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Abstract


In thispaper, weintroducetheuseof a population-based
selectionschemein a particleswarmoptimizerusedfor de-
signingcombinationallogic circuits. Theschemeaims to
distribute the search effort in a betterway within the par-
ticlesof thepopulationas to accelerateconvergencewhile
improving the robustnessof the algorithm. For our study,
we compare six PSO-basedapproaches,combiningdiffer-
ent encodings(integer and binary) with both single- and
multi-objectiveselectionschemes.Thecomparative study
performedindicatesthat theuseof a population-basedap-
proach combinedwith an integer encodingimprovesboth
therobustnessandqualityof resultsof PSOwhendesigning
combinationallogic circuits.


1 Intr oduction


The Particle Swarm Optimization (PSO) algorithm is
a biologically-inspiredtechniqueoriginally proposedby
KennedyandEberhart[7, 8]. PSOhasbeensuccessfully
usedas a (nonlinear)optimization techniqueand hasbe-
comeincreasinglypopulardue to its combinationof sim-
plicity (in termsof its implementation),low computational
cost and good performance[8]. Theseare preciselythe
main motivationsthat led us to apply PSOfor combina-
tionalcircuit design[4].


Themain ideabehindPSOis to simulatethemovement
of a flock of birds seekingfood. In this simulation, the
behavior of eachindividual gets affected by both an in-
dividual anda social factor. Eachindividual (or particle)
containsits currentpositionin the searchspaceaswell as
its velocity and the bestposition found by the individual


so far [8]. As many otherbiologically-inspiredheuristics,
PSOis a population-basedapproachthatcanbedefinedas���������	��
�������


, where
�


is thepopulation, whichconsists
of asetof positionsin searchspace,




is thefitnessfunction,


thatreturnsa vectorof valuesthat indicatethegoodnessof
eachindividual,and


�
is a manipulationfunctionthatgen-


eratesanew populationfrom thecurrentpopulation.Sucha
manipulationfunction is basedon thebehavioral modelof
insectcolonies[1].


PSOcan be seenas a distributedbehavioral algorithm
that performs (in its more generalversion) multidimen-
sional search. In the simulation,the behavior of eachin-
dividual is affectedby either the bestlocal (i.e., within a
certainneighborhood)or thebestglobalindividual. Theap-
proachusesapopulationof potentialsolutions(called“par-
ticles”) anda measureof performancesimilar to thefitness
valueusedwith evolutionaryalgorithms.Also, the adjust-
mentsof individualsareanalogousto theuseof acrossover
operator. However, this approachintroducestheuseof fly-
ing potentialsolutionsthroughhyperspace(usedto acceler-
ateconvergence).Additionally, PSOallows individualsto
benefitfrom their pastexperiences[8].


In this paper, we proposethe use of a multiobjective
optimization techniqueto design combinationalcircuits.
Our approach(which usesPSO as its optimization en-
gine) is basedon someof our previous researchin which
a population-basedgeneticalgorithm was usedto design
combinationallogic circuits [3]. The proposalconsistsof
handlingeachof thematchesbetweena solutiongenerated
by our PSOapproachandthe valuesspecifiedby the truth
tableasequalityconstraints.To avoid the dimensionality
problemsassociatedwith conventionalmultiobjectiveopti-
mizationtechniques(suchproblemsaredueto thefact that
checkingfor Paretodominanceis an � ������ process),we







useapopulation-basedapproachsimilar to theVectorEval-
uatedGeneticAlgorithm (VEGA) [11].


2 ProblemStatement


Theproblemof interestto usconsistsof designinga cir-
cuit that performsa desiredfunction (specifiedby a truth
table),givena certainspecifiedsetof availablelogic gates.
Thecomplexity of alogic circuit is afunctionof thenumber
of gatesin thecircuit. Thecomplexity of agategenerallyis
afunctionof thenumberof inputsto it. Becausea logic cir-
cuit is a realization(implementation)of aBooleanfunction
in hardware,reducingthenumberof literalsin thefunction
shouldreducethe numberof inputs to eachgateand the
numberof gatesin thecircuit—thusreducingthecomplex-
ity of thecircuit. Our overall measureof circuit optimality
is the total numberof gatesused,regardlessof their kind.
This is approximatelyproportionalto the total part costof
the circuit. Obviously, we perform this analysisfor only
fully functionalcircuits.


