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Abstract—The capacitated multipoint network design problem
(CMNDP) is NP-complete. In this paper, a hybrid genetic algo-
rithm for CMNDP is proposed. The multiobjective hybrid genetic
algorithm (MOHGA) differs from other genetic algorithms (GA’s)
mainly in its selection procedure. The concept of subpopulation is
used in MOHGA. Four subpopulations are generated according
to the elitism reservation strategy, the shifting Prüfer vector, the
stochastic universal sampling, and the complete random method,
respectively. Mixing these four subpopulations produces the next
generation population. The MOHGA can effectively search the fea-
sible solution space due to population diversity. The MOHGA has
been applied to CMNDP. By examining computational and analyt-
ical results, we notice that the MOHGA can find most nondomi-
nated solutions and is much more effective and efficient than other
multiobjective GA’s.


Index Terms—Genetic algorithms, minimal spanning tree, mul-
tiobjective function, nondominated solution, subpopulation.


I. INTRODUCTION


T HE problem of effectively transmitting data in a network
involves the design of communication subnetworks. A


critical issue in network design is to find a set of links which
connect communication nodes such that the cost (or delay) of
the selected paths between pairs of nodes is minimized, and
the constraints of network capacity and reliability are met. In
the real world, network design has long been recognized as
multiobjective in nature. For a centralized multipoint network;
i.e., a tree network, the network design problem gives rise to
a well-known combinatorial optimization problem, namely,
the constrained minimal spanning tree (CMST) problem. The
CMST is NP-complete. Many heuristics, e.g., [3], [5], [10],
[11], [14], [16], [30], have been proposed. However, their
works took account of only cost or delay. In recent years, ge-
netic algorithms (GA’s) have been applied to various multiple
criteria decision making (MCDM) problems. Fonseca and
Fleming [12] explored the fitness assignment method. Hornet
al. [22] investigated multiobjective problems via test functions.
Tamaki et al.. [35] studied the multiobjective scheduling
problem and the decision tree induction problem. Schaffer
[33] proposed the vector evaluated genetic algorithm (VEGA)
to solve multiobjective optimization problems. In VEGA, a
population is divided into many disjoint subpopulations. For
each subpopulation, a different objective function is used to
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evaluate the fitness of chromosomes (solutions). Ishibuchi and
Murata [24] presented the single-objective genetic algorithm
(SOGA) that translates multiple objective functions into a
single-objective function by using weighting functions.


In this paper, the capacitated multipoint network design
problem (CMNDP) is considered. A multiobjective hybrid
genetic algorithm (MOHGA) is proposed for CMNDP. The
MOHGA differs from other GA’s mainly in its selection
procedure. The concept of subpopulation is used in MOHGA.
Four subpopulations are generated according to the elitism
reservation strategy, the shifting Prüfer vector, the stochastic
universal sampling, and the complete random method, respec-
tively. Mixing these four subpopulations produces the next
generation population. The MOHGA can effectively search the
feasible solution space due to population diversity. By applying
MOHGA to CMNDP, we notice that the MOHGA can find
most nondominated solutions in the feasible solution space and
is much more effective and efficient than other multiobjective
GA’s.


In the next section, a brief introduction to GA’s is given. Sec-
tion III describes the MOHGA. The problem formulation of
CMNDP is detailed in Section IV. In Section V, computational
experiments are presented. Section VI concludes this paper with
possible future research directions.


II. GENETIC ALGORITHMS


A. Overview


The concept of a GA, introduced by Holland [21], is based
on the mechanics of natural selection and natural genetics. A
GA starts with an initial set of random solutions, called apop-
ulation. Each individual in the population is called achromo-
some, representing a solution to the problem. The initial popula-
tion evolves through successive iterations, calledgenerations.
A measure of fitness defines the quality of an individual chro-
mosome. In each generation, chromosomes are evaluated by
a fitness function, also called anevaluation function. After a
number of generations, highly fit individuals, which are anal-
ogous to good solutions to a given problem, will emerge. Be-
cause of this property, the GA is more robust than existing direct
search methods, like the hill climbing method [27].


