
y(t—2)
yit—3) e —1}
. y(t—4) y(-2)
Variable vector x u(i— 1) ut—1)
u(t — 2) u(t—2)
u(f —3)
u(f—4)
& 1.5 1.5
&2 0.3 0.3
£3 7 7

6.1 Example 1

We use the data generated by a large-scale pilot liquid-
level nonlinear system with zero mean gaussian input
signal {31]. 1000 pairs of input-output data were collected.
The first 500 pairs were used in the model selection and -
identification of the system, while the remaining 500 pairs
for validation test. The Volterra polynomial basis function
network and the gaussian radial basis function network
were applied to select and identify the model of the system
by the numerical algorithm developed in Section 5.

The time lags n, and &, were obtained by a trial and error
process based on estimation of several models. During the
simulation, it was found that for the VPBF network, if n,
and n, were greater than 4, the performance functions
improved very little. Similarly, for the GRBF network, if n,,
and », were greater than two the performance functions did
not reduce significantly. It is clear that the time lags n, and
n, for the VPBF network are different from those for the
GRBF network. The main reason is those two networks use
different kinds of basis functions which have different
properties. The parameters for the algorithm are given in
Table 1,

VPBF Network

Since the maximum number of the model terms is 45,
there are 2*° possible models for selections. But, after 210
generations optimal model has been found by the algo-
rithm. The performance functions are

$1(p) = 1.8000, ¢,(p) =0.3965, (@ =3 (44)
The model represented by the VPBF network is .

W) = 1,3234( — 1) — 0.3427p(¢ — 2)
+0.075p(t — Dult — 2) (45)

The convergence of the performance functions with respect
to generations are given in Figs. 2 and 3. Tt shows that the
performance functions converge in about 100 generations.
In fact, in generation 94, the performance functions are
$;=18119, ¢$,=04071, and ¢3=3. After that, no
improvement is made until in generation 208 ¢;=1.8,
¢$>=0.3965 and ¢3=3. The measured and estimated
outputs, and the residual error of the system for the training
data are shown in Fig. 4. The measured and estimated
outputs, and estimation error of the system for the valida-
tion test of the model identified via the VPBF network is
itlustrated in Fig. 5. Clearly, the performance functions ¢,
and ¢, are very close to the desired requirements. But they
do not satisfy them. This may be result from the general
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Fig. 2
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Convergence of performance functions using VPBF network
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Fig. 3 Comvergence of performance functions using VPBF network
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Fig. 4 Training data results for system using VPBF network

a Measured and estimated outputs
b Estimation error
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Fig. 5 ‘talidation results for the system using VPBF network

a Measured and estimated outputs
b Estimation error

drawback (premature convergence) of the genetic algo-
rithms.

The GRBF Network

Although the maximum number of the model terms is
only 10 (i.e. 1024 possible models for selection), the
scarch dimension of the basis function centre parameters
is 40 in real number space (i.e. infinite possibilities for
selection). After 700 generations the performance criteria
are almost satisfied. At this stage, ¢,(p)=1.5643,
d2(p)=0.2511, ¢3(p)=5. To obtain the better perfor-
mance, the basis function parameter vector was searched
for another 100 generations using the algorithm with the
fixed number of the model terms, i.e. let ¢s(p) =35 for this
case. Finally, the performance functions are

$1(p) = 12957, ¢y(p) = 0.1724, ¢y(p) =5
The model represented by the GRBF network is

k] 2 2
)= wexp ({j(y(r —D—dy =y - p - d,-,-)z)
i=1 J=1 J=l1
@7

(46)
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Fig. 6 Convergence of the performance functions using GRBF network
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Fig. 7 Convergence of the performance functions using GRBF network
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w, [ —2.6363
W, —1.2470
wy | = —~1.7695 |,
W 0.9437
Ws | —0.5341

[ —2.1577 —1.8855 —0.8975 -0.2841
—1.2717 -2.2730  0.3445  0.3315
{dy} =] —0.6345 —-1.1223 -1.1615 —0.3666
0.7344  1.0223  0.5469  0.1989
| —1.2336 —-0.5928  0.3212  0.5754

(43)

The performance of the GRBF network is shown in Figs.
6-9. Figs. 6 and 7 shows the convergence of the perfor-
mance functions with respect to generations. The measured
and estimated outputs, and residual error of the system for
the fraining data for the model identified via the GRBF
network is shown in Fig. 8. The measured and estimated
outputs, and estimation error of the system for the valida-
tion test data for the model identified via the GRBF

network are shown in Fig. 9.
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bbb Ml AL
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0 50 100 150 200 250 300 350 400 450 500
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Fig. 8 Training dota vesults for system using GRBF network

a Measured and estimated outpuls
& Estimation error
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Fig. 9 ralidation results for system using GRBF network

a Measured and estimated outputs
b Estimation error
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To see the importance of the L., norm measure of the
accuracy bound of the approximation, the performance
function ¢»{p) is not used in the next simulation. So,
only two performance functions ¢, and ¢ are considered.
Their required upper bounds £; and g5 are still set to be 1.5
and 7. The simulation procedure is exactly the same as the
above. The following performance is obtained:

$1(p) =1.2900, ¢y(p) =4 (49)
The weight vector and centres of the network are
@, 1.2394
Wy —2.4092
wy || —2.8203 |’
Wy —2.5141
1.3219 0.4971 0.4451 0.0935
) = —0.5826 —2.1796  0.2636  0.5724
Y —1.6041 —0.0912 —0.7477 —0.0275
—2.1362 —1.9554 —0.7189 -0.2974
(50)

The simulation results are shown in Figs. 10-12. It is clear
from the results that although the performance functions
¢) and ¢4 are reduced, the maximum difference ¢, of the
approximation for identification and validity test is much
greater than the previous case. So it shows that if the
performance functions ¢, and ¢ are sacrificed somewhat,
the performance function ¢, is improved significantly.
The selection, identification and validation results for
the large pilot scale liquid-level nonlinear system show that
the VPBF network is simpler than the GRBF network, but
the performance of the latter is better than that of the
former. However, it is difficult to conclude that the GRBF

35¢
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15}
1.0 . . . .
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generations

Fig. 10 Convergence of performance finctions using GRBF network
without ¢,
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Fig. 11  Training data results for system using GRBF network without ¢>

a Measured and estimated outputs
b Estimation error

0.5
0
-0.5
1.0
1.5

-2.0
-25

0.6r
0.4¢
0.2}
0
-0.2F
-0.4F

500 550 600 650 700 750 800 850 900 950 1000
b

Fig. 12 alidation results for system using GRBF network without ¢
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model is better than the VPBF model or vice versa. On the
same set of experiments, the Bayesian method selection
and identification with Gaussian noise assumptions leads
to very similar performance as previously but needed 11
and 16 basis functions (hidden units) for the VPBF and
GRBF networks [7]. The identified model here is much
simpler.

6.2 Example 2

Consider the following underlying nonlinear function to be
approximated.

£ = LI — x + x*) exp(—0.5x%) (51)

where x is a variable. A random sampling of the interval
[—4, 4] is used in obtaining the 40 input-output data for
approximation. To see the effect of noise, the output of the
function fto a given input x is given by

S@ =) +e (52)
where e is a mixed noise. The noise consists of uniformly
and normally distributed noises, i.e.

1
€= ﬁ(eum,a] + €pp,q) (33)
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where eypo.; is a zero mean uniform noise with finite
variance o and eppa ) is 2 zero mean normal noise with
finite variance ¢. It is assumed that the uniform noise
€u10,01 and the normal noise epp 4 are uncorrelated. Thus,
the mean and variance of the mixed noise e are zero and o,
respectively. Here, the Gaussian radial basis function
network was used to approximate the nonlinear function
by the numerical algorithm developed in Section 5. Three
cases were considered in this simulation. The first used
three performance functions [¢p(p), ¢2(p), $a(p)] during
approximation. The second considered two performance
functions [¢(p), ¢3{p)]. The third used only one perfor-
mance function [¢,(p)]. The effects of the mixed noise
with different variance on the performance functions ¢ (p),
¢ap) and P3(p) for the three cases are illustrated in Figs.
13-15, respectively. The performance of the approximation
of the nonlinear function changes little at low-level
variance of noise and the multiobjective case using three
performance criteria gives a good approximation even
though three performance functions conflict each other.

performance function 1,

0 x
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Fig. 13  Performance function ¢ ,{p) against noise variance ¢
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7 Conclusions

This paper has addressed the problems of medel selection
and identification of nonlinear systems using neuvral
networks, genetic algorithms and multiobjective optimisa-
tion techniques. A set of performance functions that
measure approximation accuracy and a model complexity
measure are used as the multiobjective criteria in the
identification task. The optimisation is carried out using
genetic algorithms which selects the nonlinear function
units to arrive at the simplest model necessary for approx-
imation, along with optimising the multiobjective criteria.
The Volterra polynomial basis function network and the
gaussian radial basis function are subjected to the algo-
rithm in the task of a liquid-level nonlinear system identi-
fication. The model selection procedure results in
determining the relevant linear and second-order nonlinear
terms for the VPBF model and in selection of the basis
function centres for the GRBF model. The experimental
results demonstrate the convergence of the developed
algorithm and its ability to arrive at a simple model
which approximates the nonlinear system well. The
approach developed can also be extended in many ways,
for example, adaptively modify the numerical bounds on
the performance functions. Furthermore, cross-validation
techniques can be used to guide the optimisation and also
in the adaptation of the bounds on the performance func-
tions.
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