

Accuracy, Parsimony, and Generality

in Evolutionary Learning Systems

via Multiobjective Selection

Xavier Llorà, David E. Goldberg,
Ivan Traus, and Ester Bernadó

IlliGAL Report No. 2002016
June, 2002

Illinois Genetic Algorithms Laboratory
University of Illinois at Urbana-Champaign

117 Transportation Building
104 S. Mathews Avenue Urbana, IL 61801

Office: (217) 333-2346
Fax: (217) 244-5705

Accuracy, Parsimony, and Generality

in Evolutionary Learning Systems

via Multiobjective Selection

Xavier Llorà∗ David E. Goldberg

Illinois Genetic Algorithms Laboratory (IlliGAL) Illinois Genetic Algorithms Laboratory (IlliGAL)

Department of General Engineering Department of General Engineering

University of Illinois at Urbana-Champaign University of Illinois at Urbana-Champaign

104 S. Mathews Ave, Urbana, IL 61801 104 S. Mathews Ave, Urbana, IL 61801

llora@illigal.ge.uiuc.edu deg@uiuc.edu

Ivan Traus Ester Bernadó

Enginyeria i Arquitectura La Salle Enginyeria i Arquitectura La Salle

Universitat Ramon Llull Universitat Ramon Llull

Psg. Bonanova 8, 08022, Barcelona, Psg. Bonanova 8, 08022, Barcelona,

Catalonia, Spain, European Union Catalonia, Spain, European Union

is06376@salleURL.edu esterb@salleURL.edu

Abstract

Learning systems (also known as Pittsburgh learning classifier systems) need to balance
accuracy and parsimony for evolving high quality general hypotheses. The evolutionary learning
process used in learning systems is based on using a set of training instances that sample the
target concept to be learned. Thus, the the learning process may overfit the learned hypothesis
to the given set of training instances. In order to address some of these issues, this paper
introduces a multiobjective approach to learning systems. Thus, we translate the selection of
promising hypotheses into a two-objective problem that looks for: (1) accurate (low error), and
(2) compact (low complexity) solutions. Using the proposed multiobjective approach a set of
compromise hypotheses are spread along the Pareto front. We also introduce a theory of the
impact of noise when sampling the target concept to be learned, as well as the appearance of
overfitted perturbations of high quality generalization hypotheses in the Pareto front.

1 Introduction

This paper deals with a specific type of learning classifier system (LCS) (Holland, 1975; Goldberg,
1989; Wilson, 1995; Butz, 2002), the classifier schemes known as a learning system (LS), or Pitts-
burgh classifier system (Smith, 1983; De Jong & Spears, 1991; Janikow, 1991; Michalewicz, 1992).
Among other characteristics, learning systems use variable-size individuals. The main reason for
using this kind of individuals relies on the need that an individual must be a complete solution to
the classification problem. That is, an individual codifies an hypothesis of the target concept to be

∗Visiting scholar from Enginyeria i Arquitectura La Salle, Ramon Llull University, Barcelona, European Union.

1

learned. In order to perform the learning, LSs use a set of instances that are a sample of the target
concept to be learned. Thus, like other machine learning algorithms, LSs assume that the target
concept do not change over time. Some variable-size knowledge representation of hypotheses often
used in LSs include rule sets, instance sets, or decision trees (Llorà, 2002).

Traditionally, the evolutionary-driven learning process of LS has focused on the evolution of
accurate hypotheses that correctly classify the available training instances. However, this approach
does not solve some relevant issues of machine learning algorithms (Mitchell, 1997). The first one
is described by the Occam’s razor principle. Given two equally accurate hypotheses, we prefer
the simplest one. Thus, if the hypotheses are represented as a set of rules, we prefer the one
with fewer rules, or in other words, the most general and accurate hypothesis that describes the
target concept. The second issue is the quality of the evolved hypothesis in terms of generalization
accuracy (accuracy of an hypothesis given unseen instances of the target concept). Since LSs use a
training set that is a sample set of the target concept, an LSs may evolve an overfitted hypotheses
to the given training data set. This is a critical issue in real-world learning problems. Therefore, the
evolved hypotheses, in order to achieve a high quality generalized accuracy on the target concept,
must avoid this over-adapted solutions. If not, the hypotheses may have poor performance when
test on unseen instances of the target concept.

Another problem that LSs have to address is an emergent phenomenon produced by the evo-
lution of variable-size individuals, known as the bloat phenomenon. Bloat can be defined as the
individual size growth without fitness improvement. This problem is well-known in the genetic
programming (GP) community (Koza, 1992; Altenberg, 1994; Blickle & Thiele, 1994; Blickle, 1996;
Angeline, 1998; Langdon & Poli, 1998; Soule & Foster, 1998; Langdon, 2000; Podgorelec & Kokol,
2000; Bleuler, Brack, Thiele, & Zitzler, 2001; Banzahf & Langdon, 2002; Soule, 2002), as well as it
has also been identified in LSs (Garrell, Golobardes, Bernadó, & Llorà, 1999; Bassett & De Jong,
2000; Bacardit & Garrell, 2002), especially when the LSs are used for solving data-mining tasks.

Some efforts to address the previous problems introduced direct penalties to large individual’s
fitness, also known as parsimony pressure. The goal of parsimony pressure is to bias the evolution
of the hypotheses toward solutions that balance the accuracy and the size. Introducing an explicit
selection bias toward generalization, a common parsimony pressure introduces a static (or adaptive)
tradeoff between the accuracy and the size of the evolved hypotheses, constraining the search path
of the evolutionary algorithm. This fact often guides the learning algorithm toward a collapsed
population where all the individuals represent the most general hypothesis. In other words, if the
hypotheses are represented using a set of rules, the individuals codify hypotheses that contain only
one rule that matches everything.

In order to address the generalization issues discussed previously, we transfer the selection in an
LS into a two-objective problem. This multiobjective approach uses two different objectives for a
given hypothesis: (1) accuracy (low error), and (2) compactness (low complexity hypotheses under
the Occam’s razor). The first one guarantees that we solve the problem accurately, whereas the
second introduces generalization pressure toward compact solutions. Our proposal is based on the
concept of Pareto optimal set (Pareto, 1896; Van Veldhuizen & Lamont, 1998; Coello-Coello, 1998;
Van Veldhuizen & Lamont, 2000). Roughly explained, we want to spread the evolved hypotheses
over the Pareto front of the learning problem. Thus, the multiobjective selection pressure coevolves
different solutions with different tradeoffs between accuracy and complexity. Therefore, once the
evolutionary learning process is done, we will be able to choose among the different hypotheses (and
their associated tradeoff). Moreover, the Pareto front of the evolved population lets us gain some
theoretical insights on the behavior of the proposed multiobjective LSs. Our analysis is twofold.
On one hand, we study the effect of noise when sampling the target concept. On the other hand,
we also make some considerations about the overfitting of the evolved hypothesis in terms of the

2

Pareto front of the population.
The paper is structured as follows. Section 2 presents some related work from GP and LSs

efforts for controlling bloat, as well as some work done using multiobjective optimization. Then,
section 3 presents a description of the multiobjective fitness evaluation proposed to achieve the
goals of this paper. Section 4 describes how the multiobjective fitness evaluation is used in two
learning systems (the first one based on genetic algorithms (GA), whereas the second relies on
evolution strategies (ES)). Some experiments using both algorithms are summarized in section 5.
Finally, section 6 discusses the conclusions of this work, as well as some future work.

2 Related Work

One of the main problems that arises with the evolution of variable-size individuals is the bloat
phenomenon (Tackett, 1994). Bloat is usually defined (in GP terms) as the code growth of indi-
viduals without any fitness improvement. Unfortunately LSs that use variable-size representations
also suffer from bloat. In LSs, this phenomenon may appear in two different forms: (1) the addition
of useless rules, or (2) the evolution of over-specific rules.