3 Our ProposedApproach


We useda matrix to representa circuit asin our previ-
ouswork [2], asshown in Figure1. More formally, we can
saythat any circuit canbe representedasa bidimensional
arrayof gates���� � , where� indicatesthe level of a gate,so
that thosegatescloserto the inputs have lower valuesof� . (Level valuesareincrementedfrom left to right in Fig-
ure1). For a fixed � , the index � varieswith respectto the
gatesthat are“next” to eachotherin the circuit, but with-
out beingnecessarilyconnected.Eachmatrix elementis a
gate(thereare5 typesof gates:AND, NOT, OR,XOR and
WIRE1) thatreceivesits 2 inputsfrom any gateat theprevi-
ouscolumnasshown in Figure1. Thissortof encodingwas
originally proposedby Louis [9]. Theso-called“cartesian
geneticprogramming”[10] alsoadoptsa similar encoding
to thematrix previouslydescribed.


Using theaforementionedmatrix, a logic circuit canbe
encodedusing either binary or integer strings that corre-
spondto thetypeof gateadoptedandits inputs.PSO,how-
ever, tendsto dealwith eitherbinary or real-numbersrep-
resentation.For our comparative study, we will adopttwo
integer representations:(1) Integer A (proposedby Hu et
al. [6]), and(2) Integer B (proposedby us).


In the PSOalgorithm,the individual factor
�����! �"


refers
to thedecisionsthattheindividualhasmadesofar andthat
have worked best (in termsof its performancemeasure).
This value has an impact on its future decisions. Addi-
tionally, the social factor # ���! $" refersto the decisionsthat


1WIRE basicallyindicatesa null operation,or in otherwords,theab-
senceof gate,andit isusedjustto keepregularityin therepresentationused
by ourapproachthatotherwisewould have to usevariable-lengthstrings.


Inputs Outputs


GATE INPUT 1 INPUT 2


Figure 1. Encoding used for each of the matrix
elements that represent a cir cuit.


the otherindividuals(within a certainneighborhood)have
madesofar andthathaveworkedbestfor them.This value
will alsoaffect thefuturedecisionsof theindividualsin the
givenneighborhood.


Figure 2 shows the pseudocodeof the PSOalgorithm
that we proposefor the designof combinationallogic cir-
cuits. Its main differencewith respectto traditionalPSO
hasto do with the updateof the positionof the particlein
eachof its dimensions.Both, the Integer A andthe Inte-
ger B approachesnormalizethevelocityof eachdimension
of the particle in the range0 to 1, so that we can further
determine(in a randomway) whetherwe needto change
the currentpositionor not (this is donewith the probabil-
ity given by the velocity). If the changeis required,then
we copy to the particle the value of # �%�& �" in the current
position.Otherwise,theInteger A approachleavesthepar-
ticle intact. Whenthe changeis not required,the Integer
B approachchecksagainwhetheris necessaryto change
thecurrentposition,but now usinga probabilityof ')(	*,+ ,
where *,+ is the currentvelocity. If the changeis required,
thenwe copy to the particlethe valueof


�����! �"
in the posi-


tion thatwe areupdating.Otherwise,we leave theparticle
intact.Thesetwo integerrepresentationsareexemplifiedin
Figure3. As in our previouswork [4], we introduceherea
mutationoperatorto ourPSOalgorithmin orderto improve
its exploratorypower, sincethis seemsnecessarywhenap-
plying this approachto thedesignof circuits. Furthermore,
in this case,theparticlestry to follow thesamecharacteris-
tics of # ���! �" and


� ���! $"
andcouldgetstuckin their current


position. Thus, the useof a mutationoperatoris vital in
orderto avoid this problem.


4 Useof a Multiobjecti veApproach


Theobjective functionin our caseis definedasin previ-
ouswork [2]: it is thetotalnumberof matches(betweenthe
outputsproducedby anencodedcircuit andtheintentedval-







Randomlyinitialize thepopulationof particles,- .
Repeat .


