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Abstract—-Many real-world problems involve multiple
objectives that need to be optimized simultaneously. However,
in most cases, a suitable optimal solution meeting all the
objectives can hardly be found since these objectives are
generally conflicting. Compared to conventional optimization
techniques, Genetic Algorithms (GA’s) are well suited to solve
Multiobjective Optimization (MO) problems since a family of
“acceptable” solutions—a so called Pareto set—can be
identified by different individuals through the evolution
process. However, most of the existing Multiobjective
Optimization Genetic Algorithms (MOGAs) have difficulty
dealing with the trade-off between uniformly distributing the
computatlonal resources and avoiding the “genetic drift”

1 This pap proposes a new evolutionary
approach to MO problems—the Rank-Density based Genetic
Algorithm (RDGA), which can be characterized as a)
simplifying the problem domain by converting high-
dimensional multiple objectives into two objectives to
minimize the individual rank value and population density
value, b) searching for and keeping better-approximated
Pareto points by diffusion and elitism schemes, and c)
preventing harmful individuals by introducing a “forbidden
region” concept. From the result of the simulation study,
RDGA clearly outperforms two representative MOGAs on
three benchmark testing problems in terms of keeping the
diversity of the individuals along trade-off surface, tending to
extend the Pareto front to new areas, and finding a well-
approximated Pareto optimal set.

1. INTRODUCTION

In many scientific and engineering disciplines, it is not
uncommon to experience a design difficulty when there are
several design objectives to be met simultaneously. If the
objectives are conflicting, then the problem becomes one of
finding the best possible design that satisfies the conflicting
objectives under different trade-off scenarios. With these
multiple objectives and constraints taken into consideration,
an optimum design problem can then be formulated. This
type of problem is known as a multiobjective, multicriteria,
or vector optimization problem [1].

Multiobjective Optimization (MO) is a very important
research topic because most real world problems have not
only a multiobjective nature but also many open issues to
be answered qualitatively and quantitatively. In fact, the
solution to a MO problem is generally not a single point. It
consists of a family of non-dominated points, a so called
Pareto front, which describes the trade-off among
contradicted objectives [2]. The Pareto front yields many
candidate solutions, from which we can choose the desired
one under different trade-off conditions. In most cases, the
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Pareto front is on the boundary of the feasible range as
shown in Figure 1.

In their early development, Genetic Algorithms
(GA’s), a «class of population-based optimization
approaches, have been recognized to be well suited for
multiobjective optimization. In GA’s, multiple individuals
can search for multiple solutions in paraliel, advantageously
producing a family of possible solutions to the problem.
The ability to handle complex problems involving features
such as discontinuities, multimodality, and disjoint feasible
spaces, reinforces the potential effectiveness of GA’s in
multiobjective search and optimization {3].

Points A, B: nondominated points

b
1. Point C: dominated peint
A
Pareto front

E
Figure 1 Graphical illustration of the Pareto optimality

Since the 1980°s, several Multiobjective Genetic
Algorithms (MOGAs) have been proposed and applied in
MO problems [1]. These algorithms all have almost the
same purpose—searching for a uniformly distributed and
near-optimal Pareto front for a given MO problem.
However, this ultimate goal is far from accomplished by the
existing MOGAs described in literature. In one respect,
most of the MO problems are very complicated and require
the computational resources to be homogenously distributed
in a high dimensional search space. On the other hand,
those better-fit individuals generally have strong tendencies
to restrict searching efforts within certain areas due to the
“genetic drift” phenomenon. This is yet another trade-off
decision pertaining to the efficiency and efficacy dilemma
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This paper proposes a multiobjective genetic algorithm
named the Rank-Density based Genetic Algorithm
(RDGA). Applied in three test functions, RDGA
outperforms the other algorithms under consideration by
providing a near-optimal and near-uniformly distributed
Pareto front. The remainder of this paper is organized as
follows: Section 2 reviews two existing typical MOGAs.
Section 3 proposes a new Rank-Density based Genetic
Algorithm that is designed to deal with high dimensional



objective functions, explore the optimality of the candidate
Pareto points, and maintain the diversity of the final Pareto
front. In Section 4, we apply RDGA with the other two
MOGASs to three test functions. The resulting Pareto sets
are examined to compare the performances of RDGA and
two well-regarded algorithms. Finally, Section 5 provides
some concluding remarks along with pertinent
observations.

