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Abstract


We introduce a technique called lexicographic
parsimony pressure, for controlling the signifi-
cant growth of genetic programming trees dur-
ing the course of an evolutionary computation
run. Lexicographic parsimony pressure modifies
selection to prefer smaller trees only when fit-
nesses are equal (or equal in rank). This tech-
nique is simple to implement and is not affected
by specific differences in fitness values, but only
by their relative ranking. In two experiments we
show that lexicographic parsimony pressure re-
duces tree size while maintaining good fitness
values, particularly when coupled with Koza-
style maximum tree depth limits.


1 INTRODUCTION


Like many arbitrary-sized representations in evolutionary
computation, genetic programming (GP) individuals tend
to grow significantly in size when no code growth counter-
agents are applied. This growth is relatively independent of
significant increases in fitness. The phenomenon, known in
GP circles as bloat, is shaping up to be a major impedi-
ment to GP’s scalability to more difficult problems which
necessitate longer evolutionary runs.


The chief way bloat is controlled in GP is through the
use of breeding restrictions stipulating the maximum depth
of a GP parse tree individual. Lately other approaches
have taken root, most popularly various forms of parsi-
mony pressure, where the size of an individual is taken into
consideration during selection. Parsimony pressure has to
date taken two basic forms: parametric parsimony pres-
sure, where an individual’s size directly changes its fitness,
and pareto parsimony pressure, where an individual’s size
is considered as an additional objective in a pareto opti-
mization scheme.


In this paper we present a new family of parsimony pres-
sure techniques which we think may be particularly apro-
pos to GP and other evolutionary systems with large num-
bers of fitness-equivalent individuals in a population. This
family is collectively known as lexicographic parsimony
pressure, and is based on the idea of placing fitness, then
size in lexicographic order; that is, preferring smaller indi-
viduals only when fitness is identical (or in some versions,
similar). Lexicographic parsimony pressure is simple to
implement, and it is less tied to the specific absolute fit-
ness values in the population than parametric techniques
are, much in the same way that tournament selection touted
over fitness-proportionate selection.


We open the paper with discussions of current bloat-control
techniques, followed by a description of lexicographic par-
simony pressure and variations we have tried. We then give
the results of an experiment showing that in most cases lex-
icographic parsimony pressure produces equivalent best-
fitness-of-run results with significantly smaller trees than
does depth restriction, except in the Symbolic Regression
domain, where it performs poorly. We then give the re-
sults of a second experiment where we show that combina-
tions of lexicographic parsimony pressure and depth limit-
ing work very well compared to depth limiting alone.


2 CONTROLLING BLOAT


The evolutionary computation community has tried a num-
ber of approaches to controlling the growth of arbitrary-
sized individuals. First and foremost are a number of parsi-
mony pressure techniques, which include consideration of
an individual’s size as part of the selection procedure. Ge-
netic programming has popularized some other techniques.
Below we list four such techniques, followed by a range of
parsimony pressure approaches.


Maximum Size or Depth Restriction This approach
simply limits the maximum size of an individual, usually
by rejecting large children as part of the breeding process.







For example, much work in GP follows the technique used
in Koza [1992], which restricts modification operators to
produce new trees of depth less than 17.


Explicitly Defined Introns This GP-specific technique
allows the inclusion of special nodes which adapt the likeli-
hood of subtree crossover or mutation at specific positions
in the tree [Nordin et al. 1996].


Code Editing One easy way to attack growth is to di-
rectly simplify and optimize an individual’s parse tree.
Soule et al. [1996] for example report strong results with
this approach. However, Haynes [1998] warns that editing
can lead to premature convergence.


Pseudo-Hillclimbing This technique rejects children if
they are not superior to (or simply different from) their par-
ents in fitness. If a child is rejected from joining the next
generation, a copy of its parent joins the next generation in
its stead. One effect of this technique is to replicate large
numbers of parents into future generations; earlier individ-
uals are generally smaller than later individuals (hence the
bloat), this results in slower growth in average size. This
technique has been reported with some success in [Lang-
don and Poli 1998; Soule and Foster 1998b].


2.1 PARSIMONY PRESSURE


Unlike the techniques mentioned earlier, parsimony pres-
sure is not GP-specific and has been used whenever
arbitrary-sized representations tended to get out of hand.
Such usage to date can be divided into two broad cate-
gories: parametric parsimony pressure, where size is a di-
rect numerical factor in fitness, and pareto parsimony pres-
sure, where size is considered as a separate objective in a
pareto-optimization procedure.