A GA consists of five components, as described in Davis’s
book [7]. These five components are as follows:


1) a method for encoding potential solutions into chromo-
somes;


2) a means of creating the initial population;
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3) an evaluation function that can evaluate the fitness of
chromosomes;


4) genetic operators that can create the next generation pop-
ulation;


5) a way to set up control parameters; e.g., population size,
the probability of applying a genetic operator, etc.


B. Encoding Methods


To solve a problem using GA, the method of encoding its so-
lutions is very important. For a CMST problem, its tree repre-
sentation is encoded. There are three ways of encoding tree: 1)
edge encoding [15], 2) vertex encoding [15], and 3) edge-and-
vertex encoding [30].


1) Edge Encoding:Consider an undirected and connected
graph , where is the set of vertices of , and


is the set of edges of . For each edge of , an index
is assigned; i.e., , where is the
number of edges of . tree of can be represented by
edge encoding, where if is an edge of
and 0 otherwise. Edge encoding is an intuitive representation of
a tree. In a complete graph ofnodes, the total number of edges
is equal to . There are possible values
for . All trees have exactly edges. If contains other
than 1s, it is not a tree. However, even if contains
exactly 1s, it is still unlikely that represents a tree.
Therefore, edge encoding is not suitable for CMST due to the
extremely low probability of using it to obtain a tree.


2) Vertex Encoding:In 1889, Cayley [4] proved the fol-
lowing formula: the number of spanning trees in a complete
graph of nodes is equal to . Prüfer [32] presented the
simplest proof of Cayley’s formula by establishing a one-to-one
correspondence between the set of spanning trees and a set
of sequences of integers, with each integer between 1 and


inclusive [15]. The sequence of integers for encoding a
tree is known as Prüfer vector (or Prüfer number). The Prüfer
encoding and decoding procedures are explained as follows:


Prüfer encoding procedure
For a tree , its corresponding Prüfer vector can be ob-


tained by the following steps:


Step 1) Let vertex be the lowest labeled leaf node (node of
degree 1) of ; let vertex be incident to vertex;
append to the end of ( is constructed from left
to right in sequence).


Step 2) Remove vertexand the edge , which connects
vertices and .


Step 3) Go back to Step 1 until there is only one edge left in
is obtained.


For example, Fig. 1 depicts a 7-node tree. Vertex 2 is the lowest
labeled leaf node and vertex 1 is incident to vertex 2. Vertex 1
becomes the first element of; then, vertex 2 and edge are
removed. In the second iteration, vertex 3 is the lowest leaf node
and vertex 1 is incident to vertex 3. Append vertex 1 to, and
then remove vertex 3 and edge. Repeat the process until only
edge is left. is obtained and is equal to .


Prüfer decoding procedure
For a Prüfer vector and the set of its eligible vertices , a


unique tree representation of, denoted as , can be obtained


Fig. 1. Seven-node tree and its Prüfer encoding= [1; 1; 4; 4; 4].


by the following steps.


Step 1) Let vertex be the lowest eligible node of and
vertex be the first element of . If , add the
edge from to into , and then remove vertex
from and vertex from .


Step 2) Repeat Step 1 until no elements are left in.
Step 3) For the remaining last two verticesand of ,


add the edge from to into .


3) Edge-and-Vertex Encoding:Palmer and Kershenbaum
[30] proposed the link-and-node biased encoding method, also
termed as the edge-and-vertex encoding as presented by Gen
and Cheng [15]. This encoding does not directly encode a tree,
but a modified cost matrix. Based on the modified cost matrix,
a tree is generated by Prim’s algorithm [31]. For a graph of


nodes, the chromosome of this representation has biases,
including node bias and link bias , for the nodes and
each of the links, for a total of
biases. In this method, two parameters, and , are used
as the multipliers of the maximum link cost, . The cost
matrix is biased by , and using


Palmer claimed that this version of representation could encode
any tree, given appropriate values of the , and [30].
However, as pointed out by Gen and Cheng [15], this encoding
has three major disadvantages:


1) it requires a very long encoding (memory cost);
2) it needs a conventional minimum spanning tree algorithm


to generate a tree from its encoding (computation cost);
3) it contains no useful information such as degree, connec-


tion, etc, about a tree.


