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Abstract

The Capacitated Multipoint Network Design Problem (CMNDP) is NP-
complete. In this paper, a hybrid genetic algorithm for CMNDP is proposed.
The MultiObjective Hybrid Genetic Algorithm (MOHGA) differs from other
genetic algorithms mainly in its selection procedure. The concept of
subpopulation is used in MOHGA. Four subpopulations are generated
according to the elitism reservation strategy, the shifting Priifer vector, the
stochastic universal sampling, and the complete random method, respectively.
The next generation population is produced by mixing these four
subpopulations. The MOHGA can effectively search the feasible solution
space due to population diversity. The MOHGA has been applied to CMNDP.
By examining computational results, we notice that the MOHGA can find
most non-dominated solutions and is much more effective and efficient than
other multiobjective genetic algorithms.

Keyword : Genetic Algorithm, Multiobjective Function, Minimal Spanning
Tree, Non-Dominated Solution

L. INTRODUCTION

The problem of effectively transmitting data in a network involves the design
of the communication subnetworks. A critical issue in network design is to
find a set of links which connect communication nodes in a way that the
weighted sum of the shortest paths between pairs of nodes is minimized, and
the constraints of network capacity, delay time, and reliability are met. In the
real world, network design has long been recognized as multiobjective in
nature. For a centralized multipoint network, i.e., a tree network, the network
design problem gives rise to a well-known combinatorial optimization
problem, namely the constrained minimal spanning tree (CMST) problem. The
CMST is NP-complete. Many heuristics, e.g., [3], [4], [9], {10], [12], [14],
{24], have been proposed. However, their works took account only cost or
delay. In recent years, genetic algorithm (GA) has been applied to various
multiobjective optimization problems. Schaffer [25] proposed a vector
evaluated genetic algorithm (VEGA) to solve multiobjective optimization
problems. In VEGA, a population is divided into n disjoint subpopulations.
For each subpopulation, different objective function is used to evaluate the
fitness of chromosomes (solutions). In this paper, the capacitated multipoint
network design problem (CMNDP) is considered. A multiobjective hybrid
genetic algorithm (MOHGA) is proposed for CMNDP. The MOHGA differs
form other genetic algorithms mainly in its selection procedure. The concept
of subpopulation is used in MOHGA. Four subpopulations are generated
according to the elitism reservation strategy, the shifting Prufer vector, the
stochastic universal sampling, and the complete random method, respectively.
The next generation population is produced by mixing these four
subpopulations. The MOHGA can effectively search the feasible solution
space due to population diversity. By applying MOHGA to CMNDP, we
notice that the MOHGA can find most non-dominated solutions in the feasible
solution space.

In the next section, a brief introduction of genetic algorithm is given. Section
111 describes the MOHGA. The problem formulation of CMNDP is detailed in
Section I'V. In Section V, computational experiments are presented. Section VI
concludes this paper with possible future directions.

II. GENETIC ALGORITHM

The concept of genetic algorithms, introduced by John Holland [19], is based
on the mechanics of natural selections and natural genetics. Genetic
algorithms start with an initial set of random solutions called population.
Each individual in the population is called a chromosome, representing a
solution to the problem. The initial population evolves through successive
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iterations, called generations. A measure of fitness defines the quality of an

individual chromosome. In each generation, chromosomes are evaluated by

using fitness function, also called evaluation function. After a number of

generations, highly fitting individuals, which are analogous to good solutions

to a given problem, will emerge. Because of this property, the GA is robust

than existing direct search methods, such as hill climbing method, etc [22].

A genetic algorithm consists of five components, as described in Davis’s book

[6]. These five components are as follows:

(1). a method for encoding potential solutions into chromosomes,

(2). a means of creating the initial population.

(3). an evaluation function that can evaluate the fitness of chromosomes.

(4). genetic operators that can create the next generation population.

(5). a way to set up control parameters, e.g., population size, probability of
applying genetic operator, etc.

III. THE MULTIOBJECTIVE HYBRID GENETIC ALGORITHM

For a multiobjective optimization problem, the GA can be used to find its non-
dominated solutions. To find good solutions via GA, the population has to be
very diverse. The concept of subpopulation proposed by Schaffer [25] is a
promising approach. Mixing subpopulations not only keeps population
diversity but also prevents the population from converging to its local
optimum due to the dominance of the "super" chromosome.

