June 16, 2004 10:23 WSPC/Trim Size: 9in x 6in for Review Volume chapter5-final

CHAPTER 5

USING A PARTICLE SWARM OPTIMIZER WITH A
POPULATION-BASED SELECTION SCHEME TO DESIGN
COMBINATIONAL LOGIC CIRCUITS

Erika Herndndez Luna and Carlos A. Coello Coello

CINVESTAV-IPN
Evolutionary Computation Group
Dpto. de Ing. Elect./Secc. Computacion
Awv. IPN No. 2508, Col. San Pedro Zacatenco
Mézico, D.F. 07300, MEXICO
E-mail: eluna@computacion.cs.cinvestav.mz
ccoello@cs. cinvestav.mz

In this chapter, we propose the introduction of a multi-objective selection
scheme in a particle swarm optimizer used for designing combinational
logic circuits. The proposed selection scheme is based on the use of sub-
populations to distribute the search effort in a better way within the
particles of the population as to accelerate convergence while improving
the robustness of the algorithm. For our study, we compare six PSO-
based approaches, combining different encodings (integer and binary)
with both single- and multi-objective selection schemes. The comparative
study performed indicates that the use of a population-based approach
combined with an integer encoding improves both the robustness and
quality of results of PSO when designing combinational logic circuits.

1. Introduction

The Particle Swarm Optimization (PSO) algorithm is a biologically-
inspired technique originally proposed by James Kennedy and Russell Eber-
hart 1819 PSO has been successfully used as a (mainly nonlinear) opti-
mization technique and has become increasingly popular mainly due to its
simplicity (in terms of its implementation), its low computational cost and
its good overall performance '°.

The main idea behind PSO is to simulate the movement of a flock
of birds seeking food. In this simulation, the behavior of each individual
gets affected by both an individual and a social factor. Each individual

June 16, 2004 10:23 WSPC/Trim Size: 9in x 6in for Review Volume chapter5-final

2 Herndndez Luna and Coello Coello

(or particle) contains its current position in the search space as well as its
velocity and the best position found by the individual so far '°. As many
other biologically-inspired heuristics, PSO is a population-based approach
that can be defined as P’ = (m(f(P)), where P is the population, which
consists of a set of positions in search space, f is the fitness function that
returns a vector of values that indicate the goodness of each individual,
and m is a manipulation function that generates a new population from the
current population. Such a manipulation function is based on the behavioral
model of insect colonies !.

PSO can be seen as a distributed behavioral algorithm that performs
(in its more general version) multidimensional search. In the simulation, the
behavior of each individual is affected by either the best local (i.e., within
a certain neighborhood) or the best global individual. The approach uses
a population of potential solutions (called “particles”) and a measure of
performance similar to the fitness value used with evolutionary algorithms.
Also, the adjustments of individuals are analogous to the use of a crossover
operator. However, this approach introduces the use of flying potential so-
lutions through hyperspace (used to accelerate convergence). Additionally,
PSO allows individuals to benefit from their past experiences 9.

In this chapter, we propose the use of a multi-objective optimization
technique to design combinational circuits. Our approach is based on some
of our previous research in which a population-based genetic algorithm
was used to design combinational logic circuits ®. The proposal consists
of handling each of the matches between a solution generated by our PSO
approach and the values specified by the truth table as equality constraints.
To avoid the dimensionality problems associated with conventional multi-
objective optimization techniques (such problems are due to the fact that
checking for Pareto dominance is an O(n?) process), we use a population-

based approach similar to the Vector Evaluated Genetic Algorithm (VEGA)
26

2. Problem Statement

The main goal of logic circuit simplification is normally the minimization
of the amount of hardware necessary to build a certain particular system,
since less hardware will normally imply a lower final cost. The problem of
interest to us consists of designing a circuit that performs a desired function
(specified by a truth table), given a certain specified set of available logic
gates. The complexity of a logic circuit is a function of the number of gates

June 16, 2004 10:23 WSPC/Trim Size: 9in x 6in for Review Volume chapter5-final

Using a PSO to Design Combinational Logic Circuits 3

in the circuit. The complexity of a gate generally is a function of the number
of inputs to it. Because a logic circuit is a realization (implementation) of
a Boolean function in hardware, reducing the number of literals in the
function should reduce the number of inputs to each gate and the number
of gates in the circuit—thus reducing the complexity of the circuit. Our
overall measure of circuit optimality is the total number of gates used,
regardless of their kind. This is approximately proportional to the total
part cost of the circuit. Obviously, this sort of analysis must be performed
only for fully functional circuits.