III. M ULTIOBJECTIVE HYBRID GENETIC ALGORITHM


For a multiobjective optimization problem, its nondominated
solutions (The definition is stated in Appendix A.) can be found
by GA’s. To find good solutions via GA’s, the concept of sub-
population proposed by Schaffer [33] is a promising approach.


A. Subpopulation


1) Elitism Reservation Strategy:In traditional GA’s, a chro-
mosome in the current generation is selected into the next gen-
eration with certain probability. The best chromosomes of the
current generation may be lost due to mutation, crossover, or
selection during the evolving process, and subsequently causes
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difficulty in reaching convergence. In other word, it takes more
generations; i.e., running time, to get quality solutions. Tamaki
et al.. [35] proposed an elitism reservation strategy that permits
chromosomes with the best fitness to survive and be carried into
the next generation.


2) Shifting Prüfer Vector:The shifting Prüfer vector,
introduced in this paper, is a genetic operator. The well-known
problem of Prüfer encoding [30] is that it does not preserve
locality. Changing one element of a Prüfer vector can change
its corresponding tree topology dramatically. To remedy this
problem, we introduce a new genetic operator, called the
shifting Prüfer vector. This operator maintains maximum
locality; i.e., it keeps the similarity between chromosomes.
The concept of the shifting Prüfer vector is stated as follows: it
replaces the leftmost element of a Prüfer vector by a randomly
selected nonleftmost element of the same vector. The new
vector differs from the old one only in the leftmost element.
Thus, the new topology differs from the old one in at most two
edges (The proof of this assertion is presented in Appendix B.)
In most cases, the difference is only one edge. The shifting
Prüfer vector is a local search method. According to the results
obtained by the well-known Add and Drop searching heuristics
[26], [28], [31], changing only one element in every iteration of
the search process always leads to a globally optimal solution.
Thus, the shifting Prüfer vector can significantly improve the
quality of newly found chromosomes.


Fig. 2 illustrates the new tree after the shifting Prüfer vector
is applied to the 7-node tree shown in Fig. 1. We notice that the
new tree and the old one differ in only one edge.


3) Stochastic Universal Sampling:A simple way to per-
form sampling is to spin a roulette wheel. Unfortunately, this
sampling method does not guarantee that any particular sample
will actually be chosen in any given generation. This is a
well-known problem of the roulette wheel selection method.
Baker suggested the stochastic universal sampling method [2].
Baker’s algorithm completes the whole sampling in a single
pass, and requires only one random number. A wheel spin,
whose size is equal to the population size, is divided into
a number of equally spaced markers. A single spin is used
to generate the random number. The expected valuefor
chromosome is expressed as , where
pop size represents population size andrepresents selection
probability.


4) Complete Random Method:Population is generated ac-
cording to random number and random position. The major
reason for using the complete random method is to maintain the
diversity of the population.


B. Mix Method


There are two competing factors in the selection procedure
of a genetic search. They are selection pressure and population
diversity. An increase of selection pressure decreases the diver-
sity of the population, and vice versa [27]. The stochastic uni-
versal sampling method increases selection pressure; however,
it may cause the premature convergence of a genetic search.
To decrease selection pressure, the complete random method


Fig. 2. New tree after applying the shifting Prüfer vector and its Prüfer
encoding= [4; 1; 4; 4; 4].


can be used in conjunction with the stochastic universal sam-
pling method. Nevertheless, the best chromosomes of the cur-
rent generation may be lost due to crossover and mutation. This
problem can be overcome by including the elitism reservation
strategy during a genetic search. But, globally optimal solu-
tions are rarely obtained. In order to find globally optimal so-
lutions, the shifting Prüfer vector is added to the selection pro-
cedure. According to the discussions aforementioned, we pro-
pose the mix method as follows: first, four subpopulations are
generated according to the elitism reservation strategy [35], the
shifting Prüfer vector, the stochastic universal sampling [2], and
the complete random method, respectively; then, mixing these
four subpopulations produces the next generation population.


C. The Multiobjective Hybrid Genetic Algorithm


MOHGA
Step 1) Set the maximum number of generation, , and


initialize the loop counter,, to zero.
Step 2) Produce the initial population, , by using the


complete random method and Prüfer encoding.
Step 3) Evaluate ; exit, if the solutions are found.
Step 4) Generate the subpopulation, , by using the


elitism reservation strategy.
Step 5) Generate the subpopulation, , by using the


shifting Prüfer vector.
Step 6) Generate the subpopulation, , by using the


stochastic universal sampling with crossover prob-
ability and mutation probability .