Four subpopulations are generated according to the elitism reservation strategy
[27], the shifting Priifer vector, the stochastic universal sampling [2], and the
complete random method, respectively. Mixing these four subpopulations
creates the next generation population.

A. Subpopulation

1) Elitism reservation strategy

In traditional GAs, a chromosome in the current population is selected into the
next generation with certain probability. The best chromosomes of the current
generation may be lost due to mutation, crossover, and selection during the
evolving process, and subsequently causes difficulty in reaching convergence.
In other word, it takes more generations, i.e., running time, to get the quality
solutions. Tamaki [27] proposed an elitism reservation strategy, which permits
chromosomes with the best fitness to survive and be carried into the next
generation.

2) Shifting Priifer Vector

The shifting Priifer vector is a new idea originated in this paper. The well-
known problem of Priifer encoding [24] is that it does not preserve locality.
Changing one element of a Prifer vector can change its corresponding tree
topology dramatically. To remedy this problem, we suggest a new genetic
operator, called the shifting Prifer vector. This operator maintains maximum
locality; i.e., this operator keeps the similarity between chromosomes. The
concept of the shifting Priifer vector is as follows: it replaces the leftmost
element of a Priifer vector by a randomly selected non-leftmost element of the
vector. The new vector differs from the old one only in the leftmost element.
Thus, the new topology differs from the old one in at most two edges. In most
cases, the difference is only one edge. The shifting Priifer vector is a local
search method. According to the results obtained by the well-known Add and
Drop searching heuristic [29][30](31], changing only one element in every
iteration of the search process can always obtain a good solution. Thus, the
shifting Priifer vector can significantly improves the quality of newly found
chromosomes.

Figures 1(a) and 1(b) are used to show the effect of the shifting Priifer vector.
Figure 1(a) depicts a seven-node tree with its Priffer encoding. Figure 1(b)
illustrates the new tree after the shifting Priifer vector is applied. We notice
that the new tree and the old one differ in only one edge.
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Figure 1 (a) a 7-node tree and its Prilfer encoding ={1,1,4,4,4]

Figure 1 (b) the new tree after the shifting Prilfer vector and its Prilfer
encoding ={4,1,4,4,4]

3) Stochastic universal sampling
A simple way to perform sampling is to spin a roulette wheel. Unfortunately,
this sampling method does not guarantee that any particular string will
actually be chosen in any given generation. This sampling error is a well-
known problem in the roulette wheel selection method. Baker suggested the
stochastic universal sampling method [2]. Baker’s algorithm completes the
whole sampling in a single pass, and requires only one random number. A
wheel spin, whose size is equal to the population size, is divided into a number
of equally spaced markers. A single spin is used to generate the random
number. The expected value e, for chromosome k is calculated as
=pop_size*p,, where pop_size represents population size, p, represents
selection probability. The basic concept of this approach is to maintain the
expected number of keeping a copy of every chromosome of the current
generation in the next generation.

4) Complete random method

Population is generated according to random number and random position.
The major reason for using the complete random method is to keep the
diversity of the population.

B. The Multiobjective Hybrid Genetic Algorithm

MOHGA

Step 1. Set the maximum number of generation, ty,,, and initialize the loop
counter, t, to zero.

Step 2. Encode the problem into chromosomes by Priifer encoding.

Step 3. Produce the initial population, P(t), by the complete random method.
Step 4. Evaluate P(t); exit, if the solutions are found.

Step 5. Generate the subpopulation, SP,(t), by the elitism reserved strategy.
Step 6. Generate the subpopulation, SP,(t), by the shifting Priifer vector.

Step 7. Generate the subpopulation, SPs(t), by the stochastic universal
sampling with probability, p., and probability, p,,.

Step 8. Generate the subpopulation, SP(t), by the complete random method.
Step 9. Form the next generation, P(t), by mixing SP,(t) ,SPy(t), SPs(t), SP4(¢).
Step 10. Increase t by 1; if t is less than t,,,,,, then goto Step 4; otherwise, exit.
where p. represents the probability of crossover, p, the probability of
mutation, P(t) the population of the t-th generation, and SP(t) the i-th
subpopulation of the t-th generation.