Early works in GP reported some unexpected code growth of individuals (Koza, 1992; Altenberg,
1994; Blickle & Thiele, 1994; Tackett, 1994). This growth was not related directly to the fitness,
since it did not improve it. This phenomenon was called bloat (Tackett, 1994). Banzahf and
Langdon (2002) summarize bloat as the result of two main issues, although these ideas are still
disputed. The first one is known as “fitness causes bloat” (Langdon & Poli, 1998), whereas the
second is referred as “natural code is protective” (Angeline, 1998). Fitness selection bias favors
individuals with the same fitness regardless of their size. This means that given an individual, there
is a set of individuals (almost infinite) that share the same fitness value, but with a larger code.
Therefore, once a given fitness value has been reached, the search becomes a random walk among
these bigger individuals without an improvement in fitness. On the other hand, bloat also appears
as neutral code that does not take part in fitness computation. This neutral code increases the
size of the individual and as a consequence it reduces the probability that the genetic operators
strike useful code disrupting the fitness of the individual. Therefore, this code is usually regarded
as protective.

Many different approaches and studies to control code growth have been developed in the GP
community (Blickle, 1996; Soule & Foster, 1998; Langdon, 2000; Podgorelec & Kokol, 2000; Soule,
2002). Some of them deal with parsimony pressure toward compact individuals, variable fitness or
specially tailored operators, among others. Recently, a new approach has been proposed by Bleuler,
Brack, Thiele, and Zitzler (2001). Their work addresses the bloat problem as a multiobjective
optimization problem. The two objectives to optimize for a given individual are: (1) maximize
its fitness, and at the same time (2) minimize its size. In order to achieve this goal, they used
a multiobjective evolutionary algorithm known as SPEA2 (Zitzler, 1999; Zitzler, Deb, & Thiele,
2000; Zitzler, 2001).

Several authors have studied the growth of individuals in Pittsburgh classifier systems, but they
have not addressed this problem from a multiobjective point of view. The most common approach
is to introduce a parsimony pressure in the fitness function, in such a way that the fitness of larger
individuals is decreased (Bassett & De Jong, 2000; Bacardit & Garrell, 2002; Garrell, Golobardes,
Bernadó, & Llorà, 1999). For example, Garrell, Golobardes, Bernadó, and Llorà (1999) controled
the bloat by a step fitness function: when the number of rules of an individual exceeds a certain
maximum, its fitness is decreased abruptly. The problem of this approach is to set this maximum
appropriately. Bacardit and Garrell (2002) define a similar fitness function, as well as a set of

3

other measures like the deletion of introns1 (Nordin & Banzhaf, 1995) (rules that are not used in
the classification) and a tournament-based selection operator that considers the size of individuals.
The authors argue that the bloat control has an influence over the generalization capability of the
solutions. It has been observed than shorter rule sets tend to have more generalization capabilities
(Bernadó, Mekaouche, & Garrell, 1999; Bacardit & Garrell, 2002; Nordin & Banzhaf, 1995).

Therefore, the use of a parsimony pressure has beneficial effects: it controls the unlimited growth
of individuals, increases the efficiency in the search process and leads to solutions with better gen-
eralization. Nevertheless, the parsimony pressure must be balanced appropriately. An excessive
pressure toward small individuals could result in premature convergence leading to compact solu-
tions but with suboptimal fitness (Nordin & Banzhaf, 1995), or even in a total population failure
(population collapses with individuals of minimal size). Soule and Foster (1998) showed that the
effect of parsimony pressure can be measured by calculating explicitly the relationship between the
size and the performance of individuals within the population. Based on these results, it seems
that a multiobjective approach may overcome some of these difficulties. Instead of balancing the
parsimony pressure, a multiobjective approach based on the concept of the Pareto front (Pareto,
1896; Van Veldhuizen & Lamont, 1998; Coello-Coello, 1998; Van Veldhuizen & Lamont, 2000) can
coevolve a set of solutions with different tradeoffs between size and accuracy. Spreading these so-
lutions among the Pareto front implicitly balances the relationship between the generality and the
performance of individuals within the population.

In the field of evolutionary fuzzy models, there have been some proposals with the use of
multiobjective techniques. Gómez-Skarmeta, Jiménez, and Ibáez (1998) use a multiobjective evo-
lutionary algorithm to generate and tune fuzzy models. The system obtains a collection of fuzzy
rule sets along the discovered Pareto front, which is defined by the minimization of two objectives:
the quadratic mean error and the number of rules. Although the minimization of the number of
rules is an objective included in the evolutionary search, the number of rules is previously limited
by a parameter tuned by the user. In their work, the multiobjective algorithm is used as a tool
for providing multiple solutions to the decision maker, who has to decide a posteriori the best
solution according to the problem environment. Jiménez, Gómez-Skarmeta, Roubos, and Robert
(2001) also define a multiobjective evolutionary algorithm to obtain fuzzy models. They identify
several objectives such as the accuracy, the similarity between fuzzy sets, and the number of rules,
but their final approach does not include the number of rules as an objective to minimize because,
according to the authors, it led to sub-optimal solutions.

Our approach is to use a multiobjective evolutionary approach, which minimizes simultaneously
the classification accuracy and the size (number of rules). Besides controlling the number of rules
(bloat) dynamically, this would allow the formation of compromise hypotheses. This explicit tradeoff
formation let us explore the generalization capabilities of the hypotheses that form the Pareto
front. In certain environments like data mining, where the extraction of explanatory models is
desirable, a high quality general solutions (in terms of accuracy out of sample, or compactness of
hypotheses) are useful. For instance the presence of noise in the data set may lead to accurate
but overfitted solutions. Maintaining a Pareto front of compromise solutions we can identify the
overfitted perturbations of high quality general hypotheses. Therefore, evolving a set of different
compromise solutions between accuracy and generalization, we can postpone the decision of picking
the “best rule set” to the final user (decision maker), or combine them all using some bagging
technique (Breiman, 1996; Llorà & Garrell, 2000; Llorà, 2002).

1Non-coding segments. In GP literature this concept has also been termed non-effective code (Banzahf & Langdon,
2002).

4

3 Multiobjective Evolution and Learning Systems

Since multiobjective optimization plays a central role in the work presented here, this section sum-
marizes some relevant issues. First, we briefly summarize some general multiobjective optimization
definitions in subsection 3.1. Then, subsection 3.2 presents how we can use a multiobjective ap-
proach to address the bloat phenomenon that usually appears on variable-size individuals evolved in
some Learning Systems. Finally, subsection 3.3 discusses the usefulness of evolving a classification
front in a Learning System.

3.1 Multiobjective Optimization

In a multiobjective optimization problem (MOP) (Van Veldhuizen & Lamont, 2000) a solution
~x ∈ Ω is represented as a vector of n decision variables ~x = (x1, . . . , xn), where Ω is the decision
variable space. We want to optimize k objectives which are defined as fi(~x), with i = 1 . . . k. These
objectives are grouped in a vector function denoted as F (~x) = (f1(~x), . . . , fk(~x)), where F (~x) ∈ Λ.
F is a function which maps points from the decision variable space Ω to the objective function
space Λ:

F : Ω 7−→ Λ
~x 7−→ ~y = F (~x)

(1)

Without loss of generality, we can define a MOP as the problem of minimizing a set of objectives
F (~x) = (f1(~x), . . . , fk(~x)), subject to some constraints gi(~x) ≤ 0, i = 1, . . . ,m. These constraints
are necessary for problems where there are invalid solutions in Ω. Although the MOP’s definition
addresses a minimization problem, a MOP is not limited exclusively to minimization. A MOP
can be applied to maximization problems as well as to problems where some objectives must be
minimized and some others maximized. Nevertheless, in the rest of this section we will assume a
minimization MOP.