Step 7) Generate the subpopulation, , by using the
complete random method.


Step 8) Form the next generation population, , by
mixing , and .


Step 9) Increase by 1; if is less than , then go to
Step 3; otherwise, evaluate , exit.


where represents the probability of crossover, the prob-
ability of mutation, the population of the-th generation,
and the -th subpopulation of the-th generation.


IV. CAPACITATED MULTIPOINT NETWORK DESIGNPROBLEM


A. Problem Formulation


The CMNDP can be formulated as follows:


(1)


(2)
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subject to


(3)


(4)


(5)


(6)


where
number of nodes in the network;
set of links in the network;


-th link; and it may not exist for some;
given weight matrix;
weight of the -th node;
spanning tree;
number of edges of ;
cost of connecting nodeto node ; i.e., the cost of link


; the cost matrix is symmetric;
average delay on link ; the delay matrix is
symmetric;
the 0/1 decision variable; 1, if link is selected, and
0, otherwise.


Equation (3) guarantees that the total link weight does not ex-
ceed the upper limit, (4) guarantees that the set of chosen links
does not form any cycle, and (5) guarantees that enough links
will be chosen to connect the network.


B. Applying MOHGA to CMNDP


1) Encoding Method:Prüfer encoding provides a
one-to-one mapping between the set of spanning trees
and the set of sequences of-integers [15], [30]. Because of
this excellent property, we choose Prüfer encoding for encoding
chromosomes.


2) Initial Population: Each individual chromosome in the
initial population is a solution to the problem. We use the com-
plete random method to generate the initial population.


3) Evaluation Function:We choose both link cost and trans-
mission delay as the evaluation functions for CMNDP.


V. COMPUTATIONAL EXPERIMENTS


A. Test Problems and Results


The simulator is coded in the C++ language and is running
on an Intel Pentium-166 MHz PC with 64 MB RAM. In order
to evaluate the solutions of CMNDP obtained by MOHGA, we
examine a set of problems, with 7, 14, 28, and 56 nodes, re-
spectively. The number of nondominated solutions obtained by
MOHGA is affected by control parameters; e.g., mutation prob-
ability, crossover probability, and the maximum number of gen-
erations. The best solution in terms of cost , the best so-
lution in terms of delay , or other solutions in terms of
network designer’s preference can be deduced from all nondom-
inated solutions. The maximum number of generations is depen-
dent on problem size. The lager the problem size, the larger the
feasible solution space. In other words, more generations are
needed to find the solutions.


TABLE I
CPU TIME AND NUMBER OF SOLUTIONS


OF THE 7-NODE PROBLEM w.r.t. MOHGA, SOGA,AND VEGA


Problem 1: For the 7-node network, nodes are randomly
distributed. Control parameters are given as follows: mutation
probability is set to 0.9, crossover probability is set to 0.5,
population size is set to 100, and the maximum number of
generations is set to 200. Cost, delay, and constrained weight
matrices are given in Appendix C.


All the nondominated solutions; i.e., all possible spanning
trees, are enumerated. By doing this, we are able to compare
the quality of the solutions obtained by MOHGA directly with
the enumerated solutions. The pair (total cost, total delay)
represents a solution. By enumerating the solutions, we found
all six nondominated solutions of this problem, which are


, and .
With ten runs, nondominated solutions obtained by MOHGA
can be summarized as follows:
Set 1:
Set 2:
Set 3: .
Sets 1, 2, and 3 are obtained 4, 4, and 2 times, respectively.
Therefore, we can claim that the MOHGA finds 90% of all non-
dominated solutions.


For comparison, the VEGA and the SOGA are applied to the
same test problem. In the weighting function of SOGA, weights


(cost) and (delay) are both set to 0.5 [24]. Note that we
only consider the case in which and are both equal to
0.5, since the largest number of nondominated solutions are ob-
tained by setting (Appendix D.) Other control
parameters are set to the same value as those of MOHGA. Com-
putational results are summarized in Table I.