For eachparticle / in thepopulation-	.
Computethefitnessof theparticle -10 /�2
If thefitnessof -10 /32 is betterthanthefitnessof
thebestparticlefoundsofar -546�7�890 /32 ,
Then update-:4�6�7%8 using -10 /32 .;


For eachparticle / in -<.
Selecttheparticlewith thebestfitnessin the
topologicalneighborhoodof -10 /32
andupdatethevalueof =>46�7�890 /32;


For eachparticle / in thepopulation-	.
Computethenew velocity for eachdimensionof
theparticle?@ 0 /32BA 6%CED ?@ 0 /32GF&H IKJML5NPO ?-RQTSVU9WT0 /32YX ?-10 /32[Z$JL]\�O ?=^QTSVU9WT0 /32_X ?-10 /32`Z
Updatethepositionof theparticle -10 /32;


Apply uniformmutationwith a (usergiven)rate.;
Until reachingthestopcondition


Figure 2. Pseudocode of the PSO algorithm
adopted in this work. Note the addition of a
mutation operator .


uesdefinedby theuserin thetruth table). For eachmatch,
we increasethe valueof the objective function by one. If
theencodedcircuit is feasible(i.e., it matchesthe truth ta-
ble completely),thenwe addone (the so-called“bonus”)
for eachWIRE presentin thesolution. Notehowever, that
in this case,we usea multiobjectiveapproachto assignfit-
ness.Themainideabehindourproposedapproachis to use
a population-basedmultiobjective optimization technique
similar to VEGA [11] to handleeachof the outputsof a
circuit asan objective. In otherwords,we would have an
optimizationproblemwith


�
equality constraints,where�


is the numberof values(i.e., outputs)of the truth table
thatwe aim to match.So,for example,a circuit with 3 in-
putsanda singleoutput,would have


�a�cb,de�cf
values


to match. At eachgeneration,the populationis split into�hg ' sub-populations,where
�


is definedasindicatedbe-
fore(wehaveto addoneto consideralsotheobjectivefunc-
tion). Eachsub-populationoptimizesa separateconstraint
(in this case,anoutputof thecircuit). Therefore,themain
missionof eachsub-populationis to matchits correspond-
ing outputwith thevalueindicatedby the userin the truth
table. The main issuehereis how to handlethe different
situationsthatcouldarise.Our proposalis thefollowing:


if ij� �kl�nm�po � then fitness(
k


) = q
elseif * m� q AND rtsEu then fitness= (v*
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Figure 3. Example of the two integ er repre-
sentations used for our PSO algorithm.


else fitness=

��kl�


where ij� �kl� refersto the valueof output � for the en-
codedcircuit


k
;
o � is thevaluespecifiedfor output � in the


truth table; * is thenumberof outputsthatarenot matched
by thecircuit


k
( � �


); and u is thesubpopulationwhose
objective is to matchall the output valuesfrom the truth
table.Finally,



��ke�
is thefitnessfunctiondefinedas:



��ke�R���c� ��ke� if
k


is infeasible� ��ke��g�����ke� otherwise
(1)


In this equation,� �ke� refersto the numberof matches
betweenthecircuit


k
andthevaluesdefinedin thetruth ta-


ble,and
����ke�


is thenumberof WIREsin thecircuit
k


. As
canbeseen,theschemeadoptedin thiswork is slightly dif-
ferentfrom theoneusedby our MGA reportedin [3]. The
main reasonfor adoptingthis approachis that in our ex-
periments,it producedmorecompetitiveresults,improving
in mostcasestheresultsobtainedwith our single-objective
PSO,aswewill seein thenext section.


5 Comparison of Results


Thetruth tablesusedto validateourPSOapproachwere
taken from the specializedliterature. In our experimental
study, we comparedthe following approaches:a binary
multiobjective PSOapproach(BMPSO),a PSOapproach
usingan integerA encoding(EAMPSO),a PSOapproach
using an integer B encoding(EBPSO),a binary single-
objective PSO (BPSO),a single-objective PSO approach
usingintegerA encoding(EAPSO),asingle-objectivePSO
approachusingintegerB encoding(EBPSO)andthemulti-
objective geneticalgorithm for circuit design(MGA) [3].
For eachof the examplesshown, we performed20 inde-
pendentruns,andtheavailablesetof gatesconsideredwas
thefollowing: AND, OR,NOT, XOR andWIRE.Weuseda
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Figure 4. Diagram and boolean expression
corresponding to the best solution found for
example 1.