In a MOP, the solution which minimizes all the objectives and satisfies all the constraints may
not exist. Sometimes, the minimization of a certain objective implies a degradation in some other
objective. Then, there is not a global optimum that minimizes all the objectives simultaneously. In
this context, the concept of optimality must be redefined. Vilfredo Pareto (Pareto, 1896) introduced
the concept of dominance and Pareto optimum to deal with this issue.

In general terms, a vector ~u dominates another vector ~v, written as ~u � ~v, if and only if every
component ui is less or equal than vi, and at least there is one component in ~u which is strictly less
than the corresponding component in ~v. This can be formulated as follows:

~u � ~v ⇐⇒ ∀i ∈ 1, . . . , k , ui ≤ vi ∧ ∃i ∈ 1, . . . , k : ui < vi (2)

For example, given a MOP with three objectives and the vectors ~u = F (~x1) = (1, 1, 2) and
~v = F (~x2) = (1, 2, 2), we notice that ~u � ~v. However, if ~u = (1, 1, 2) and ~v = (1, 2, 1), neither ~u
dominates ~v nor ~v dominates ~u.

The concept of a Pareto optimum is based on the dominance definition. Thus, a solution ~x ∈ Ω
is a Pareto optimum if there is not any other solution ~x′ ∈ Ω whose objective vector ~u′ = F (~x′)
dominates ~u = F (~x). In other words, a Pareto optimum is a solution whose objectives can not be
improved simultaneously by any other solution.

The set of all solutions whose objective vectors are not dominated by any other objective vector
is called the Pareto optimal set P∗:

P∗ :=
{

~x1 | @ ~x2 : ~F (~x2) � ~F (~x1)
}

(3)

5

x2

x1

f2

f1

Decision variable space Objective function space

F

Figure 1: In this hypothetical example we have a two objective problem with two decision variables.
Solutions are mapped from the decision variable space to the objective function space. The gray
zone in Ω represents the Pareto optimal set and the continuous line in Λ the Pareto front.

Analogously, the set of all vectors ~u = F (~x) where ~x belongs to the Pareto optimal set is called
the Pareto Front PF∗:

PF∗ :=
{

~u = ~F (~x) = (f1(~x), . . . , fk(~x)) | ~x ∈ P∗

}

(4)

Figure 1 represents a two objective problem in the decision variable space (left) and the objective
function space (right). The shadowed area on the left represents the optimal solutions in the decision
variable space, also called as Pareto optimal set. The thick curve in the objective function space
represents the Pareto Front. It is constituted by the objective vectors which are not dominated by
any other objective vectors. These solutions represent compromise solutions, i.e., solutions with
different tradeoffs between the objectives. We cannot improve an objective without penalizing the
other one. Among these compromise solutions, we have to choose the desired tradeoff between the
different objectives in order to take the best solution to the problem. This decision is done by a
decision maker, a human or an expert system with some knowledge about the problem.

3.2 Classification and Multiobjective Optimization

The goal of our multiobjective approach introduced in LS is to trade off two objectives: (1) the ac-
curacy of an individual, and (2) its size. If we inspect each objective separately, we are interested in
evolving accurate individuals (with a reduced classification error). Moreover, we are also interested
in evolving general solutions to the classification problem. This means that we prefer maximally
general solutions (Wilson, 1995) describing the knowledge behind that classification problem. In a
LS where an individual is a complete solution to the classification problem, this can be achieved
biasing the evolution toward compact (small sized) individuals. Therefore, we have two different
objectives to optimize at the same time, accuracy and size.

Define ~x as an individual that is a complete solution to the classification problem; D the training
data set for the given problem; |D| number of instances in D; miss(~x,D) the number of incorrectly
classified instances of D performed by ~x; and finally, size(~x) a measure of the current size of ~x
(e.g. the number of rules that contains). Using this notation, a simple multiobjective approach can

6

easily be achieved as follows:

F (~x) = (fe(~x), fs(~x)) (5)

fe(~x) =
miss(~x,D)

|D|
(6)

fs(~x) = size(~x) (7)

Thus, our multiobjective approach minimizes F (~x)2. With this simple multiobjective definition,
the evolution is bias toward the hypotheses that form the Pareto optimal set. Therefore, the
population may evolve hypotheses with different tradeoffs between accuracy and generality. Besides,
the bloat phenomenon is also addressed due to the bias toward the Pareto front. For implementation
purposes fs was divided by the data-set size (number of available instances).

3.3 What is the Purpose of the Classification Front?

The main purpose of the evolved Pareto front (or classification front) is to keep solutions with
different tradeoffs in their accuracy and size. Coevolving these compromise solutions, we can delay
the need of choosing a solution with the desired tradeoff between the different objectives in order
to take the best solution to the problem. This decision can be done once the evolution is over and
the classification front is provided. However, this decision is critical for achieving a high quality
accuracy generalization in front of unseen instances of the target concept.

The decision maker has several hypotheses among which to choose, all provided by the clas-
sification front. Moreover, the decision maker can be a human or an expert system with some
knowledge about the problem. However, there are other approaches already explored in the ML
and GBML community. Among others, some interesting approaches are based on the bagging tech-
nique (Breiman, 1996; Llorà & Garrell, 2000). The goal is to combine different hypotheses (e.g.
the ones that form the classification front) into a new single classification hypothesis. The goal is
to obtain a new combined hypothesis that reduce the impact of the overfitting of the used hypothe-
ses, producing a high quality general hypothesis when tested using unseen data. This technique
tends to reduce the deviation among runs, and it often improves the generalization capability of
the combined solution (Llorà, 2002).

However, in this paper we use a simpler approach in order to test the generalization capabilities
of the evolved hypotheses. In order to test unseen instances, we pick only one solution from the
evolved classification front. This hypothesis may be chosen using one of the two different strategies,
shown in figure 2. The first one (get-best) chooses the solution ~x of the front with the best accuracy,
that is, the one that minimizes fe(~x). On the other hand, the second one (get-closer) picks the
hypothesis of the front that minimizes the objective vector ~u = F (~x). Thus, the selected solution
is the one that balances equally both objectives. In other words, the solution ~x that minimizes
|F (~x)| =

√

fe(~x)2 + fs(~x)2.

4 Multiobjective Learning Systems

There are several approaches to LCSs (Goldberg, 1989; Michalewicz, 1992; Llorà, 2002). Among
the different alternatives, we chose to implement our multiobjective approach, presented in section
3, using two different LS. The first one uses an evolutionary model based on genetic algorithms

2We used error instead of accuracy for simplifying the implementation details.

7

S
iz

e

Error

(a) get-best

S
iz

e

Error

(b) get-closer

Figure 2: Selected hypotheses, using two different strategies, among the Pareto front compromise
solutions for testing unseen instances.

(MOLS-GA), whereas the second exploits an evolutionary learning approach based on evolution
strategies (MOLS-ES) (Traus & Bernadó, 2002). Both LS share some common elements, mainly
related to the multiobjective mechanisms. This section describes briefly the two systems, and
afterwards it focuses on the evaluation phase where the multiobjective techniques are introduced.

4.1 MOLS-GA

MOLS-GA is a learning system based on genetic algorithms. The knowledge representation is based
on rule sets or instance sets (Llorà, 2002; Llorà & Garrell, 2001a; Llorà & Garrell, 2001b). If the
problem’s attributes are nominal, MOLS-GA uses rule sets, represented by the ternary alphabet
(0, 1, #) often used in other LCSs (Holland, 1975; Goldberg, 1989; Wilson, 1995). Otherwise, if
the problem is defined by continuous-valued attributes, instance sets—based on a nearest neighbor
classification—are used.