Problem 2: A network of 14 nodes is considered in Problem
2. Network nodes are randomly distributed. Weight, cost, and
delay are randomly generated. Control parameters are given as
follows: mutation probability is set to 0.9, crossover probability
is set to 0.4, population size is set to 100, and the maximum
number of generations is set to 1000. Computational results are
presented in Table II.


Problem 3: A network of 28 nodes is considered in Problem
3. Network nodes are randomly distributed. Weight, cost, and
delay are randomly generated. Control parameters are given as
follows: mutation probability is set to 0.99, crossover proba-
bility is set to 0.4, population size is set to 100, and the maximum
number of generations is set to1000. Computational results are
shown in Table III.


Problem 4: A network of 56 nodes is considered in Problem
4. Network nodes are randomly distributed. Weight, cost, and
delay are randomly generated. Control parameters are given as
follows: mutation probability is set to 0.99, crossover proba-
bility is set to 0.4, population size is set to 100, and the maximum
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TABLE II
CPU TIME AND NUMBER OF SOLUTIONS OF THE14-NODE PROBLEM w.r.t.


MOHGA, SOGA,AND VEGA


TABLE III
CPU TIME AND NUMBER OF SOLUTIONS OF THE28-NODE PROBLEM w.r.t.


MOHGA, SOGA,AND VEGA


TABLE IV
CPU TIME AND NUMBER OF SOLUTIONS OF THE56-NODE PROBLEM w.r.t.


MOHGA, SOGA,AND VEGA


number of generations is set to 10 000. Computation results are
listed in Table IV.


Problems 5, 6, and 7:A network of 56 nodes is considered
in Problems 5, 6, and 7. Network nodes are not randomly
distributed. For Problem 5, most nodes reside at the upper
left corner of the network. For Problem 6, node distribution
is sparse. For Problem 7, node distribution is dense. Weight,
cost, and delay are randomly generated. Control parameters are
given as follows: mutation probability is set to 0.99, crossover
probability is set to 0.4, population size is set to 100, and the
maximum number of generations is set to 10 000. Computation
results are reported in Tables V–VII.


Problem 8: Problem 8 is designed to evaluate the correct-
ness of the mix method as described in Section III. Four algo-
rithms are evaluated. In Algorithm 1, only the stochastic uni-
versal sampling method is used in the selection procedure. Al-
gorithm 2 is obtained by adding the complete random method
to Algorithm 1. Algorithm 3 is obtained by adding the elitism
reservation strategy to Algorithm 2. Algorithm 4 (the MOHGA)
is obtained by adding the shifting Prüfer vector to Algorithm 3.
Network nodes of 7, 14, and 28 are considered. Simulation re-
sults are reported in Table VIII. By examining Table VIII, we
notice that Algorithm 4 not only finds more nondominated so-
lutions but also obtains them faster than the other three algo-
rithms.


Problem 9: Problem 9 is designed to evaluate the perfor-
mance of MOHGA with respect to different combinations of
crossover probability and mutation probability . A net-
work of 56 nodes is considered in Problem 9.’s of values 0.4,
0.5, 0.6, and 0.7 are considered. Eachis paired with a ,
which is of values 0.7, 0.8, 0.9, and 0.99. Average CPU time and


TABLE V
CPU TIME AND NUMBER OF SOLUTIONS OF PROBLEM 5 w.r.t.


MOHGA, SOGA,AND VEGA


TABLE VI
CPU TIME AND NUMBER OF SOLUTIONS OF PROBLEM 6 w.r.t.


MOHGA, SOGA,AND VEGA


TABLE VII
CPU TIME AND NUMBER OF SOLUTIONS OF PROBLEM 7 w.r.t.


MOHGA, SOGA,AND VEGA


TABLE VIII
CPU TIME AND NUMBER OF SOLUTIONS OFPROBLEM 8


average number of nondominated solutions are obtained. Sim-
ulation results are shown in Table IX. Results indicate that the
MOHGA is not sensitive to the changes of and .B. Analyses


1) Space Usage Analysis:For a network of nodes, Prüfer
encoding requires elements to encode a chromosome.
Assume an element is represented by a two-byte integer and
population size is denoted by pop_size. Then, the space usage
of Prüfer encoding is equal to pop size (of order


). Since the MOHGA, the SOGA, and the VEGA all use
Prüfer encoding to encode their chromosomes; therefore, their
space usage is the same and of order .