Boolean functions can be simplified through algebraic manipulations.
However, the process is tedious and requires considerable experience from
the human designer as to achieve compact circuits.

As it is known, there are several standard graphical design aids such
as the Karnaugh Maps !7-2°) which are widely used by human designers.
There are also other tools more suitable for computer implementation such
as the Quine-McCluskey Method 2%22, Espresso 2 and MisII ®.

Evolutionary algorithms have been applied to the design of circuits of
different types, and have been found very useful in a wide variety of appli-
cations due to their robustness and exploratory power. The area devoted to
the study and application of evolutionary algorithms to design electronic
circuits is called evolvable hardware 271630, This area has been subdivided
by some authors into two sub-areas 3!:

(1) intrinsic evolution: deals with the design and validations of the circuits
directly in hardware.

(2) eatrinsic evolution: only deals with computer simulations of the circuits
without reaching their actual implementation in hardware.

Within extrinsic evolution, several types of heuristics have been applied
to design combinational logic circuits. For example: genetic programming

23,20,11,4 " ant colony !0, genetic algorithms ®, and, only recently, particle

swarm optimization 138,

Despite the drawbacks of classical combinational circuit design tech-
niques, some of them can handle truth tables with hundreds of inputs,
whereas evolutionary algorithms are restricted to relatively small truth ta-
bles 22. However, the most interesting aspect of evolutionary design is the
possibility of studying its emergent patterns 2%:®. The goals are, therefore,
different when we design circuits using evolutionary algorithms. First, we
aim to optimize circuits (using a certain metric) in a different way, and in-
tuitively, we can think of producing novel designs (since there is no human

June 16, 2004 10:23 WSPC/Trim Size: 9in x 6in for Review Volume chapter5-final

4 Herndndez Luna and Coello Coello

intervention). Such novel designs have been shown in the past 2324515,
Second, it would be extremely useful to extract design patterns from such
evolutionary-generated solutions. This could lead to a practical design pro-
cess in which a small (optimal) circuit is used as a building block to produce
complex circuits. Such a divide-and-conquer approach has also been sug-
gested in the past 28:23,

3. Our Proposed Approach

The first important component of the algorithm proposed in this paper is
the representation adopted to encode a circuit. In our case, we used a bidi-
mensional matrix as in our previous work ® (see Figure 1). More formally,
we can say that any circuit can be represented as a bidimensional array of
gates .S; j, where j indicates the level of a gate, so that those gates closer to
the inputs have lower values of j. (Level values are incremented from left to
right in Figure 1). For a fixed j, the index ¢ varies with respect to the gates
that are “next” to each other in the circuit, but without being necessarily
connected. Each matrix element is a gate (there are 5 types of gates: AND,
NOT, OR, XOR and WIRE?) that receives its 2 inputs from any gate at
the previous column as shown in Figure 1. This sort of encoding was origi-
nally proposed by Louis ?!. The so-called “cartesian genetic programming”
23 also adopts a similar encoding to the matrix previously described.

Using the aforementioned matrix, a logic circuit can be encoded us-
ing either binary or integer strings that correspond to the type of gate
adopted and its inputs. PSO, however, tends to deal with either binary or
real-numbers representation. For our comparative study, we will adopt two
integer representations: (1) Integer A (proposed by Hu et al. 1), and (2)
Integer B (proposed by us).

In the PSO algorithm, the individual factor Pyes; refers to the decisions
that the individual has made so far and that have worked best (in terms of
its performance measure). This value has an impact on its future decisions.
Additionally, the social factor Npes refers to the decisions that the other
individuals (within a certain neighborhood) have made so far and that have
worked best for them. This value will also affect the future decisions of the
individuals in the given neighborhood.

Figure 2 shows the pseudocode of the PSO algorithm that we propose for

2WIRE basically indicates a null operation, or in other words, the absence of gate, and it
is used just to keep regularity in the representation used by our approach that otherwise
would have to use variable-length strings.