The GA learning cycle works as follows. First, the fitness of each individual in the population
is computed. This is done on a multiobjective basis, taking into account the misclassification error
and the size of each individual. This phase is explained in details in section 4.3. Then, selection
is applied using a tournament selection algorithm (Oei, Goldberg, & Chang, 1991; Bäck, 1995;
Miller & Goldberg, 1995) with elitism. Elitism is often applied in evolutionary multiobjective
optimization algorithms and it usually consists in keeping the solutions of the Pareto Front evolved
in each generation (Van Veldhuizen & Lamont, 2000). MOLS-GA performs similarly: it keeps all
the distinct solutions of the evolved Pareto Front, and also a 30% of the individuals with the lowest
error. This guarantees that the best compromise solutions evolved so far are not lost, as well as
the best low-error solutions which are important to drive the evolution toward accurate solutions.

After selection, crossover and mutation are applied. The crossover operator is based on the
operator described in (De Jong & Spears, 1991). It is a variant of the classical two-point crossover,
adapted to deal with variable-size individuals. It works in the following way. The crossover point
can occur anywhere (i.e., both on the rule/instance boundaries as well as within a rule/instance).
The only requirement is that the crossover points in the two parents must be equivalent in order
to produce valid solutions. That is, if one parent is cut on a rule/instance boundary, then the
other parent must also be cut on a rule/instance boundary. Similarly, if one parent is cut within

8

a rule/instance, then the other parent must be cut in a similar spot. The mutation consists in
generating a random new gene value.

4.2 MOLS-ES

MOLS-ES (Traus & Bernadó, 2002) is a learning system that uses an evolution strategy scheme
(Schwefel, 1965; Schwefel, 1977; Bäck, 1996) instead of a genetic algorithm. Each individual of the
population codifies a set of rules. The rules are represented in the ternary alphabet if the attributes
are binary, and in a (n+1)-alphabet if the attributes are nominal (where n is the number of nominal
values). If the attributes are real-valued, the hyper-rectangle code proposed by Wilson (1999) is
used.

The multiobjective approach has been introduced in MOLS-ES in the same way as in MOLS-
GA. It is described in the following section. Besides the fitness computation stage, the other
phases of MOLS-ES differ from MOLS-GA, since MOLS-ES is based on an Evolution Strategy
approach. MOLS-ES uses a (µ + λ) selection scheme, which means that from the recombination
and mutation of µ parents λ children are obtained. From the resulting overlapping population,
the best µ individuals are selected for the next generation, where the concept of best is defined
according to the multiobjective evaluation algorithm. It can be noticed that this selection also
induces a kind of elitism.

The crossover operator applied to the solutions is the same as in MOLS-GA, which is a two-
point crossover adapted to the variable size of individuals. The mutation is applied according to
Evolution Strategies. For each gen xi, there is a standard deviation σi associated with it which is
used to mutate the gen. Both the solutions and the standard deviations are mutated as follows:

σ′
i = σi · exp(τ ′ · N(0, 1) + τ · Ni(0, 1)) (8)

x′
i = xi + σ′

i · Ni(0, 1) (9)

where N(0, 1) and Ni(0, 1) are random numbers distributed normally with mean 0 and standard
deviation 1 and τ and τ ′ are set as recommended in (Schwefel, 1977). Thus, the solutions and
their standard deviations are adapted along the evolution process. For real-valued attributes, this
scheme fits perfectly. Nevertheless, for nominal attributes the mutation of xi has to be modified.
In this case, σi is proportional to the mutation probability. The new mutated xi value is chosen
randomly among the available symbols.

4.3 Multiobjective fitness in MOLS-GA and MOLS-ES

In both systems, the multiobjective fitness scheme is introduced in the same way. The procedure
is inspired by NSGA (Srinivas & Deb, 1994; Srinivas & Deb, 1995) and NSGA-II (Deb, Agrawal,
Pratab, & Meyarivan, 2000) and it works as follows.

The individuals of the population are sorted in equivalent classes. These classes are determined
by the Pareto Fronts that can be defined among the population. That is, given a population of
individuals I, the first equivalence class I0 is the set of individuals which belongs to the evolved
Pareto optimal set I0 = P∗(I). The next equivalence class I1 is computed without considering
the individuals in I0, as I1 = P∗(I \ I0), and so forth. Figure 3 shows an example of the different
equivalence classes, presented using the fronts that appear in a population at a given iteration.
This plot is obtained with the mux problem. In this example, the population is classified into
nine different fronts. The left front is I0, which corresponds to the non-dominated vectors of the
population. The next front to the right represents I1 and so on.

9

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

12
14

Error (%)

S
iz

e
(#

ru
le

s)

Figure 3: Sorted population fronts at a given iteration of MOLS in the mux problem.

Once the population of individuals I is sorted, fitness values are assigned. Since the evolution
must bias the population toward non-dominated solutions, we impose the constraint:

fitness(I i) > fitness(I i+1) (10)

Thus, the evolution will try to guide the population toward the left part of the plot, i.e., the real
Pareto Front. The fitness of each individual depends on the front where the individual belongs.
That is, all the individuals of the same equivalence class Ii receive the same constant value (n− i)δ,
where n is the number of equivalence classes and δ is a constant. Moreover, in order to spread
the population along the Pareto Front, a sharing function is applied. Thus, the final fitness of an
individual j in a given equivalence class Ii is:

fitness(I i
j) =

(n − i)δ
∑

k∈I φ(dIi
jIk

)
(11)

where φ(d
Ii

jIk
) is the sharing function (Goldberg & Richardson, 1987). The sharing function is

computed using the phenotipical distance between the individuals; that is, the Euclidean distance
between their multiobjective vectors. The radius of the sharing function σsh was set to σsh = 0.1.

5 Experiments

This section discusses the results obtained using the multiobjective LS presented in section 4. The
experiments explore different facets of the behavior of the proposed LSs. Both LSs were used to
solve artificial and real-world problems, paying special attention to their performance in terms of

10

Table 1: Summary of the data sets used in the experiments.

id Data set Size Missing Numeric Nominal Classes
values(%) Attributes Attributes

bpa Bupa Liver Disorders 345 0.0 6 - 2
bre Wisconsin Breast Cancer 699 0.3 9 - 2
gls Glass 214 0.0 9 - 6
ion Ionosphere 351 0.0 34 - 2
irs Iris 150 0.0 4 - 3
led Led (10% noise) 2000 0.0 - 7 10
mux Multiplexer (11 inputs) 2048 0.0 - 1 2
prt Primary Tumor 339 3.9 60 17 22
son Sonar 208 0.0 60 - 2

the evolved Pareto fronts. The section starts describing briefly the data sets and algorithms used in
the experiments (subsection 5.1). Then subsection 5.2 presents the fronts obtained on two artificial
problems where the optimal Pareto front is known. After presenting these results, subsection 5.3
shows some interesting properties of the Pareto front evolved by the proposed LS in the presence
of noise in the data set. These results let us justify the results obtained in front of real-world
problems. Thus, subsection 5.4 analyzes some interesting facets of the behavior of both LS on
these real-world problems.

5.1 Test Suite

In order to evaluate the performances of the proposed multiobjective LS on different domains,
we performed experiments on nine data sets. These data sets can be grouped into two different
categories: artificial and real-world. Table 1 describes their characteristics.

We used two artificial data sets to tune both LSs, because we knew their solutions in advance.
Mux is the eleven input multiplexer, widely used by the LCS community (Wilson, 1995). Led is the
seven-segments problem. The data set used in the Led problem was generated using the program
provided by the UCI repository (Merz & Murphy, 1998).

The public data sets were obtained from the UCI repository (Merz & Murphy, 1998). We
chose seven data sets: Bupa Liver Disorders (bpa), Wisconsin Breast Cancer (bre), Glass (gls),
Ionosphere (ion), Iris (irs), Primary Tumor (prt), and Sonar (son). These data sets contain
categorical and numeric attributes, as well as binary and n-ary classification tasks.