Parametric Parsimony Pressure This includes size
metrics, along with raw fitness, as part of an equation in
computing the final fitness of an individual. For purposes of
the discussion, let f be the individual’s raw fitness, where
higher is better, and g be the fitness after parsimony pres-
sure is considered. Let s be an individual’s size, and let
a,b,c be arbitrary constants.


The most widely-used approach to parametric parsimony
pressure is to treat the individual’s size as a linear factor in
fitness, that is, g = a f − bs. This technique has been used
in both GP [Koza 1992] and in non-GP [Burke et al. 1998].
Soule and Foster [1998a] present an interesting analysis of
linear parsimony pressure and when and why it can fail.
Linear parsimony pressure is occasionally augmented with
a limit, that is if s ≤ c then g = a f , else g = a f + b(c− s)
[Cavaretta and Chellapilla 1999]. Belpaeme [1999] used a


similar limit, but considered maximal tree depth rather than
size as the parameter. Nordin and Banzhaf [1995] also ap-
plied parametric parsimony pressure, believed to be linear,
to evolve machine language GP strings.


Linear parsimony pressure has been used in combina-
tion with adaptive strategies. Zhang and Mühlenbein
[1995] adjusted b based on current population quality. Iba
et al. [1994] propose a similar technique, except they use
information-theoretic functions for f and s. Linear par-
simony pressure has also been applied in stages: first by
setting g = f , then factoring in size only after the pop-
ulation has reached a sufficient quality [Kalganova and
Miller 1999]. Some non-GP papers [Wu et al. 1999; Bas-
sett and De Jong 2000] use a nonlinear parsimony pressure:
g = (1− as) f . Bassett and De Jong note that this has the
added feature of increasing the penalty proportionally to
the fitness.


The problem with parametric parsimony pressure is exactly
that: it is parametric, rather than based on rank. One must
tune the parsimony pressure so as not to overwhelm the
fitness metric. This can be difficult when the fitness as-
sessment procedure is nonlinear, as is usually the case: it
may well be that a difference between 0.9 and 0.91 in fit-
ness is much more significant than a difference between
0.7 and 0.9. Parametric parsimony pressure can thus give
size an unwanted advantage over fitness when the differ-
ence in fitness is only 0.01 as opposed to 0.2. Unexpected
strength in the size parameter can also arise when the pop-
ulation’s fitnesses are converging late in the evolution pro-
cedure. These issues are similar to those which gave rise
to the preference of tournament selection and other non-
parametric selection procedures over fitness-proportionate
selection.


Pareto Parsimony Pressure The recent trend in parsi-
mony pressure has been to treat it as a separate objective in
a nonparametric, pareto optimization scheme. Pareto opti-
mization is used when the evolutionary system must opti-
mize for two or more objectives at once, but it is not clear
which objective is “more important”. An individual A is
said to pareto-dominate another individual B if A is as good
as B on all objectives, and better than B in at least one ob-
jective. One pareto optimization scheme assumes that one
individual has a higher fitness than another if it dominates
the other. Another scheme bases the fitness of individuals
on the number of other individuals they dominate.


Pareto parsimony pressure treats raw fitness as one objec-
tive to optimize, and the individual’s size as another objec-
tive. One particularly enticing feature of pareto parsimony
pressure is that there is nothing to tune. Unfortunately,
the technique has so far had mixed results in the literature.
Some papers report smaller trees and the discovery of more







ideal solutions [Bleuler et al. 2001; DeJong et al. 2001], but
tellingly they omit best-fitness-of-run results.1 Ekart and
Nemeth [2001] report the mean best-fitness-of-run, but it is
worse than when not using the technique.


3 LEXICOGRAPHIC PARSIMONY
PRESSURE


Lexicographic parsimony pressure is a straightforward
multiobjective technique for optimizing both fitness and
tree size, by treating fitness as the primary objective and
tree size as a secondary objective in a lexicographic order-
ing. The procedure does not assign a new fitness value,
but instead uses a modified tournament selection operator
to consider size.


To select an individual, two individuals are chosen at ran-
dom, and their fitnesses compared. If an individual has su-
perior fitness, it is selected. If the fitnesses are the same,
then sizes are compared, and the smaller individual is se-
lected. If both fitness and size are the same, an individual
is selected at random.