matrixof size ����� in all cases,exceptfor thesecondexam-
ple for which a ���t� matrix wasadopted.Theparameters
adoptedby both BPSOand BMPSO were the following:�5� � � � � 0.8, �]�v P¡ � 3.0,mutationrate


� � �
0.1 and


neighborhoodsize
�


3. EAPSO,EAMPSO,EBPSOand
EBMPSOused:


��� � � � � 0.2, ���v P¡ � 0.4,
� � �


0.1
andneighborhoodsize


�
3. TheMGA used


� � �
0.00667


anda crossoverrate
�


0.5(assuggestedin [3]).


5.1 Example 1


Our first examplehas4 inputsand1 output,asshown in
Table1. The additionalparametersadoptedareshown in
Table2. Notethatwe attemptedto performthesamenum-
ber of fitnessfunction evaluationswith all the approaches
compared. In Table 3, we show a comparisonof the re-
sultsof all theapproachesadopted.Thebestsolutionfound
for this examplehas6 gatesand is graphicallyshown in
Figure4. NotethatbothBMPSOandEBMPSOwereable
to find a circuit that usesone gatelessthan their single-
objective counterparts(i.e., BPSOandEBPSO).Neverthe-
less,theaveragefitnessof bothBMPSOandEBMPSOwere
lower thanthevaluesof their single-objectivecounterparts.
Also notethatalthoughEAMPSOwasnot ableto improve
thesolutionsobtainedby EAPSO,its percentageof feasible
circuits increasedfrom 65%to 85%. Also, theaveragefit-
nessof EAMPSOwas30.25comparedto the 26.75value
producedby EAPSO.In this example, the MGA did not
performtoo well whencomparedwith any of our PSOver-
sions.Its percetangeof feasiblecircuitswaslow (35%)and
it wasnot ableto find the solutionwith only 6 gatespro-
ducedby someof thePSOapproaches.Anotherinteresting
factwasthatEBPSOhadthebestaveragefitness(31.2),but
wasnot able to producecircuits with 6 gates. EAMPSO,
in contrast,hadthesecondbestaveragefitness(30.25),but
wasableto find circuits with only 6 gates5% of the time.
Thus,EAMPSOcanbeconsideredasthebestoverall per-
formerin thisexample.


D C B A S
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 1
1 0 1 0 1
1 0 1 1 0
1 1 0 0 0
1 1 0 1 1
1 1 1 0 0
1 1 1 1 1


Table 1. Truth table for example 1.


Technique Population size Iterations FFE
MPSO 68 1,471 100,028
PSO 50 2,000 100,000
MGA 170 600 102,000


Table 2. Parameter s adopted for example 1.
FFE = Fitness function evaluations.


approach gates fr eq. feas. avg.# avg. Std.
b.s. b.s. circs. gates fitn. dev.


BMPSO 8 5% 20% 22.8 18.2 6.622
EAMPSO 6 5% 85% 10.75 30.25 6.680
EBMPSO 6 5% 75% 12.75 28.25 7.953


BPSO 9 15% 45% 19.1 21.9 7.887
EAPSO 6 5% 65% 14.25 26.75 8.902
EBPSO 7 30% 90% 9.8 31.2 5.616
MGA 7 15% 35% 19.95 21.05 8.929


Table 3. Comparison of the results obtained
by our multiobjective versions of PSO, our
single-objective PSO versions, MGA and
a human designer for the fir st example .
b.s.=best solution.
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Figure 5. Diagram and boolean expression
corresponding to the best solution found for
example 2.







E D C B A S
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 1
0 0 0 1 1 1
0 0 1 0 0 0
0 0 1 0 1 0
0 0 1 1 0 1
0 0 1 1 1 1
0 1 0 0 0 0
0 1 0 0 1 0
0 1 0 1 0 1
0 1 0 1 1 1
0 1 1 0 0 0
0 1 1 0 1 1
0 1 1 1 0 0
0 1 1 1 1 1
1 0 0 0 0 0
1 0 0 0 1 0
1 0 0 1 0 1
1 0 0 1 1 1
1 0 1 0 0 0
1 0 1 0 1 1
1 0 1 1 0 0
1 0 1 1 1 1
1 1 0 0 0 0
1 1 0 0 1 1
1 1 0 1 0 0
1 1 0 1 1 1
1 1 1 0 0 0
1 1 1 0 1 1
1 1 1 1 0 0
1 1 1 1 1 1


Table 4. Truth table for example 2.