We also run several evolutionary and non-evolutionary classifier schemes on the previous data
sets. The evolutionary classifier schemes were GALE (Llorà & Garrell, 2000; Llorà & Garrell,
2001a; Llorà & Garrell, 2001b; Llorà, 2002) and XCS (Wilson, 1995; Bernadó, Llorà, & Garrell,
2001), whereas the non-evolutionary ones were IB1 (Aha & Kibler, 1991), C4.5 (Quinlan, 1986;
Quinlan, 1993), and PART (Frank & Witten, 1998). The non-evolutionary schemes were obtained
from the Weka package (Witten & Eibe, 2000) developed at the University of Waikato in New
Zealand. The code is available from the http address: http://www.cs.waikato.ac.nz/ml/weka.
These algorithms were run with the default configuration provided by their authors.

In order to allow the replication of the results presented in this section, we briefly summarize
the parameter setting used in MOLS-GA and MOLS-ES. The parameter values used in MOLS-GA
were: σsh=0.1, δ=1000, pop size=285, crossover probability pχ=0.4, probability of mutation of an
individual pmut=0.02, and the gene perturbation probability pgen=0.25. On the other hand, the

11

s0 s1 s2 s3 s4 s5 s6 Class

1 1 1 1 1 1 0 : 0

0 0 0 0 1 1 0 : 1

1 0 1 1 0 1 1 : 2

1 0 0 1 1 1 1 : 3

0 1 0 0 1 1 1 : 4

1 1 0 1 1 0 1 : 5

1 1 1 1 1 0 1 : 6

1 0 0 0 1 1 0 : 7

1 1 1 1 1 1 1 : 8

1 1 0 0 1 1 1 : 9

(a) led problem

a2 a1 a0 i0 i1 i2 i3 i4 i5 i6 i7 o

0 0 0 0 # # # # # # # : 0

0 0 1 # 0 # # # # # # : 0

0 1 0 # # 0 # # # # # : 0

0 1 1 # # # 0 # # # # : 0

1 0 0 # # # # 0 # # # : 0

1 0 1 # # # # # 0 # # : 0

1 1 0 # # # # # # 0 # : 0

1 1 1 # # # # # # # 0 : 0

: 1

(b) mux problem

Figure 4: Optimal solutions for the led and mux problems. The mux problem has two optimal
solutions using ordered activation of classifiers. We only show one of these solutions; the other can
be obtained swapping the 0s for 1s of the ij and o attributes.

parameter values used in MOLS-ES were: σsh=0.1, δ=1000, µ=50, λ=250, and εσ=0.01 (in the son
εσ=0.0001). In the led, mux and prt, pχ=0.5, σ0=0.75, whereas in the rest of the problems pχ=1,
σ0=1. The maximum number of iterations allowed in both LSs were 250 iterations, exception made
in the led, mux and prt problems where it was extended to 1000.

5.2 Spreading the Population along the Pareto front

The first results we present are the ones obtained using both multiobjective LSs on the two artificial
data sets (mux and led). Initially, we used a version of the led data set free of noise, leaving noise
considerations for the next subsection. In order to identify the optimal Pareto front, we analyze
first the optimal solutions that should be obtained in each problem. These optimal solutions are
shown in figure 4. For each problem, the optimal Pareto front can be obtained removing one
rule iteratively. Each time we remove a rule, we compute the accuracy of the resulting rule set.
Therefore the resulting objective vector F (~x) is represented as a point in the optimal Pareto front.
The computed optimal Pareto fronts are printed in figure 5.

Figure 5 also shows the results obtained using both multiobjective LSs. As it can be seen, both
LS evolve the perfect Pareto front in the noise-free led problem. However, the results obtained in
the mux problem are slightly different. The evolved Pareto fronts clearly approximate the optimal
front. The evolved fronts differ in their top-left part, showing that some generalization of the solu-
tions trapped in that part of the front are still needed. Inspecting the evolved solutions contained
in the front, the differences are the result of still having (see the optimal solution in figure 4) more
than one rule codifying class 1. These extra rules can be removed if we increase the number of
iterations of both LSs.

Figure 6 shows the evolution of the learning performed by both multiobjective LSs, averaged
across five different runs. The error is the best-so-far obtained at a given iteration, whereas the size
of the individuals (number of rules) is the average size of the population along the different runs.
As it can be seen, the multiobjective approach easily balances the pressure toward accurate and
compact (general) solutions. This approach can efficiently reduce at the same time both objectives.

12

0

2

4

6

8

10

12

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

R
ul

es

Error

Optimal Front
MOLS-GA
MOLS-ES

(a) mux problem

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

R
ul

es

Error

Optimal Front
MOLS-GA
MOLS-ES

(b) led problem

Figure 5: Optimal Pareto fronts and evolved Pareto fronts achieved in mux and led problems.

5.3 Noise in the Data Set

The next experiment done introduced 10% noise in the led problem. Noise was introduced by
swapping the antecedent values of the instances of the training data set with a probability equal
to 0.1. This procedure is explained in detail elsewhere (Llorà & Goldberg, 2002). The instances
of the noisy data set were generated using the program provided by the UCI repository (Merz &
Murphy, 1998). The goal of this experiment was twofold. First, we were interested in the impact
of the added noise on the performance of the two proposed multiobjective LSs. Thus, when we
solve real-world problems we easily would be able to understand the results that we obtained. The
second reason for this experiment was to display the impact of the noise on the evolved Pareto
front.

Before discussing the results, we need to introduce some theoretical results obtained for the noisy
led problem. Detailed descriptions of these results can be found in (Llorà & Goldberg, 2002). The
optimal subset of instances O for the LED problem was shown in figure 4.a. The number of possible
antecedents in the led problem is 27 = 128. In the noise-free led problem, only ten of all the
possible antecedents are part of O, and thus part of the available data set D. The remaining 118
antecedents only appear in D as the effect of the presence of noise. Therefore, we can intuitively
understand the addition of noise as a disruptive element toward the appearance of inconsistencies3

in D.
As it has been proved elsewhere (Llorà & Goldberg, 2002), the inconsistencies introduced by the

noise addition bound the minimal achievable error (MAE) that a learning algorithm can reach on
the noisy led problem. The main issue is that MAE only depends on the added noise ratio ε. MAE
can be computed theoretically as follows. In order to simplify the notation we assume that each
antecedent is indexed by the number it codifies (its binary number representation). Moreover, dij

is the Hamming distance between antecedents i and j and ε is the noise ratio added to the data set.
The first step is computing the jumping matrix J . This matrix contains the jumping probabilities
between antecedents. Rows represent the original antecedent (one of the ten that appear in O,
indexed by the instance’s class χ(i)), whereas the columns show the final antecedent of the instance

3Two instances are inconsistent if they have the same antecedent, but different consequents.

13

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000
0

8

16

24

32

40
E

rr
or

R
ul

es

Iteration

Error
Rules

(a) MOLS-GA

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000
0

8

16

24

32

40

E
rr

or

R
ul

es

Iteration

Error
Rules

(b) MOLS-ES

Figure 6: Evolution of the multiobjective LS in the mux problem.

after noise perturbation. This matrix J is then defined as:

Jχ(i)j = εdij · (1 − ε)(7−dij) (12)

Using the jumping matrix J , we can compute the probability distribution of the appearance of
all possible antecedents α. Where αa is the probability of appearance of the antecedent a on the
noisy led data set D. Moreover, using J we can also obtain the minimal classification achievable
error ea for a given antecedent a. The error ea is the result of the inconsistencies that the noise
ε introduces for each antecedent a. Thus, the minimal classification error is achieved only when
we assign the majority class of the inconsistencies to the antecedent a. Having computed α and e,
MAE is defined as follows:

MAE =
∑

i

αiei (13)

Figure 7 shows the empirical validation of the MAE model for the led problem. The empirical
data were obtained using different noisy Dε data sets sizes (500, 1,000, 2,000, 5,000, and 500,000
noisy instances) and computing the error based on the degree of inconsistencies.