II. GENETIC ALGORITHMS IN SOLVING MO PROBLEMS

Generally, MOGAs can be categorized by various
fitness assignment strategies. In particular, vector evaluated
genetic algorithm and niched Pareto genetic algorithm are
two known representatives of population based MOGAs
and have been exploited in various applications [3].

A. Vector Evaluated Genetic Algorithm—VEGA

VEGA is the most typical population based non-Pareto
MOGA [4]. In VEGA, the entire population is divided into
n subpopulations with equal size; subpopulation i is filled
with individuals that are randomly chosen from the current
population according to an objective i. Afterwards, the
entire population is shuffled, and crossover and mutation
are then performed as usual. However, VEGA has difficulty
in finding a uniformly distributed Pareto front because it
does not incorporate any diversity-keeping scheme.
Furthermore, VEGA can be shown to perform an implicitly -
weighted sum of the objectives. This leads to the difficulty
found in conventional multiobjective optimization
approaches to search for a Pareto front when the problem
has a concave trade-off surface.

B. Niched Pareto Genetic Algorithm—NPGA

NPGA is a typical Pareto-based multiobjective genetic
algorithm [5]. It combines tournament selection and the
concept of Pareto dominance. To compare two individuals,
a number of other individuals are randomly selected to help
determine dominance. When both competitors are either
dominated or non-dominated, the result of the tournament is
decided through fitness sharing—the individual with the
fewest individuals in its niche is selected for reproduction.
Based on fitness sharing technique, the more individuals a
niche contains, the more its members’ fitness values
degrade. Since NPGA only applies Pareto selection to a
portion of the entire population in each generation, it is very
fast compared to the other Rreto-based approaches. In
addition, it can produce good non-dominated solutions that
can be kept for a large number of generations. The
weakness of NPGA is that it requires heuristic choices of
the sharing factors and the size of the tournament, which
makes the process relatively complex in practice.
Moreover, as the sharing technique degrades the fitness
value, “harmful” individuals may be generated which
cause the entire population evolve in a direction opposite to
the Pareto front [6].

III. RANK-DENSITY BASED GENETIC ALGORITHM

From the literature review, the main difficulty in
existing MOGA approaches is designing a suitable fitness
assignment strategy in order to find a near-complete and
near-optimal approximated Pareto front for the given
optimization problem. Unfortunately, these two objectives
are contradictory. In one respect, the “genetic drift”
character of GA needs to be encouraged to converge the
solution to a nearly optimal point. On the other hand, the
“genetic drift” phenomenon must be avoided in order to
sketch a uniformly sampled trade-off surface for the final
Pareto front. Based on these considerations, a new Rank-
Density based Genetic Algorithm (RDGA), which converts
a high dimensionai MO problem into a bi-objective
optimization problem to minimize fitness rank values and
cell densities, is proposed. Five crucial procedures of
RDGA will be discussed as follows.

A.  Automatic ranking

First introduced by Goldberg [7], population-ranking
schemes have been widely applied in MOGAs. In this
paper, we propose an automatic ranking strategy. Suppose
we want to minimize two objectives, f, and f,, and GA
generates five individuals as shown in Figure 2. To describe
the dominated relationship of these individuals, we define
the comparison function as:

¢,,s =1, if individual j has better fitness than

individual % in terms of the ; objective.  Otherwise,
= 0. Then we can calculate the rank value r,; for each

Ci.i.k

individual jin terms of the i, objective

r,-:=25'i.,i’ Jj= L.,m, i=1""’n’ (l)

ka1

where m is the total number of individuals, and » is the

number of objectives to be optimized. The final rank value
of individual j is assigned as

r= m?x(m?x(rivj))_ m;“x(’u)“ 1,j=Lo,m,i=l.,n (2)
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Figure 2 Dominated relationships among five individuals