We think the procedure is attractive because it is based on
the relative rank of individuals in a population rather than
their explicit fitness values: thus specific differences in fit-
ness are immaterial. All that matters is that one fitness is
greater than another. Additionally, plain lexicographic par-
simony pressure has nothing to tune. However, the proce-
dure only works well in environments which have a large
number of individuals with identical fitness. As it so hap-
pens, genetic programming is just such an environment,
thanks to a large amount of inviable code (regions where
crossover has no effect) and other events causing neutral
crossovers and mutations.


Of course, there exist problem domains where few in-
dividuals have the same fitness. For these domains we
propose two possible modifications of lexicographic par-
simony pressure, both based on the notion of sorting the
population, putting it into ranked buckets, and treating each
individual in the bucket as if it had the same fitness. These
two modifications are:


Direct Bucketing The number of buckets, b, is speci-
fied beforehand, and each is assigned a rank from 1 to b.
The population, of size p, is sorted by fitness. The bottom
dp/be individuals are placed in the worst ranked bucket,
plus any individuals remaining in the population with the
same fitness as the best individual in the bucket. Then the
second worst dp/be individuals are placed in the second


1As we argue in an accompanying paper, ideal-solution counts
are a very poor measure of quality. Not only are they statistically
invalid, but in fact are not correlated, or as badly as inversely cor-
related, with mean best-fitness-of-run results.


worst ranked bucket, plus any individuals in the popula-
tion equal in fitness to the best individual in that bucket.
This continues until there are no individuals in the popu-
lation. Note that the topmost bucket with individuals can
hold fewer than dp/be individuals, if p is not a multiple of
b. Depending on the number of equal-fitness individuals
in the population, there can be some top buckets that are
never filled. The fitness of each individual in a bucket is set
to the rank of the bucket holding it. Direct bucketing has
the effect of trading off fitness differences for size. Thus
the larger the bucket, the stronger the emphasis on size as a
secondary objective.


Ratio Bucketing Here the buckets are proportioned so
that low-fitness individuals are placed into much larger
buckets than high-fitness individuals. A bucket ratio 1/r
is specified beforehand. The bottom d1/re fraction of indi-
viduals of the population are placed into the bottom bucket.
If any individuals remain in the population with the same
fitness as the best individual in the bottom bucket, they too
are placed in that bucket. Of the remaining population,
the next d1/re fraction of individuals are placed into the
next bucket, plus any individuals remaining in the popu-
lation with the same fitness as the best individual now in
that bucket, and so on. This continues until every mem-
ber of the population has been placed in a bucket. Once
again, the fitness of every individual in a bucket is set to the
rank of the bucket relative to other buckets. As the remain-
ing population decreases, the d1/re fraction also decreases:
hence higher-ranked buckets generally hold fewer individu-
als than lower-ranked buckets. Ratio bucketing thus allows
parsimony to have more of an effect on average when two
similar low-fitness individuals are considered than when
two high-fitness individuals are considered.


Both bucketing schemes fill the buckets with remaining
individuals equal in fitness to the best individual in the
bucket. The purpose of this is to guarantee that all indi-
viduals of the same fitness fall into the same bucket and
thus have the same rank. This removes artifacts due to the
particular ordering of the population. Bucketing schemes
require that the user specify a bucket parameter (either the
number of buckets or the bucket ratio). This parameter
guides how strong an effect parsimony can have on the se-
lection procedure. Note however that this parameter is not
a direct factor in fitness. Thus the specific difference in
fitness between two individuals is still immaterial; all that
matters is fitness rank.


We are aware of two papers in the literature which have
used variations on lexicographic parsimony pressure. Lu-
cas [1994] used a linear parametric function to evolve bit-
strings used in context-free grammars: but the size was
multiplied by a constant small enough to guarantee that
the largest possible advantage for small size was less than
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Figure 1: Boxplots of distributions of mean-tree-size-of-run for various parsimony pressure methods, as compared com-
pared to plain depth limiting (labeled D). Lexicographic parsimony pressure is labeled L. Direct bucketing is labeled B,
with the given number of buckets. Ratio bucketing is labeled R with the given ratio value.


the smallest difference in fitness. We believe the fitness
was then fed into a fitness-proportional selection operator.
In the pygmies and civil servants algorithm [Ryan 1994],
crossover is always between one “civil servant” and one
“pygmy”. A pygmy is selected using linear parsimony
pressure with a heavy weight for small size. A civil ser-
vant is selected using plain lexicographic selection. Both
papers mention parsimony advantages only in passing.