There are two interesting observations to be made from the data shown in figure 7. The first
one is that, when enough instances are provided to the Dε data set, the theoretical model and the
experimental results match perfectly (e.g 500,000 instances). The second interesting observation
provided by the results appears when we analyze the results achieved for the sizes of the Dε data set:
500, 1,000, 2,000, and 5,000. The empirical results using these small data sets show smaller MAE
values that the ones theoretically predicted, showing some interesting deviations. These are the
result of the random number generator bias used and the led instances distribution. Therefore, the
experimental noise ratio ε is different than that theoretically expected, since not enough instances
are generated. This fact leads to data sets that maintain some regularities that reduce the number
of inconsistencies in Dε.

Using these theoretical results we can now explain the Pareto front achieved in the noisy led

problem. The data set contained 2000 instances. These instances were generated using a noise ratio
ε = .1, that theoretically leads to a MAE equal to 0.26 (see figure 7.b). However, the empirical
MAE obtained from the Dε used is 0.23. Figure 8 presents the Pareto front achieved by both

14

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

M
in

im
al

 A
ch

ie
va

bl
e

E
rr

or

Noise Ratio

Theoretical
Experimental (500k)

Experimental (5k)
Experimental (2k)
Experimental (1k)

Experimental (500)

(a) Theoretical MAE

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.06 0.08 0.1 0.12 0.14

M
in

im
al

 A
ch

ie
va

bl
e

E
rr

or

Noise Ratio

Theoretical
Experimental (500k)

Experimental (5k)
Experimental (2k)
Experimental (1k)

Experimental (500)

(b) Zoom

Figure 7: Theoretical and empirical minimal achievable error (MAE) in the noisy led problem.

multiobjective LS proposed. The figure also shows the theoretical and empirical MAE boundaries,
as well as the optimal non-noisy Pareto front and size of O. Let us call rupture point the point
defined as (MAE(ε = 0.1),|O|)=(0.26,10). This point would be the performing point of O on a
data set Dε with an experimental MAE equal to the theoretical one.

The rupture point indicates the place where the evolved Pareto front abruptly changes its
slope. The front that appears to the left of the rupture point is the result of the deviation of the
empirical MAE from its theoretical value. This has an interesting interpretation. All the points
that define this segment of the front are over-fitted solutions. This means that they are learning
some misleading noisy pattern as the result of the MAE value deviation. Therefore, if any of these
points is tested using a different randomly generated Dε data set, they would experience significant
drop in accuracy. Thus, this leads to a reduction of the generalization capabilities (in terms of
classification accuracy) of the solutions kept in that part of the front. Moreover, these solutions
are closer to the bloat phenomenon, because very small (misleading) improvements require a large
individual growth. All these problems disappear when we force the theoretical and the empirical
MAE to be the same. This constraint removes the part of the front that appears at the left of the
rupture point. Moreover, the optimal noisy Pareto front is bounded by the optimal noise-free front
and the rupture front that appears between the rupture point and the random guess point. The
random guess point is defined by the majority rule that describes solutions like F (~x) = (0.9, 1).

5.4 Some Real-World Problems

The last kind of experiments are focused on the real-world problems summarized in table 1. The
results, shown in table 2, were obtained from stratified ten-fold cross-validations runs (Mitchell,
1997; Witten & Eibe, 2000) using the different learning algorithms on the selected data sets. MOLS-
GA used a get-best strategy for the test phase, whereas MOLS-ES used get-closer (see figure 2).
The main interest in these results is the fact that they prove the competence of the multiobjective
approach. Moreover, for some particular data sets (like bpa or prt) some interesting improvements
were achieved.

Another interesting issue that can be drawn from the results achieved using the selected real-
world problems is related to the Pareto fronts behavior. Figure 9 plots the fronts evolved in two

15

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1

R
ul

es

Error

MOLS-GA
MOLS-ES

Theoretical MAE
Data set MAE

Noise-free Optimal Size |O|
Noise-free Optimal Pareto Front

Rupture Pareto Front

Figure 8: Pareto fronts achieved in led problem. The data set contains 2000 instances perturbed
with a noise ratio ε = 0.1.

real-world problems (bre and prt). Looking at the results presented in table 2, it may seem that,
for instance, MOLS-GA and MOLS-ES had a similar behavior in the bre data set in terms of
classification accuracy. If we analyze the evolved Pareto fronts printed in figure 9.a, we realize that
they are spreading the population in quite a different way. MOLS-GA achieves its performance
through the evolution of bigger hypotheses than the ones obtained by MOLS-ES. These results
were achieved using the same amount of iterations. Nevertheless, in other problems (see figure 9.b.)
MOLS-ES produce bigger hypotheses than MOLS-GA. Further analysis should be done about this
problem dependences.

The Pareto fronts presented in figure 9 also suggest another interesting vision of the analysis
of the results. For instance, the front presented in figure 9.b shows an interesting resemblance to
the fronts obtained in the noisy led problem (see figure 8). This clearly suggests the presence
of inconsistencies in the prt data set that bounds the MAE. A preliminary inspection of the
data set shows that 8.8% of the instances were replicated, and that only the 83.2% have different
antecedents. However, the experimental MAE equals to .085. In fact in this data set we can identify
some extra elements that force the appearance of large fronts. One of these is the large number of
classes contained in the prt problem. For instance, in the noisy led data set the instances/classes
ratio (ric) was ric=200, whereas in the prt problem this ratio drops to ric=15.4. This fact suggest
interesting connections to some results obtained in the probably approximately correct models in the
computational learning theory field (Mitchell, 1997). These models compute a theoretical bound to
the number of training examples required for successful learning. Therefore, some new interesting
questions arise for further research.

6 Conclusions and Further Work

In this paper we have presented a multiobjective optimization approach to learning systems. The
main motivation was twofold. On one hand we aimed to minimize simultaneously the classification

16

Table 2: Results obtained using the data sets presented in table 1. The table shows the mean and
standard deviation of the stratified ten-fold cross-validation runs done using each system.

id MOLS-GA MOLS-ES GALE XCS C4.5 PART IB1

bpa 76.5±13.4 68.7±6.7 68.4±6.7 65.4±6.9 65.8±6.9 65.8±10.0 64.2±9.1
bre 96.0±1.1 96.1±2.2 95.7±2.2 96.7±2.5 95.4±1.6 95.3±2.2 95.9±1.5
gls 67.1±9.3 63.4±7.3 65.6±11.9 70.5±8.5 68.5±10.4 69.0±10.0 66.4±10.9
ion 91.5±3.6 92.8±2.7 94.0±3.3 89.6±3.1 89.8±0.5 90.6±0.9 90.9±3.8
irs 99.3±1.9 95.3±3.1 98.7±2.8 94.7±5.3 95.3±3.2 95.3±3.2 95.3±3.3
led 74.9±13.7 74.4±3.4 75.0±0.0 74.5±0.2 74.9±0.2 75.1±0.3 74.3±3.7
mux 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 99.9±0.2 100.0±0.0 99.8±0.2
prt 51.2±15.8 40.6±5.7 37.0±8.3 39.8±6.6 41.6±6.4 41.6±6.4 42.5±6.3
son 90.8±9.1 71.6±12.5 79.3±6.1 77.5±3.6 71.5±0.5 73.5±2.2 83.6±9.6

0

2

4

6

8

10

12

14

0 0.2 0.4 0.6 0.8 1

R
ul

es

Error

MOLS-GA
MOCS-ES

(a) bre problem

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1

R
ul

es

Error

MOLS-GA
MOLS-ES

(b) prt problem

Figure 9: Pareto fronts achieved in real-world problems.

error and the number of rules of a given individual. On the other hand, we were also interested in
the relation among generalization and overfitting capabilities of hypotheses. Given this scenario,
multiobjective optimization was an elegant solution for achieving the desired goals. In order to
validate our approach, we used two different multiobjective learning systems. The first one uses
an evolutionary model based on genetic algorithms (MOLS-GA), whereas the second exploits an
learning approach based on evolution strategies (MOLS-ES). Both multiobjective learning systems
were tested using different data sets. The results obtained show that this multiobjective tradeoff
is beneficial to searching for points of appropriate parsimony and accuracy. Moreover, the bloat
phenomenon is no longer an issue in these systems. Results also show the competence of this
approach when compared to previous evolutionary and non-evolutionary learning algorithms.