From the MO problem showed in Figure 2, the
automatic rank value of each individual can be derived as
shown in Figure 3. The individuals with the smallest rank
values are located on the current Pareto front. From this
scheme, the resulting rank values represent the dominant



relationships among different individuals and can be

derived in any dimensional MO problems.
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Figure 3 Resulting rank values for the individuals in Figure 2

B.  Adaptive density value calculation

To maintain the diversity of the obtained Pareto front, a
near-homogeneous search space is absolutely necessary. In
this paper, we present an adaptive cell density evaluation
scheme as shown in Figure 2. The cell width in each
objective dimension can be formed as

| max f,(x) - min £,(x)
i~ K.

n. (3

Ji=1.

where d, is the width of the cell in the i, dimension, K ;

denotes the number of cells designated for the i, dimension

(i.e., in Figure 2, K =3). As the maximum and minimum
i

fitness values will change with different generations, the

cell size will vary from generation to generation to maintain
the accuracy of the density calculation. The density value of
an individual is defined as the number of the individuals
located in the same cell.

C. Rank and density based fitness assignment

Because rank and density values represent both fitness
and population diversity, respectively, we assigned them as
two important attributes to each individual. Therefore, any
multiobjective optimization problem can be converted into
a bi-objective optimization problem. On the other hand,
since we need to minimize rank value together with density
value, some further modifications need to be made to the
original notation.

First, instead of minimizing the density value of an
individual, we minimize the density value of the entire
population. Based upon the definition of the cell density, an
individual located in a crowded cell must have a relatively
high density value, which contributes much more to the
population density value than the sparse area does. For
example, a cell containing 10 individuals will contribute
10x10 =100 to the population density value, whereas a
cell containing only one individual will contribute 1 to the
population density value.
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Second, after the rank and density values of each
individual have been extracted, a modified VEGA is
applied to fulfill fitness assignment. As discussed in Section
2, VEGA has two deficiencies: 1) it does not have a scheme
to maintain the diversity of the evolved Pareto front, and 2)
it has difficulty in dealing with the problems with concave
trade-off surface. As mentioned above, the goal of RDGA
is to find the non-dominated individuals with rank value
equal to 1 and reduce the population density value to obtain
a uniformly distributed trade-off surface. In this setting,
there is no concern about keeping the population diversity
in the rank-density domain. Furthermore, whether the
“Pareto front” in the rank-density domain is concave is not
an issue, since’ it is not a real Pareto front for the MO
problem under consideration. Therefore, a simple VEGA is
effective enough to fulfill fitness assignment after the
original optimization problem has been transformed into the
rank-density domain.

D. Crossover and mutation

For crossover, the parent selection and replacement
schemes are borrowed from Cellular GA [8] to explore the
new search area by “diffusion.” For each subpopulation, a
fixed number of M parents are randomly selected for
crossover. Then, each selected parent performs crossover
with the best individual (the one with the lowest rank value)
within the same cell and neighboring cells. If one offspring
produces better fitness (a lower rank value or a lower
population density value) than its corresponding parent, it
replaces its parent. The replacement scheme of the mutation
operation is analogous. To prevent “harmful” offspring
surviving and affecting the evolutionary direction and speed
[8], a forbidden region concept is proposed herein as the
replacement scheme for the density subpopulation, thereby
preventing the “backward” effect [6]). The forbidden region
includes all the cells dominated by the selected parent. The
offspring located in the forbidden region will not survive in
the next generation, and thus the selected parent will not be
replaced. As shown in Figure 4, suppose our goal is to
minimize objectives f, and f,, and a resulting offspring of
the selected parent p is located in the forbidden region. By
RDGA, this offspring will be eliminated even if it reduces
the population density because this kind of offspring has the
tendency to push the entire population away from the
desired evolutionary direction. '

The cell where the selected parent p loca:efin
Valid range where parent p’s offspring can locate in
D Forbidden region where parent p's offspring cannot locate in
Figure 4 Illustration of the valid range and the forbidden
region



E. Archivfng the candidate Pareto points

The elitism scheme [1] is also applied in RDGA for
storing the Pareto points obtained in each generation.
These points are compared to achieve the final Pareto front
after the evolution process has stopped.

IV. SIMULATION STUDY

To proof-of-the-concept, we apply the proposed RDGA
to three numeric MOGA test functions in comparison with
VEGA and NPGA.