IV. CAPACITATED MULTIPOINT NETWORK DESIGN
PROBLEM

A. Problem Formulation

The CMNDP can be formulated as follows:
min )%,
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where represents the set of nodes in the network,

N
E the set of links in the network,
Tk the k-th link; it may not exist for some k,
w the given weight matrix,
w; the weight of the i-th link,
N the possible spanning tree;
of edges of S,
¢y the cost of connecting node i to node j; i.e., link(i,j);
the cost matrix(c, ) is symmetric,
dy the average delay on link(i,j); the delay matrix (d; )
is symmetric,
Xy the 0/1 decision variable, 1, if link(i,) is selected; 0,
otherwise.
(3) guarantees that the total link weight does not exceed the upper limit. (4)
guarantees that the set of chosen links does not form any cycle. (5) guarantees
that enough links will be chosen to connect the network.

|S| represents the number

B. Applying MOHGA to CMNDP

1) Encoding method

Prilfer encoding provides a one-to-one mapping between the set of spanning
trees and the set of sequences of n-integers [13][24]. Because of this excellent
property, Priifer encoding is chosen for encoding chromosomes.

2) Initial population
Each individual in the initial population is a solution to the problem. We use
the complete random method to generate the initial population.

3) Evaluation Function

Link cost and transmission delay are both chosen to be the evaluation
functions for CMNDP.

V. COMPUTATIONAL EXPERIMENTS

A. Test Problems and Results

In order to evaluate the solutions of CMNDP obtained by MOEGA, we
examine a set of problems, with 7,14, 28 and 56 nodes, respectively. The
simulator is coded in the C++ language and is running on an Intel Pentium-
166MHz PC with 64MB RAM.

The number of non-dominated solutions obtained by MOHGA is aflected by
control parameters; e.g., mutation probability, crossover probabi ity, and
maximum number of generation. For population diversity, mutation
probability is set to be greater than 0.8. The greater the mutation probability,
the more the diversity of the population. Crossover probability ranges form 0.4
to 0.6. The maximum number of generation allowed is dependert on the
problem size. The lager the problem size, the larger the feasible solution space.
In other words, more generations are needed to find the solutions.

1) Problem 1

For the 7-node network, nodes are randomly distributed. Control parameters
are given as follows: the mutation probability is set to 0.9, the crossover
probability is set to 0.5, the size of population is set to 100, and the maximum
number of generation allowed is set to 200.

All the non-dominated solutions, i.e., all possible spanning trzes, are
enumerated. By doing this, we are able to compare the quality of the solutions
obtained by MOHGA directly with the enumerated solutions. A (tctal cost,
total delay) pair represents a solution. By enumerating the solutions, we found
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all six non-dominated solutions of this problem, which are (13,92), (14,91),
(15,85), (16,84), (18,78), and (19,77). With 10 runs, non-dominated solutions
found by MOHGA can be summarized as follows:

Set 1: { (13,92), (14,91), (15,85), (16,84), (18,78), (19,77) };

Set 2: { (13,92), (15,85), (16,84), (18,78), (19,77) };

Set 3: { (14,91), (15,85), (16,84), (18,78), (19,77) }.

Sets 1, 2, and 3 are obtained 4, 4, and 2 times, respectively. Therefore, the

MOHGA finds 90 percents of all non-dominated solutions.

For comparison, the vector evaluated genetic algorithm (VEGA)[25] and the
single-objective genetic algorithm (SOGA)[27] are applied to the same test
problem. In SOGA, weights w1(0.5) and w2 (0.5) are used in the fitness
function. Other control parameters are the same as those of MOHGA.
Computational results are summarized in Table I.

Table I.
CPU time and Number of solutions of the 7-node problem w.r.t. MOHGA,
SOGA, and VEGA

Table IV.
CPU time and Number of solutions of the 56-node problem w.r.t. MOHGA,
SOGA, and VEGA

Algorithm CPU times (Sec) Average number of non-dominated solutions
obtained by algorithm (A)

MOHGA 2167.58 15

SOGA 3780.462 1.3

VEGA 4138.066 1.3

§) Problem S

A network of 56 nodes is considered in Problem 5. Network nodes are not
randomly distributed. Most nodes reside at the upper left corner of the network.
Weight, cost, and delay are randomly generated. Control parameters are given
as follows: the mutation probability is set to 0.99, the crossover probability is
set to 0.4, the size of population is set to 100, and the maximum number of
generation allowed is set to 10000. Computation results are reported in Table
V.
Table V.