The multiobjective approach also let us gain some theoretical notions on the effect of noise in
the data set. When properly obtained, the Pareto front of the evolved population let us identify
overfitting conditions. As we have shown, when the noise in the data set is smaller than the theoret-
ical minimal achievable error, the Pareto front shows a rupture point. All the trapped solutions at
the left-hand side of the rupture point, clearly represented in terms of overfitted hypotheses of the
optimal generalization achievable of the classification performance. We also provided a theoretical

17

model to compute this rupture point for the led data set, given a noise ratio ε. Moreover, if the
theoretical and the empirical minimal achievable error are equal, then the overfitted part of the
front disappears.

The work presented in this paper has opened some new directions for further research. The first
one is to perform a statistical comparison between the proposed multiobjective learning systems and
the other evolutionary and non-evolutionary learning algorithms (see (Bernadó, Llorà, & Garrell,
2001)). This comparison should include more data sets, and analyse the impact on accuracy
generalization of the get-best and get-closer picking strategies. The second one is related to the
minimal achievable error measure. This measure was computed theoretically only for the led

problem. The main question that should be investigated is if in a given problem we can compute
this measure theoretically, since it is possible to compute it empirically. Unfortunately, it seems
that for computing the theoretical MAE model we require extra background knowledge about the
problem (for the led problem we used the optimal solution O) in addition to the corresponding
data set. This background knowledge is not usually available on real-world problems. The results
obtained in the prt problem also show that in some real-world problems, with few data available
and a large set of possible classes, the minimal achievable error should include some extra facets
like the instances/classes ratio ric. Finally, some further research should be conducted in order
to bring some of the theoretical models obtained in the computational learning theory field over
the learning systems discipline. The initial goal should be to determine how many instances are
required for a LS in order to obtain high quality general hypotheses of the target concept.

Acknowledgments

We would like to thank the Generalitat de Catalunya and the Departament d’Universitats Recerca
i Societat de la Informació for their support under grant 1999FI-00719. We also want to thank
Enginyeria i Arquitectura La Salle for its confidence to the Intelligent Systems Research Group.

The work was sponsored by the Air Force Office of Scientific Research, Air Force Materiel
Command, USAF, under grant F49620-00-0163. Research funding for this work was also provided
by a grant from the National Science Foundation under grant DMI-9908252. The US Government
is authorized to reproduce and distribute reprints for Government purposes notwithstanding any
copyright notation thereon.

The views and conclusions contained herein are those of the authors and should not be inter-
preted as necessarily representing the official policies or endorsements, either expressed or implied,
of the Air Force Office of Scientific Research, the National Science Foundation, or the U.S. Gov-
ernment.

References

Aha, D., & Kibler, D. (1991). Instance-based learning algorithms. Machine Learning , 6 , 37–66.

Altenberg, L. (1994). Emergent phenomena in genetic programming. Proceedings of the Third
Annual Conference on Evolutionary Programming , 233–241.

Angeline, P. J. (1998). Subtree crossover causes bloat. Genetic Programming 98 , 745–752.

Bacardit, J., & Garrell, J. M. (2002). Métodos de generalización para sistemas clasificadores de
Pittsburgh. In Primer Congreso Espaol de Algoritmos Evolutivos y Bioinspirados (AEB’02)
pp. 486–493.

Bäck, T. (1995). Generalized convergence models for tournament- and (µ, λ)-selection. Proceed-
ings of the Sixth International Conference on Genetic Algorithms, 2–8.

18

Bäck, T. (1996). Evolutionary algorithms in theory and practice. New York: Oxford University
Press.

Banzahf, W., & Langdon, W. B. (2002). Some Considerations on the Reason for Bloat. Genetic
Programming and Evolvable Hardware, 3 (1), 81–91.

Bassett, J. K., & De Jong, K. A. (2000). Evolving Behaviors for Cooperating Agents. In Pro-
ceedings of the Twelfth International Symposium on Methodologies for Intelligent Systems
Springer-Verlag Berlin Heidelberg, LNAI 1932.

Bernadó, E., Llorà, X., & Garrell, J. M. (2001). XCS and GALE: a Comparative Study of Two
Learning Classifier Systems with Six Other Learning Algorithms on Classification Tasks. In
Proceedings of the 4th International Workshop on Learning Classifier Systems (IWLCS-2001),
to appear Springer-Verlag.

Bernadó, E., Mekaouche, A., & Garrell, J. M. (1999). A Study of a Genetic Classifier System
Based on the Pittsburgh Approach on a Medical Domain. In 12th International Conference
on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems,
IEA/AIE-99 pp. 175–184.

Bleuler, S., Brack, M., Thiele, L., & Zitzler, E. (2001, 27-30 May). Multiobjective genetic pro-
gramming: Reducing bloat using SPEA2. In Proceedings of the 2001 Congress on Evolution-
ary Computation CEC2001 pp. 536–543. COEX, World Trade Center, 159 Samseong-dong,
Gangnam-gu, Seoul, Korea: IEEE Press.

Blickle, T. (1996). Evolving compact solutions in genetic programming: A case study. Parallel
Problem Solving from Nature, PPSN IV , 564–573.

Blickle, T., & Thiele, L. (1994). Genetic programming and redundancy. Genetic Algorithms
within the Framework of Evolutionary Computation: Proceedings of the KI-94 Workshop,
33–38.

Breiman, L. (1996). Bagging predictors. Machine Learning , 24 (2), 123–140.

Butz, M. V. (2002). Anticipatory learning classifier systems. Genetic Algorithms and Evolution-
ary Computation. Boston, MA: Kluwer Academic Publishers.

Coello-Coello, C. A. (December, 1998). An updated survey of GA-Based Multiobjective Optimiza-
tion Techniques (Technical Report Lania-RD-09-08). Laboratorio Nacional de Informática
Avanzada (LANIA), Xalapa, Veracruz, México.

De Jong, K. A., & Spears, W. M. (1991). Learning Concept Classification Rules Using Genetic
Algorithms. In Proceedings of the International Joint Conference on Artificial Intelligence
pp. 651–656. Sidney, Australia.

Deb, K., Agrawal, S., Pratab, A., & Meyarivan, T. (2000). A Fast Elitist Non-Dominated Sorting
Genetic Algorithm for Multi-Objective Optimization: NSGA-II (KanGAL report 200001).
Indian Institute of Technology.

Frank, E., & Witten, I. H. (1998). Generating Accurate Rule Sets Without Global Optimization.
In Shavlik, J. (Ed.), Machine Learning: Proceedings of the Fifteenth International Conference
pp. 144–151. Morgan Kaufmann.

Garrell, J. M., Golobardes, E., Bernadó, E., & Llorà, X. (1999). Automatic Diagnosis with
Genetic Algorithms and Case-Based Reasoning. AIENG , 13 , 367–372.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Publishing Company, Inc.