Problem I Schaffer’s F2 [4]
Minimize f, (x)and f,(x), where
fie)=x*,
[i(x)=(x-2)%,

4)
with 0< x<20.
Problem II: Modified Deb’s MO {9]
Minimize f,(x,y)and f,(x,y),where
f| (x’ _V)= X,
X ., X
x,y) =1+ p)x(l-—)"-
Lf3(x,y) =1+ y)x( 1er) i )
x sin(107x)
with 0< x, y<1.
Problem III: Modified Tanaka’s MO [10]
Minimize f (x,y)and f,(x,y), where
filx )= x,
L, y)=y (6)

with 0< x,y< o,
(x-0.5)-5x(y-0.5)? <0,

~(x?+ y?) + 14 0.1x cos(l6 arctan)) < 0.
y

Here, for problem I, we use a population size 30 and
run VEGA, NPGA, and the proposed RDGA for 1,000
generations. For problem II and III, population size and the
maximum generations are selected to be 100 and 5,000
respectively. In addition, the population rank values and
density values of VEGA and NPGA were also recorded in
cach generation for comparison.

Figure 5 (a) shows the feasible range and ideal final
Pareto front for Problem 1. Figure 5 (b), (c) and (d) show
the final Pareto fronts evolved by VEGA, NPGA and
RDGA respectively. Figure 5 (e) and (f) show the
evolutionary trajectories of population rank and density,
respectively. Likewise, Figure 6 (a)-(f) and Figure 7(a)-(f)
display these results for Problem II and III respectively.
From these figures, we can observe that:

1. Population density value can be a good indicator to
show whether the genetic drift phenomenon has been
prevented, and RDGA performs much better than VEGA
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and NPGA in maintaining the population density value
within a low upper bound (see Figure 5(d), 5(f), 6(f) and
7(6).

2. Minimizing the population rank value is another
important strategy in RDGA. In fact, an individual's rank
value implies its dominated status. By directly minimizing
the rank value of each individual, RDGA provide a
straightforward way to drag all the members of the given
population to be nondominated solutions. This explains
why RDGA produces smoother evolutionary trajectory and
faster convergent speed in rank domain (see Figure 5(e),
6(e) and 7(e)).

3. RDGA also provides competitive non-dominated
points on the final Pareto front. Most of them are better than
those produced by VEGA and NPGA. (See Figure 5(b)-(d),
Figure 6(b)-(d) and Figure 7(b)-(d)). This improvement is
due to the elitism scheme and the “diffusion” effect
provided by CGA.

4. For the MO problems with discontinuous or
concave Pareto fronts (i.e., problems II and III), RDGA
provides more uniformly distributed Pareto points than
VEGA and NPGA. This is a beneficial result of the rank-
density fitness scheme. In particular, the introduction of the
“forbidden region” restrains the individuals from going
“backward.” Thus, most of the individuals who want to
reduce their density values have to move themselves along
the current Pareto front.

Although RDGA improves the efficacy of the searching
process (.e., finding good Pareto front), it also sacrifices
the efficiency of the process (computationally speaking)
comparing to NPGA and VEGA. For each generation, the
computational complexity is about 1.8:1.2:1 for RDGA,
NPGA and VEGA. The extra time in RDGA is exerted on
the ranking and density calculation and exploring the new
searching area (i.e., diffusion scheme). However, the
degrading of efficiency is still acceptable because off-line
design problems are not time-imminent.

V. CONCLUSION

From the results presented above, RDGA has shown its
potential in successfully finding nearly optimal and nearly
complete Pareto fronts for three given benchmark problems.
Two other MOGA s are also applied for comparison. RDGA
has the merits of simplifying the problem domain, keeping
the diversity of the individuals dong the current trade-off
surface, extending the Pareto front to new areas, and
finding a well-approximated non-dominated set. For the
given benchmark problems, RDGA significantly improves
searching efficacy in comparison with VEGA and NPGA.
The trade-off of searching efficiency is not significant and
is acceptable. Further research is necessary in applying
RDGA to solve complicated real-world multiobjective
optimization problems.
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