Algorithm CPU times (Sec) A number of’ d d solution [Ratio i : -
e number of o worin () @B CPU time and Number of so?ggrz Zj; t:e;/z‘ 2; Zode problem w.r.t. MOHGA,

MOHGA 2278 5.4 0.9 Algonthm CPU tumes (Sec) A’verage number of non-dominated solutions
SOGA 2.16 2 0.333 obtained by algorithm (A)
VEGA 2.365 1.5 0.25 MOHGA 2181.68 13

where A : The number of non-dominated solutions obtained by the algorithm. SOGA 3793.26 1.3

B : The number of all non-dominated solutions, which is 6 in this problem. VEGA 14734 13

2) Problem 2 B. Anal
A network of 14 nodes is considered in Problem 2. Network nodes are : yses

randomly distributed. Weight, cost, and delay are randomly generated. Control
parameters are given as follows: the mutation probability is set to 0.9, the
crossover probability is set to 0.4, the size of population is set to 100, and the
maximum number of generation allowed is set to 1000. Computational results
are presented in Table II.

Table II.
CPU time and Number of solutions of the 14-node problem w.r.t. MOHGA,
SOGA, and VEGA

Algorithm CPU times (Sec) Average number of non-dominated solutions
obtained by algorithm (A)

MOHGA 37.90 9.5

SOGA 28.83 2.5

VEGA 45.04 2.5

3) Problem 3

A network of 28 nodes is considered in Problem 3. Network nodes are
randomly distributed. Weight, cost, and delay are randomly generated. Control
parameters are given as follows: the mutation probability is 0.99, the crossover
probability is 0.4, the size of population is set to 100, and the maximum
number of generation allowed is set to 1000. Computational results are shown
in Table II1.

Table I11.
CPU time and Number of solutions of the 28-node problem w.r.t. MOHGA,
SOGA, and VEGA

“Algorithm CPU times (Sec) Average number of non-dominated solutions
obtained by algorithm (A)

MOHGA 56.792 13

SOGA 76.192 1.5

VEGA 83.4 1.5

4) Problem 4

A network of 56 nodes is considered in Problem 4. Network nodes are
randomly distributed. Weight, cost, and delay are randomly generated. Control
parameters are given as follows: the mutation probability is set to 0.99, the
crossover probability is set to 0.4, the size of population is set to 100, and the
maximum number of generation allowed is set to 10000. Computation resuits
are listed in Table IV.

1) Running time (complexity) analysis

Tables 1 through 5 detail the average CPU time used by MOHGA, SOGA, and
VEGA. For small size problems; e.g., Problems 1 and 2, the MOHGA takes
more time than the SOGA, but less time than the VEGA does.  For large size
problems; e.g., Problems 3, 4 and S, the MOHGA takes the least time to
generate non-dominated solutions. -

The comparison of the running time of MOHGA, SOGA, and VEGA is shown
in Figure 2. Figure 2 illustrates that the rate of increase of the running time
of SOGA, and VEGA, is close to an exponential function. For MOHGA, the
rate of increase of the running time is only 57.6 percents of that of SOGA, and
VEGA. By examining computational results, we have the following
observations: the SOGA takes the least time for small size problems, but
obtains the worst results; the VEGA takes the most computing time; and the
MOHGA is much more efficient than the SOGA and the VEGA.

2) Quality analysis

For Problem 1, the MOHGA, which finds 90 percents of all non-dominated
solutions, performs much better than the SOGA and the VEGA. The same
phenomena can be found for Problems 2 through S, as illustrated in Tables
23,4, and 5. The MOHGA always finds more non-dominated solutions than
the SOGA and the VEGA. Therefore, the MOHGA is much more effective

5000
3 4000 ——MOHGA
22 3000 —a—S0GA
£ 2000
= 1000 —&—VEGA
0
No. of Nodes
than the SOGA and the VEGA.
Figure 2. The running time (complexity) analysis
IV.CONCLUSIONS
A. Summary

The MOHGA incorporates the subpopulation concept.  The elitism
reservation strategy, the shifting Priifer vector, the stochastic universal
sampling, and the complete random method are used to produce the next
generation population. The MOHGA has been applied to CMNDP. By
examining computational results, we notice that the MOHGA finds most non-
dominated solutions and is much more effective and efficient than the SOGA
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and the VEGA.

B. Future Directions

Here, we would like to mention the following areas, which may merit further

investigation.

(1) Compare the MOHGA with Niched Pareto’s GA[20].

(2) Apply the fuzzy concept on cost and delay; a fuzzy weighted edge in a
tree is a hard problem in general.

(3) Apply the MOHGA to other multiobjective optimization problems.
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