19

Goldberg, D. E., & Richardson, J. (1987). Genetic algorithms with sharing for multimodal func-
tion optimization. In Proceedings of the Second International Conference on Genetic Algo-
rithms pp. 41–49.

Gómez-Skarmeta, A. F., Jiménez, F., & Ibáez, J. (1998). Pareto-optimality in fuzzy modeling.
In 6th European Congress on Intelligent Techniques and Soft Computing (EUFIT’98) pp.
694–700.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems: An Introductory Analysis
with Applications to Biology, Control and Artificial Intelligence. MIT Press/ Bradford Books
edition.

Janikow, C. (1991, July). Inductive Learning of Decision Rules in Attribute-Based Examples: a
Knowledge-Intensive Genetic Algorithm Approach. Doctoral dissertation, University of North
Carolina at Chapel Hill.

Jiménez, F., Gómez-Skarmeta, A. F., Roubos, H., & Robert, B. (2001). Accurate, transparent,
and compact fuzzy models for function approximation and dynamic modelling through multi-
objective evolutionary optimization. In First International Conference on Evolutionary Multi-
Criterion Optimization pp. 653–667. Springer-Verlag. Lecture Notes in Computer Science No.
1993.

Koza, J. R. (1992). Genetic Programing: On the Programing of Computers by Means of Natural
Selection (Complex Adaptive Systems). MIT Press.

Langdon, W. B. (2000). Quadratic bloat in genetic programming. Proceedings of the Genetic and
Evolutionary Computation Conference 2000 , 451–458.

Langdon, W. B., & Poli, R. (1998). Fitness causes bloat: Mutation. Genetic Programming: First
European Conference, 37–48.

Llorà, X. (February, 2002). Genetic Based Machine Learning using Fine-grained Parallelism
for Data Mining. Doctoral dissertation, Enginyeria i Arquitectura La Salle. Ramon Llull
University, Barcelona, Catalonia, European Union.

Llorà, X., & Garrell, J. M. (2000). Automatic Classification and Artificial Life Models. In Pro-
ceedings of Learning00 Workshop IEEE and Univesidad Carlos III.

Llorà, X., & Garrell, J. M. (2001a). Evolving Partially-Defined Instances with Evolution-
ary Algorithms. In Proceedings of the 18th International Conference on Machine Learning
(ICML’2001) pp. 337–344. Morgan Kaufmann Publishers.

Llorà, X., & Garrell, J. M. (2001b). Knowledge-Independent Data Mining with Fine-Grained Par-
allel Evolutionary Algorithms. In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO’2001) pp. 461–468. Morgan Kaufmann Publishers.

Llorà, X., & Goldberg, D. E. (2002). Minimal Achievable Error in the LED problem (IlliGAL
Report No. 2002015). Urbana, IL: University of Illinois at Urbana-Champaign, Illinois Genetic
Algorithms Laboratory.

Merz, C. J., & Murphy, P. M. (1998). UCI Repository for Machine Learning Data-Bases
[http://www.ics.uci.edu/∼mlearn/MLRepository.html]. Irvine, CA: University of California,
Department of Information and Computer Science.

Michalewicz, Z. (1992). Genetic Algorithms + Data Structures = Evolution Programs. Springer-
Verlag.

20

Miller, B. L., & Goldberg, D. E. (1995). Genetic algorithms, tournament selection, and the effects
of noise. Complex Systems, 9 (3), 193–212.

Mitchell, T. M. (1997). Machine learning. McGraw-Hill.

Nordin, P., & Banzhaf, W. (1995). Complexity Compression and Evolution. In Proceedings of
the Sixth International Conference on Genetic Algorithms

Oei, C. K., Goldberg, D. E., & Chang, S.-J. (1991). Tournament selection, niching, and the
preservation of diversity (IlliGAL Report No. 91011). Urbana, IL: University of Illinois at
Urbana-Champaign.

Pareto, V. (1896). Cours d’Economie Politique, volume I and II. F. Rouge, Lausanne.

Podgorelec, V., & Kokol, P. (2000). Fighting program bloat with the fractal complexity measure.
Genetic Programming: Third European Conference, 326–337.

Quinlan, R. (1986). Induction of decision trees. Machine Learning , 1 (1), 81–106.

Quinlan, R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers.

Schwefel, H. P. (1965). Kybernetische Evolution als Strategie der experimentellen Forschung in
der Strömungstechnik (Technical Report). Diplomarbeit, Technische Universität Berlin.

Schwefel, H. P. (1977). Numerische Optimierung von Computer-Modellen mittels der Evolution-
sstrategie. In Interdisciplinary Systems Research, Volume 26 Birkhäuser. Basel.

Smith, S. F. (1983). Flexible Learning of Problem Solving Heuristics through Adaptive Search. In
Proceedings of the 8th International Joint Conference on Artificial Intelligence pp. 422–425.

Soule, T. (2002, 3-5 April). Exons and code growth in genetic programming. In Lutton, E.,
Foster, J. A., Miller, J., Ryan, C., & Tettamanzi, A. G. B. (Eds.), Proceedings of the 4th
European Conference on Genetic Programming, EuroGP 2002, Volume 2278 of LNCS pp.
143–152. Kinsale, Ireland: Springer-Verlag.

Soule, T., & Foster, J. A. (1998, Winter). Effects of code growth and parsimony pressure on
populations in genetic programming. Evolutionary Computation, 6 (4), 293–309.

Srinivas, N., & Deb, K. (1994). Multiobjective optimization using nondominated sorting in genetic
algorithms. submitted to EC.

Srinivas, N., & Deb, K. (1995). Multiobjective optimization using nondominated sorting in ge-
netic algorithms. Evolutionary Computation, 2 (3), 221–248.

Tackett, W. A. (1994). Recombination, selection, and the genetic construction of computer pro-
grams. Unpublished doctoral dissertation, University of Southern California.

Traus, I., & Bernadó, E. (2002, June). Sistema Classificador Pittsburgh basat en Estratègies
Evolutives (Technical Report TR-ISRG-2002/0001). Barcelona, European Union: Enginyeria
i Arquitectura La Salle, Universitat Ramon Llull.

Van Veldhuizen, D. A., & Lamont, G. B. (1998). Evolutionary computation and convergence to
a pareto front. In Koza, J. R. (Ed.), Late Breaking Papers at the Genetic Programming 1998
Conference pp. 221–228. Madison, WI: Omni Press.

Van Veldhuizen, D. A., & Lamont, G. B. (2000). Multiobjective evolutionary algorithms: Ana-
lyzing the state-of-the-art. Evolutionary Computation, 8 (2), 125–147.

Wilson, S. W. (1995). Classifier Fitness Based on Accuracy. Evolutionary Computation, 3 (2),
149–175.

21

Wilson, S. W. (1999). Get real! XCS with continuous-valued intpus. In Booker, L., Forrest, S.,
Mitchell, M., & Riolo, R. L. (Eds.), Festschrift in Honor of John H. Holland pp. 11–121.
Center for the Study of Complex Systems.

Witten, I. H., & Eibe, F. (2000). Data Mining. Practical Machine Learning Tools and Techniques
with Java Implementations. Morgan Kaufmann.

Zitzler, E. (1999). Evolutionary Algorithms for Multiobjective Optimization: Methods and Appli-
cations. Doctoral dissertation, Swiss Federal Institute of Technology (ETH) Zurich.

Zitzler, E. (May, 2001). SPEA2: Improving the Strength Pareto Evolutionary Algorithm (Tech-
nical Report 103). Swiss Federal Institute of Technology (ETH) Zurich, Gloriastrasse 35,
CH-8092 Zurich.

Zitzler, E., Deb, K., & Thiele, L. (2000). Comparison of Multiobjective Evolutionary Algorithms:
Empirical Results. Evolutionary Computation, 8 (2), 173–195.

22