5.2 Example 2


Oursecondexamplehas5 inputsand1 output,asshown
in Table4. Theadditionalparametersadoptedareshown in
Table5. In Table6, we show a comparisonof theresultsof
all theapproachesadopted.Thebestsolutionfoundfor this
examplehas7 gatesandis graphicallyshown in Figure5.
In thiscase,noneof thebinaryversionsof PSOwasableto
producefeasiblecircuits,which exemplifiestheusefulness
of adoptingintegerencodingsin PSO.Thereweremixedre-
sultsfor theotherapproaches.BothEAMPSOandEAPSO
foundthebestsolutionwith thesamefrequency (15%),but
EAMPSOfound feasiblecircuits 40% of the time (versus
35%of EAPSO).In termsof averagefitnessbothEAMPSO
andEAPSOhadsimilar results(41.7vs. 40.45).Thus,we
canconcludethatEAMPSOwasthebestoverallperformer
in this example.Interestingly, EBPSOhadboththehighest
averagefitness(41.9)andthehighestpercentageof feasible
circuits(45%),butwasnotableto findacircuit with 7gates.
TheMGA wasableto find circuitswith 7 gates,but bothits
percentageof feasiblecircuits(20%)andits averagefitness
(36) werelow in comparisonwith themulti-objective PSO
approaches.


Technique Population size Iterations FFE
MPSO 99 20,000 1,980,000
PSO 50 39,600 1,980,000
MGA 330 6,000 1,980,000


Table 5. Parameter s adopted for example 2.
FFE = Fitness function evaluations.


approach gates fr eq. feas. avg.# avg. std.
b.s. b.s. circs. gates fitn. dev.


BMPSO * 0% 0% * 29.8 0.410
EAMPSO 7 15% 40% 26.3 41.7 14.543
EBMPSO 7 5% 20% 32.25 35.75 11.461


BPSO * 0% 0% * 29.9 0.308
EAPSO 7 15% 35% 27.55 40.45 14.529
EBPSO 8 20% 45% 26.1 41.9 13.619
MGA 8 5% 20% 38 36 13.322


Table 6. Comparison of the results obtained
by our multiobjective versions of PSO, our
single-objective PSO versions, MGA and a
human designer for the second example .
b.s.=best solution.


5.3 Example 3


Our third examplehas4 inputsand2 outputsasshown
in Table7. Theadditionalparametersadoptedareshown in
Table8. In Table9, we show a comparisonof theresultsof
all theapproachesadopted.Thebestsolutionfoundfor this
examplehas7 gatesandis graphicallyshown in Figure6. In
this case,BPSOproducedconsiderablybetterresultsthan
its multi-objective counterpart(BMPSO)both in termsof
averagefitness(46.95vs. 38.60)andin termsof percentage
of feasiblecircuits produced(95% vs. 50%). EAMPSO,
however, wasableto considerablyimprove theresultspro-
ducedby its single-objective counterpart(EAPSO)alsoin


D C B A ©,ª © N
0 0 0 0 1 0
0 0 0 1 1 0
0 0 1 0 1 0
0 0 1 1 0 0
0 1 0 0 1 0
0 1 0 1 1 0
0 1 1 0 0 0
0 1 1 1 0 0
1 0 0 0 1 0
1 0 0 1 0 0
1 0 1 0 0 0
1 0 1 1 0 1
1 1 0 0 0 0
1 1 0 1 0 0
1 1 1 0 0 1
1 1 1 1 0 1


Table 7. Truth table for example 3.







Technique Population size Iterations FFE
MPSO 99 2,000 198,000
PSO 50 4,000 200,000
MGA 330 610 201,300


Table 8. Parameter s adopted for example 3.
FFE = Fitness function evaluations.


approach gates fr eq. feas. avg. # avg. std.
b.s. b.s. circs. gates fitn. dev.