4 EXPERIMENTS


Like most parsimony pressure literature, we chose to com-
pare against the most popular technique for size restric-
tion, namely Koza-style depth limiting. We performed two
sets of experiments. The first experiment compared lexi-
cographic parsimony pressure against depth limiting. The
second experiment used lexicographic parsimony pressure
in combination with depth limiting.


The experiments used population sizes of 1000. Without
parsimony pressure, the depth ordered runs used plain tour-
nament selection with a tournament size of 2. We chose
four problem domains: Artificial Ant, 11-bit Boolean Mul-


tiplexer, Symbolic Regression, and Even-5 Parity. We fol-
lowed the parameters specified in these four domains as
set forth in Koza [1992]. Symbolic Regression used no
ephemeral random constants. Artificial Ant used the Santa
Fe food trail. Statistical significance was determined with
ANOVAs at 95%. The evolutionary computation system
used was ECJ 7 [Luke 2001].


As lexicographic ordering is influenced by likelihood of in-
dividuals having the same (or similar) fitness, it is useful
to note the features of these four problem domains in this
respect. Artificial Ant evolves trees to control an ant to
eat as many food pellets as possible within 400 time steps.
Fitness is simply the number of pellets, and the trail has
only 89 of them, so there are relatively few fitness values
an individual may take on. The 11-bit Boolean Multiplexer
and Even-5 Parity problems both require the individual to
learn a complex boolean function. 11-bit Boolean Multi-
plexer has integer fitness values ranging from 0 to 2048.
It is known that 11-bit Boolean Multiplexer has relatively
little inviable code, but most individuals’ fitnesses fall into
multiples of 32 or 64. Even-5 Parity has the fewest num-
ber of fitness values: only integer fitness values ranging
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Figure 2: Boxplots of distributions of best-fitness-of-run for various parsimony pressure methods, as compared compared
to plain depth limiting (labeled D). Lexicographic parsimony pressure is labeled L. Direct bucketing is labeled B, with the
given number of buckets. Ratio bucketing is labeled R with the given ratio value. Lower fitness is better.


from 0 to 33. Symbolic Regression asks trees to fit a real-
valued function within the domain [-1,1] but with any valid
range; thus individuals can take on any real-valued fitness.
However, Symbolic Regression suffers from a very large
amount of inviable code, so many individuals in the popu-
lation have the same fitness.


4.1 FIRST EXPERIMENT


The first experiment compared depth limiting against pure
parsimony pressure approaches. Specifically, the tech-
niques compared are:


• Lexicographic parsimony pressure with direct bucket-
ing, using 10, 25, 50, 100, 250, or 500 buckets.


• Lexicographic parsimony pressure with ratio bucket-
ing, using bucket ratios of 1/2, 1/3, 1/4, 1/5, 1/6, 1/7,
1/8, 1/9, or 1/10.


• Plain lexicographic parsimony pressure.


• Depth limiting (to 17).


We did 50 runs per technique, and plotted boxplots2 show-
ing the distribution of the best fitness per run, and also of
the average tree size per run. Runs continued for 51 gen-
erations, and did not stop on the discovery of the optimum.
Results are shown in Figures 1 and 2.


In the Artificial Ant and Even 5-Parity problems, all parsi-
mony pressure techniques yielded statistically significantly
superior tree size results to depth limiting, and had statis-
tically insignificant differences in fitness, except for direct
bucket numbers of 10, 25, and 50 for Even 5-Parity, which
had worse fitness values. Small-numbered direct bucket-
ing yielded much better tree sizes. For Even-5 Parity, this
came at the cost of much worse fitness values. Artificial
Ant, there was no difference in fitness.


For 11-bit Boolean Multiplexer, all parsimony pressure
techniques had smaller mean tree sizes than depth limit-
ing, but only direct bucketing numbers of 10, 25, 50, and
100 had statistically significant differences. Similarly, all


2In a boxplot, the rectangular region covers all values between
the first and third quartiles, the stems mark the furthest individual
within 1.5 of the quartile ranges, and the center horizontal line
indicates the median. Dots show outliers, and × marks the mean.
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Figure 3: Boxplots of distributions of mean-tree-size-of-run for various parsimony pressure methods in combination with
depth limiting, as compared compared to plain depth limiting (labeled D). Lexicographic parsimony pressure is labeled L.
Direct bucketing is labeled B, with the given number of buckets. Ratio bucketing is labeled R with the given ratio value.


techniques had statistically insignificant differences in fit-
ness except for direct bucking numbers of 10, 25, and 50,
which had worse fitness.