June 16, 2004 10:23 WSPC/Trim Size: 9in x 6in for Review Volume chapter5-final

Using a PSO to Design Combinational Logic Circuits 5
—| GATE INPUT 1 INPUT 2
_ T a —
— 1
— _—-> 1
—] L —
4 —
— L
Inputs Outputs

Fig. 1. Encoding used for each of the matrix elements that represent a circuit.

the design of combinational logic circuits. Its main difference with respect to
traditional PSO has to do with the update of the position of the particle in
each of its dimensions (marked with ** in Figure 2). The main procedure for
updating each dimension d of the particle for a traditional binary approach,
an integer A and an integer B approach is shown next:

e Binary approach

if flip[sig(vq)] = 1 then

Copy into the d position of the particle the value 1
else

Copy into the d position of the particle the value 0

e Integer A approach

if flip[sig(vq)] = 1 then
Copy into the d position of the particle the corresponding
value of Npest.

e Integer B approach

if flip[sig(vq)] = 1 then
Copy to the particle the value of Ny in the position d
els if flip[1 - sig(vg)] = 1 then
Copy into the d position of the particle the corresponding

June 16, 2004 10:23 WSPC/Trim Size: 9in x 6in for Review Volume chapter5-final

6 Herndndez Luna and Coello Coello

Randomly initialize the population of particles, P.
Repeat {
For each particle 7 in the population P {
Compute the fitness of the particle PJi]
If the fitness of PJ[i] is better than the fitness of
the best particle found so far P[],
Then update Py using P[i].

For each particle ¢ in P {
Select the particle with the best fitness in the
topological neighborhood of PJ[i]
and update the value of Ny [i]

For each particle 7 in the population P {
Compute the new velocity for each dimension of
the particle
v[i]new = v[i]old +¢1 (ﬁbest[i] — ﬁ[l])-i-
$2(Nbest[i] — P[i])
** Update the position of the particle PJ[q]

}

Apply uniform mutation with a (user given) rate.

} Until reaching the stop condition

Fig. 2. Pseudocode of the PSO algorithm adopted in this work. Note the addition of a
mutation operator.

value of Ppegt.

In all cases, flip[p] returns 1 with a given probability p. The variable
Va refers to the velocity of the particle in the d dimension (i.e., the pre-
disposition to select either of the available choices, which is determined by
a probability value within the range [0.0,1.0]. The function sig normalizes
variable V; and is defined as follows:

1

T 1y exp(—w) @

Both, the Integer A and the Integer B approaches normalize the ve-
locity of each dimension of the particle in the range 0 to 1, so that we can
further determine (in a random way) whether we need to change the current
position or not (this is done with the probability given by the velocity). If
the change is required, then we copy to the particle the value of Ny in
the current position. Otherwise, the Integer A approach leaves the particle

sig(w)

June 16, 2004 10:23 WSPC/Trim Size: 9in x 6in for Review Volume chapter5-final

Using a PSO to Design Combinational Logic Circuits 7

intact. When the change is not required, the Integer B approach checks
again whether is necessary to change the current position, but now using
a probability of 1 — vy, where vy is the current velocity. If the change is
required, then we copy to the particle the value of Py in the position that
we are updating. Otherwise, we leave the particle intact. These two integer
representations are exemplified in Figure 3. As in our previous work &, we
introduce here a mutation operator to our PSO algorithm in order to im-
prove its exploratory power, since this seems necessary when applying this
approach to the design of circuits. Furthermore, in this case, the particles
try to follow the same characteristics of Npest and Presy and could get stuck
in their current position. Thus, the use of a mutation operator is vital in
order to avoid this problem.

Particle
3|12]|6
F(N(v,)) =0 and
o o—————— ———
:F<N(Vd>)=1/i/\(-w(vd»=l
|
\ 3|5]6 : 3]11]6
| |
! 1 | 1
, als|3]] 2|15
:_____'\Eeit___l Pbest
Integer A F = flip function

Integer B

Fig. 3. Example of the two integer representations used for our PSO algorithm.

4. Use of a Multi-objective Approach

The objective function in our case is defined as in our previous work °: it is
the total number of matches (between the outputs produced by an encoded
circuit and the intented values defined by the user in the truth table). For
each match, we increase the value of the objective function by one. If the
encoded circuit is feasible (i.e., it matches the truth table completely), then
we add one (the so-called “bonus”) for each WIRE present in the solution.
Note however, that in this case, we use a multi-objective approach to assign

June 16, 2004 10:23 WSPC/Trim Size: 9in x 6in for Review Volume chapter5-final

8 Herndndez Luna and Coello Coello

fitness. The main idea behind our proposed approach is to use a population-
based multi-objective optimization technique similar to VEGA 26 to handle
each of the outputs of a circuit as an objective (see Figure 4). In other words,
we would have an optimization problem with m equality constraints, where
m is the number of values (i.e., outputs) of the truth table that we aim to
match. So, for example, a circuit with 3 inputs and a single output, would
have m = 23 = 8 values to match. At each generation, the population is
split into m + 1 sub-populations, where m is defined as indicated before
(we have to add one to consider also the objective function). Each sub-
population optimizes a separate constraint (in this case, an output of the
circuit). Therefore, the main mission of each sub-population is to match
its corresponding output with the value indicated by the user in the truth

table.
Old New
Sub-populations Sub-populations
1 f(x) 1 f(x)
2| oM 2 oM
Apply
3 oM 3 oM
. genetic .
i operators .
m+1 o ngx) m+1 0 m(x)

Fig. 4. Graphical representation of the selection scheme approach adopted.