2) Running Time (Complexity) Analysis:


• Operational Analysis
The running time of SOGA, VEGA, and MOHGA is
calculated in terms of the number of operations executed.
For the three GA’s, we have identified eight operations,
which are weighted sum, subgroup selection, shuffle,
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TABLE IX
CPU TIME AND NUMBER OF SOLUTIONS OFPROBLEM 9


TABLE X
NUMBER OF OPERATIONS OFSOGA, VEGA,AND MOHGA


elitism reservation, shifting Prüfer vector, complete
random, crossover and mutation, and Prüfer decoding.
We assume that every operation takes the same amount of
CPU time. Operational analysis is detailed in Table X. By
examining Table X, we notice that the MOHGA requires
the least number of operations.


• Simulation Analysis
For small size problems; i.e., Problems 1 and 2, the
MOHGA takes more time than the SOGA, but less time
than the VEGA. For large size problems; i.e., Problems
3 to 7, the MOHGA takes the least time to generate
nondominated solutions. The comparison of the running
time of MOHGA, SOGA, and VEGA is shown in Fig. 3.
Fig. 3 illustrates that the rate of increase of the running
time of SOGA, and that of VEGA, is close to an expo-
nential function. For MOHGA, the rate of increase of the
running time is only 57.6% of that of SOGA, and that of
VEGA. By examining computational results, we have the
following observations: the SOGA takes the least time
for small size problems, but obtains the worst results; the
VEGA takes the most computing time; and the MOHGA
is much more efficient than the SOGA and the VEGA.


3) Quality Analysis: For Problem 1, the MOHGA, which
finds 90% of all nondominated solutions, performs much better
than the SOGA and the VEGA. The same phenomena can
be found for Problems 2 through 7, as illustrated in Tables II
through VII. The MOHGA always finds more nondominated


Fig. 3. Running time (complexity) analysis.


solutions than the SOGA and the VEGA. Also, by examining
Tables I through VII, we notice that the MOHGA always finds
the best solution in terms of cost and the best solution in
terms of delay . Therefore, the MOHGA is much more
effective than the SOGA and the VEGA.


C. Discussions


Three observations are worthy of discussing.


1) Both the reasons described in Section III-B. and simu-
lation results obtained from Problem 8 indicate that the
mix method is a reasonable approach. Further, the run-
ning time analysis and the quality analysis explain why
the MOHGA using the mix method is very efficient and
effective.


2) The subpopulation generated by using the stochastic uni-
versal sampling with crossover probability and mu-
tation probability is one of the four subpopulations
considered in the mix method. The influence of and


on the total population is reduced by three-fourths.
Therefore, the MOHGA is not sensitive to the changes
of and . This assertion can also be verified by the
simulation results presented in Table IX. Sinceand
can be assigned to any value in a given range, they can be
expressed as fuzzy numbers of a fuzzy knowledge-based
system. But to define a set of fuzzy rules of a fuzzy knowl-
edge-based system is a difficult task.


3) Cost and delay vary from time to time due to user behavior,
increase of bandwidth, business strategy, etc. When de-
signing a network, a network designer usually derives
cost and delay by estimation. In CMNDP, cost and delay
can be expressed as fuzzy objective functions due to their
uncertainty. The CMNDP is transformed into a fuzzy
multiobjective decision making problem (FMODMP)
by including fuzzy objective functions into its problem
formulation. In [36], Buckly proposed a fuzzy genetic
algorithm, in which chromosomes are interpreted as fuzzy
numbers, to solve single objective fuzzy optimization
problems. For solving the FMODMP, the MOHGA can be
modified according to Buckly’s approach.


VI. CONCLUSION


A. Summary


The MOHGA is based on the subpopulation concept.
The elitism reservation strategy, the shifting Prüfer vector,
the stochastic universal sampling, and the complete random
method are used to produce the next generation population. The
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MOHGA has been applied to CMNDP. By examining com-
putational and analytical results, we notice that the MOHGA
finds most nondominated solutions and is much more effective
and efficient than the SOGA and the VEGA.