The surprise came with Symbolic Regression. We had ex-
pected lexicographic parsimony pressure to yield poor tree
sizes in this domain relative to depth limiting, and it did.
But interestingly, bucketing also had poor tree sizes. Only
direct bucking with 10 buckets yielded statistically signifi-
cantly worse fitness than depth limiting.


Growth Curves For the Even-5 Parity problem, parsi-
mony pressure techniques generally held tree growth to a
standstill or began lowering tree sizes it by generation 30.
For Artificial Ant, this occurred by about generation 10.
In 11-bit Boolean Multiplexer, generation 40; most parsi-
mony pressure techniques were lowering tree sizes by then
as well. In Symbolic Regression, tree growth for all the
parsimony pressure techniques rose in a quadratic curve
similar to that found for unrestricted GP in this problem.
With depth limiting in all four problem domains, mean tree
growth continued to rise linearly.


Lexicographic parsimony pressure has an Achilles’ heel: if


GP can create incrementally better trees by tacking subtrees
onto their periphery, then lexicographic parsimony pressure
cannot act against it. As long as the trees are infinitesimally
better, size does not come into play. Symbolic Regression
has this property, and we had expected plain lexicographic
parsimony pressure to do badly in this domain. But we
were very surprised to see the poor performance of bucket-
ing approaches as well.


4.2 SECOND EXPERIMENT


If depth limiting did well compared to lexicographic parsi-
mony pressure in Symbolic Regression, and held its own
reasonably in 11-bit Boolean Multiplexer, we wondered
how the combination of the two techniques would fare.
Our second experiment compared the same techniques as
in the first experiment, but combined the parsimony pres-
sure techniques with depth limiting. Again, we did 50 runs
per technique. These results are shown in Figures 3 and 4.


This time, parsimony pressure plus depth limiting signifi-
cantly outperformed depth limiting alone. In the Symbolic
Regression, Artificial Ant, and Even-5 Parity problems, all
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Figure 4: Boxplots of distributions of best-fitness-of-run for various parsimony pressure methods in combination with
depth limiting, as compared compared to plain depth limiting (labeled D). Lexicographic parsimony pressure is labeled L.
Direct bucketing is labeled B, with the given number of buckets. Ratio bucketing is labeled R with the given ratio value.
Lower fitness is better.


applications of parsimony pressure plus depth limiting had
statistically significantly superior tree sizes when compared
to plain depth limiting. In the 11-bit Boolean Multiplexer,
this was also the case except for ratio buckets of size 1/5,
1/7, and 1/10, which had statistically insignificant differ-
ences with depth limiting.


As before, there were no statistically significant differences
in fitness in the Artificial Ant problem. Direct bucketing
with 10, 25, and 50 buckets yielded statistically signifi-
cantly worse fitness than depth limiting for the Even-5 Par-
ity and 11-bit Boolean Multiplexer problems. In the Sym-
bolic Regression problem, only direct bucketing with 10
buckets had statistically worse fitness than depth limiting.


Growth Curves In the Symbolic Regression and Even-
5 Parity problems, parsimony pressure plus depth limiting
flattened out tree growth by about generation 25. In the Ar-
tificial Ant problem, parsimony pressure plus depth limit-
ing dropped sizes after about generation 5, flattening out at
about generation 20. In the 11-bit Boolean Multiplexer, the
same techniques began slowly lowering tree sizes at about
generation 35.


5 CONCLUSIONS AND FUTURE WORK


In three of four problem domains, lexicographic parsi-
mony pressure and its variants (direct bucketing and ra-
tio bucketing, given reasonable parameter values) main-
tained the same mean best-fitness-of-run as did Koza-style
depth limiting, with equivalent or significantly lower mean
tree sizes. But in Symbolic Regression, where incremen-
tally larger trees are often (just barely) superior in fitness,
lexicographic techniques were practically helpless to stop
bloat. However, a combination of depth limiting and lex-
icographic parsimony pressure consistently outperformed
depth limiting in capping bloat, while maintaining statisti-
cally equivalent mean best-fitness-of-run values. Given its
simple implementation and general applicability, we hope
lexicographic parsimony pressure may prove a popular ap-
proach to bloat control. We plan to extend this work to
other techniques such as layered tournaments which al-
ternately consider fitness and size. We also plan to com-
pare directly to parametric parsimony pressure and pareto-
optimization-based methods in the future.
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