BMPSO 7 10% 50% 18.4 38.6 8.210
EAMPSO 7 65% 100% 7.75 49.25 1.333
EBMPSO 7 90% 100% 7.15 49.85 0.489


BPSO 7 30% 95% 10.05 46.95 4.330
EAPSO 7 40% 70% 13.45 43.55 8.530
EBPSO 7 60% 100% 7.75 49.25 1.160
MGA 7 25% 75% 13.4 43.6 8.090


Table 9. Comparison of the results obtained
by our multiobjective versions of PSO, our
single-objective PSO versions, MGA and
a human designer for the thir d example .
b.s.=best solution.


termsof bothaveragefitness(49.25vs. 43.55)andpercent-
ageof feasiblecircuits produced(100% vs. 70%). Note
that both EBMPSO and EBPSOwere able to find feasi-
ble circuits in all their runs and had similar averagefit-
nesses(49.85vs. 49.25),but the former convergedmore
often to the bestsolution found (90% vs. 60%). In fact,
EBMPSOwasthe bestoverall performerin this example.
Again, the MGA hada poor performancewith respectto
the PSO-basedmulti-objective approaches(EAMPSOand
EBMPSO),althoughit hadabetteraveragefitnessthanboth
BMPSOandEAPSOandwasalsoableto find thecircuit of
7 gatesgeneratedby thePSO-basedapproaches.
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Figure 6. Diagram and boolean expression
corresponding to the best solution found for
example 3.
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Figure 7. Diagram and boolean expression
corresponding to the best solution found for
example 4.


5.4 Example 4


Our fourth examplehas4 inputsand3 outputsasshown
in Table10. Theadditionalparametersadoptedareshown
in Table11. In Table12, we show a comparisonof there-
sultsof all theapproachesadopted.Thebestsolutionfound
for this examplehas7 gatesand is graphicallyshown in
Figure7. In this case,noneof the binary versionsof PSO
wasableto generatefeasiblecircuits. Note that theperfor-
manceof EAPSOwas betterthan that of EAMPSO both
in termsof averagefitness(55.85vs. 53.30)andin terms
of frequency with which thebestsolutionwasfound(10%
vs. 5%). However, EBMPSOhada slightly betterperfor-
mancethanEBPSObothin termsof averagefitness(58.90
vs. 58.75)andin termsof thefrequency with whichthebest
solutionwasfound(35%vs. 15%). Nevertheless,EBPSO
had a slightly betterpercentageof feasiblecircuits found
thanEBMPSO(70% vs. 65%). Although marginally, we
concludethat EBMPSOwasthe bestoverall performerin
this example. The MGA wasnot ableto generatecircuits
with 7 gates,but it foundfeasiblecircuitsmoreconsistently
thanmostof thePSO-basedapproaches.


5.5 Example 5


Our fifth examplehas4 inputsand4 outputs,asshown
in Table13. Theadditionalparametersadoptedareshown
in Table14. In Table15, we show a comparisonof there-
sultsof all theapproachesadopted.Thebestsolutionfound
for this examplehas7 gatesand is graphicallyshown in
Figure8. In this case,noneof the binary versionsof PSO
wasableto producefeasiblecircuits. The performanceof
EAMPSO was considerablybetterthan that of its single-
objective counterpart(EAPSO)both in termsof frequency
of the bestsolution found (30% vs. 10%) as in termsof







D C B A ©,ª © N © \
0 0 0 0 0 0 0
0 0 0 1 0 0 1
0 0 1 0 0 1 0
0 0 1 1 0 1 1
0 1 0 0 0 0 1
0 1 0 1 0 1 0
0 1 1 0 0 1 1
0 1 1 1 1 0 0
1 0 0 0 0 1 0
1 0 0 1 0 1 1
1 0 1 0 1 0 0
1 0 1 1 1 0 1
1 1 0 0 0 1 1
1 1 0 1 1 0 0
1 1 1 0 1 0 1
1 1 1 1 1 1 0


Table 10. Truth table for example 4.


Technique Population size Iterations FFE
MPSO 147 5,000 735,000
PSO 50 14,700 735,000
MGA 490 1,500 735,000


Table 11. Parameter s adopted for example 4.
FFE = Fitness function evaluations.


approach gates fr eq. feas. avg.# avg. std.
b.s. b.s. circs. gates fitn. dev.