B. Future Directions


Here we would like to mention the following areas, which
may merit further investigation.


1) Apply the MOHGA to other multiobjective optimization
problems, such as the facility layout problem, the wire-
less channel assignment problem, the resource scheduling
problem, etc.


2) Develop an algorithm to determine the maximum (op-
timal) number of nondominated solutions of a multiob-
jective optimization problem. In essence, this is a hard
problem. For small size problems, enumeration is pos-
sible. For large size problems, artificial intelligence tech-
niques; e.g., branch-and-bound, minimax, etc. can be con-
sidered.


APPENDIX A
NONDOMINATED SOLUTIONS


A. Multiobjective Optimization Problem


For a multiobjective optimization problem, the set of its fea-
sible decisions, , is defined as follows:


where is an -dimension variable;
represents a constraint;
represents the number of constraints;
represents the set of real numbers.


The multiobjective optimization problem (MOP) can be
stated as follows:


minimize (A.1)


where is a vector-valued objective func-
tion defined on an -dimension variable .


B. Nondominated Solutions


A solution of (A.1) is said to be nondominated if there
exist no other feasible solutions such that


, for all . The is also called Pareto optimal.


APPENDIX B
SHIFTING PRÜFERVECTOR


A. Shifting Prüfer Vector


The shifting Prüfer vector, introduced in this paper, is a ge-
netic operator. This operator replaces the leftmost element of a
Prüfer vector by a randomly selected nonleftmost element of the
same vector.


Theorem: If is a Prüfer vector and is obtained by the
use of the shifting Prüfer vector on, and and are the
corresponding tree representations ofand , respectively,
then differs from in at most two edges.


Proof: Let be denoted as , where
is a vertex and its value, denoted as, is


an integer. Then, can be expressed as ,
where . To prove the theorem, we will
consider the following five cases:


Case 1.
Because ; therefore, . Since, for a given
Prüfer vector, the Prüfer decoding procedure always produces
a unique tree representation; hence, we can claim thatand


have the same topology.
Case 2. and


Let and be the lowest eligible node of and , re-
spectively.


The following proof is derived via the Prüfer decoding pro-
cedure.


1) In the first iteration, according to the first step of the pro-
cedure, the following statements hold true.


• Since and
, we have .


Therefore, after and are removed from
and , respectively, and are reduced to


the same set.
• After and are removed from and , re-


spectively, and are reduced to the same vector
.


• The first edge of and that of
is different.


2) In the remaining iterations, sinceand are reduced to
the same vector, and and are reduced to the same
set, at the end of the first iteration, the decoding ofis
the same as that of .


From 1) and 2), we can claim that and are different only
in the first edge.


Case 3. and
The proof is the same as Case 2. We conclude thatand
are different only in the first edge.


Case 4 and
Let and be the lowest eligible node of and ,
respectively. Two subcases are considered.


Case 4.1.
The proof is similar to Case 2. We conclude that and
are different only in the first edge.


Case 4.2.
The following proof is derived via the Prüfer decoding proce-
dure.


1) In the first iteration, according to the first step of the pro-
cedure, the following statements hold true.


• Since ,
and , we have


. Therefore, after and
are removed from and , respectively, is
changed to set and is
changed to set , respectively.


• After and are removed from and , re-
spectively, and are reduced to the same vector


.
• The first edge of and that of


is different.







468 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 30, NO. 3, JUNE 2000


2) In the second iteration, let and be the lowest
eligible node of and , respectively (Note that
and are the second lowest eligible nodes of the orig-
inal and , respectively.) According to the first step
of the procedure, the following statements hold true.


• Since


, and
(shown in the first iteration), we have


, and
. Therefore, after and


are removed from and , respectively, and
are reduced to the same set.


• After are removed from both and and
are reduced to the same vector ;


• The second edge of , and that of
, is different.


3) In the remaining iterations, sinceand are reduced to
the same vector, and and are reduced to the same
set, at the end of the second iteration, the decoding of
is the same as that of .


From 1), 2), and 3), we can claim that and are
different only in the first edge and the second edge.


Case 5 and
Let and be the lowest eligible node of and ,
respectively. Two subcases are considered.


Case 5.1.
The proof is similar to Case 2. We conclude that and
are different only in the first edge.


Case 5.2.
The following proof is derived via the Prüfer decoding proce-
dure.


1) In the first iteration, according to the first step of the pro-
cedure, the following statements hold true.


• Since ,
and , we have


. Therefore, after and
are removed from and , respectively, is
changed to set and is
changed to set , respec-
tively.


• After and are removed from and , re-
spectively, and are reduced to the same vector


.
• The first edge of and that of


is different.
2) In the second iteration, let and be the lowest


eligible node of and , respectively (Note that
and are the second lowest eligible nodes of the orig-
inal and , respectively.) According to the first step
of the procedure, the following statements hold true.


• Since


, and
(shown in the first iteration), we have


, and
. Therefore, after and


are removed from and , respectively, and
are reduced to the same set.


• After are removed from both and and
are reduced to the same vector .


• The second edge of and that of
is different.


3) In the remaining iterations, sinceand are reduced to
the same vector, and and are reduced to the same
set, at the end of the second iteration, the decoding of
is the same as that of .


From 1), 2), and 3), we can claim that and are dif-
ferent only in the first edge and the second edge.


From the conclusions obtained from the above five cases, we
have proved that differs from in at most two edges.


B. Examples


Example 1: This example is used to illustrate the proof of
Case 4.2. For a 7-node network, assume that
and . and can be expressed as sets


and , respectively. Let
and be the lowest eligible node of and , respectively.


1) In the first iteration of the Prüfer decoding procedure,
since and ; therefore, and


. After node 4 and node 1 are removed from
and , respectively, is changed to set
and is changed to set , respectively.
After element 1 and element 3 are removed from
and , respectively, and are reduced to the same
vector . The first edge of , and that of


, is different.
In the second iteration of the Prüfer decoding pro-


cedure, let and be the lowest eligible node
of and , respectively. Since and are equal
to the same vector ,
and ; therefore, and


. After node 1 and node 4 are removed from
and , respectively, and are both changed


to set . After element 2 are removed from
both and and are both reduced to the same
vector . The second edge of , and that
of , is different.


2) In the remaining iterations, sinceand are reduced to
the same vector, and and are reduced to the same
set, at the end of the second iteration, the decoding of
is the same as that of .


From 1), 2), and 3), we notice that and are different
only in the first edge and the second edge.


Example 2: This example is used to illustrate the proof of
Case 5.2. For a 7-node network, assume that
and . and can be expressed as sets


and , respectively. Let
and be the lowest eligible node of and , respectively.


1) In the first iteration of the Prüfer decoding procedure,
since ; therefore, and


. After node 6 and node 3 are removed from
and , respectively, is changed to set
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TABLE XI
CPU TIME AND NUMBER OFSOLUTIONS w.r.t DIFFERENT(w1; w2) PAIRS


and is changed to set , respectively.
After element 3 and element 1 are removed from
and , respectively, and are reduced to the same
vector . The first edge of , and that of


, is different.
2) In the second iteration of the Prüfer decoding proce-


dure, let and be the lowest eligible node
of and , respectively. Since and are equal
to the same vector ,
and ; therefore, and


. After node 3 and node 6 are removed from
and , respectively, and are both changed


to set . After element 1 are removed from
both and and are both reduced to the same
vector . The second edge of , and that
of , is different.


3) In the remaining iterations, sinceand are reduced to
the same vector, and and are reduced to the same
set, at the end of the second iteration, the decoding of
is the same as that of .


From 1), 2), and 3), we notice that and are different
only in the first edge and the second edge.


APPENDIX C
MATRICES OFTEST PROBLEM 1


Cost matrix:


Delay matrix:


Note that “” represents infinity.


Constrained weight matrix:


Note that “ ” represents “.”


APPENDIX D
WEIGHTING FUNCTION OF SOGA


In order to evaluate the effect of the weighting function of
SOGA, we have simulated the SOGA with respect to different
combinations of cost weight and delay weight . Five
different pairs of are assumed. A network of 56 nodes
is considered. Simulation results are presented in Table XI. By
examining Table XI, we have the following observations: for
all five test cases, their running time is very close; with


, the SOGA finds the largest number of nondominated
solutions. Table XI indicates that the SOGA has the best perfor-
mance when there is no bias between cost and delay.
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