BMPSO * 0% 0% * 44.5 1.100
EAMPSO 7 5% 45% 19.7 53.3 8.053
EBMPSO 7 35% 65% 14.1 58.9 8.985


BPSO * 0% 0% * 45.65 1.089
EAPSO 7 10% 55% 17.15 55.85 8.610
EBPSO 7 15% 70% 14.25 58.75 8.123
MGA 8 10% 70% 15.9 57.1 7.490


Table 12. Comparison of the results ob-
tained by our multiobjective versions of PSO,
our single-objective PSO versions, MGA and
a human designer for the four th example .
b.s.=best solution.
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Figure 8. Diagram and boolean expression
corresponding to the best solution found for
example 5.


D C B A ©°ª © N © \ ©,±
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 1
0 1 1 0 0 0 1 0
0 1 1 1 0 0 1 1
1 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0
1 0 1 0 0 1 0 0
1 0 1 1 0 1 1 0
1 1 0 0 0 0 0 0
1 1 0 1 0 0 1 1
1 1 1 0 0 1 1 0
1 1 1 1 1 0 0 1


Table 13. Truth table for example 5.


the percentageof feasiblecircuits found (80% vs. 35%).
EBMPSO had also a better performancethan its single-
objective counterpart(EBPSO)both in termsof frequency
of the bestsolution found (25% vs. 15%) as in termsof
the percentageof feasiblecircuits found (75% vs. 35%).
In this case,the MGA performedbetter than any of the
PSO-basedapproaches,producingthe highestaveragefit-
ness(80.4)with thelowestnumberof fitnessfunctioneval-
uations.Thus,the MGA wasthe bestoverall performerin
this example.


6 Conclusionsand Future Work


In this paper, we have introduceda population-based
PSOapproachto designcombinationallogic circuits. Six
PSO-basedalgorithmswerecompared(usingboth single-
and multi-objective schemesand different encodings).
Also, a population-basedgeneticalgorithm(MGA) wasin-
cluded in the comparison. The results indicate that the







Technique Population size Iterations FFE
MPSO 195 5,000 975,000
PSO 50 19,500 975,000
MGA 650 500 325,000


Table 14. Parameter s adopted for example 5.
FFE = Fitness function evaluations.


approach gates fr eq. feas. avg. # avg. std.
b.s. b.s. circs. gates fitn. dev.


BMPSO * 0% 0% * 60.35 0.7452
EAMPSO 7 30% 80% 11.8 77.2 7.7432
EBMPSO 7 25% 75% 13.15 75.85 8.0934


BPSO * 0% 0% * 60.75 0.6387
EAPSO 7 10% 35% 21.2 67.8 8.9713
EBPSO 7 15% 35% 22.05 66.95 8.64
MGA 7 15% 100% 8.6 80.4 1.14


Table 15. Comparison of the results ob-
tained by our multiobjective versions of PSO,
our single-objective PSO versions, MGA and
a human designer for the fifth example .
b.s.=best solution.


population-basedPSOapproachesproposedperform bet-
ter than the MGA. Also, within the six PSO-basedtech-
niquescompared,thoseadoptingboth multi-objective se-
lection schemesand an Integer B encoding[4] were the
bestoverall performers.Fromtheresults,it canbeclearly
seenthat theuseof binaryPSOis not a goodchoicewhen
designingcombinationallogic circuits,sincein somecases
this sort of encodingwasnot ableto even reachthe feasi-
ble region. Also, the resultsseemto suggestthatPSOis a
bettersearchenginethana geneticalgorithmwhenadopt-
ing thepopulation-basedselectionschemedescribedin this
paper.


As part of our futurework, we areinterestedin explor-
ing alternative encodings(e.g.,graphsandtrees)that have
not beenusedso far in particleswarm optimizers. We are
alsointerestedin studyingsomealternativemulti-objective
selectionschemes(e.g., Paretoranking) in the context of
combinationalcircuit designusingPSO[5].
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Aguirre. Useof EvolutionaryTechniquesto Automatethe
Designof CombinationalCircuits. International Journal
of SmartEngineeringSystemDesign, 2(4):299–314,June
2000.


[3] C. A. CoelloCoelloandA. HerńandezAguirre. Designof
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