The main issue here is how to handle the different situations that could
arise. Our proposal is the following;:

if 0;(X) #t; then fitness(X) =0
elseifv Z#0 AND 2 € R then fitness = —v
else fitness = f(X)

where 0;(X) refers to the value of output j for the encoded circuit X;
t; is the value specified for output j in the truth table; v is the number
of outputs that are not matched by the circuit X (< m); and R is the

June 16, 2004 10:23 WSPC/Trim Size: 9in x 6in for Review Volume chapter5-final

Using a PSO to Design Combinational Logic Circuits 9

subpopulation whose objective is to match all the output values from the
truth table. Finally, f(X) is the fitness function defined as:

_ [hX) if X is infeasible
f30) = { h(X) + w(X) otherwise 2)

In this equation, h(X) refers to the number of matches between the
circuit X and the values defined in the truth table, and w(X) is the number
of WIREsS in the circuit X. As can be seen, the scheme adopted in this work
is slightly different from the one used by our MGA reported in . The main
reason for adopting this approach is that in our experiments, it produced
more competitive results, improving in most cases the results obtained with
our single-objective PSO, as we will see in the next section.

5. Comparison of Results

The truth tables used to validate our PSO approach were taken from the
specialized literature. In our experimental study, we compared the follow-
ing approaches: a binary multi-objective PSO approach (BMPSO), a PSO
approach using an integer A encoding (EAMPSO), a PSO approach using
an integer B encoding (EBPSO), a binary single-objective PSO (BPSO),
a single-objective PSO approach using integer A encoding (EAPSO), a
single-objective PSO approach using integer B encoding (EBPSO) and the
multi-objective genetic algorithm for circuit design (MGA) ©. For each of
the examples shown, we performed 20 independent runs, and the avail-
able set of gates considered was the following: AND, OR, NOT, XOR and
WIRE. We used a matrix of size 5 x 5 in all cases, except for the second
example for which a 6 x 6 matrix was adopted. The parameters adopted by
both BPSO and BMPSO were the following: ¢y = ¢o = 0.8, Viee = 3.0,
mutation rate P, = 0.1 and neighborhood size = 3. EAPSO, EAMPSO,
EBPSO and EBMPSO used: ¢y = ¢ = 0.2, Vo = 0.4, P, = 0.1 and
neighborhood size = 3. The MGA used P,, = 0.00667 and a crossover rate
= 0.5 (as suggested in).

5.1. Example 1

Our first example has 4 inputs and 1 output, as shown in Table 1. The ad-
ditional parameters adopted by each approach are shown in Table 2. Note
that we attempted to perform the same number of fitness function evalua-
tions with all the approaches compared. In Table 3, we show a comparison

June 16, 2004 10:23 WSPC/Trim Size: 9in x 6in for Review Volume chapter5-final

10 Herndndez Luna and Coello Coello

A@ﬁ S
D C

S=B+(DaA) +(CeDDaA)

Fig. 5. Diagram and Boolean expression corresponding to the best solution found by
our multi-objective PSO approaches for example 1.

of the results of all the approaches adopted. The best solution found for this
example has 6 gates and is graphically shown in Figure 5. Note that both
BMPSO and EBMPSO were able to find a circuit that uses one gate less
than their single-objective counterparts (i.e., BPSO and EBPSO). Never-
theless, the average fitness of both BMPSO and EBMPSO were lower than
the values of their single-objective counterparts. Also note that although
EAMPSO was not able to improve the solutions obtained by EAPSO, its
percentage of feasible circuits increased from 65% to 85%. Also, the aver-
age fitness of EAMPSO was 30.25 compared to the 26.75 value produced
by EAPSO. In this example, the MGA did not perform too well when com-
pared with any of our PSO versions. Its percetange of feasible circuits was
low (35%) and it was not able to find the solution with only 6 gates pro-
duced by some of the PSO approaches. Another interesting fact was that
EBPSO had the best average fitness (31.2), but was not able to produce
circuits with 6 gates. EAMPSQ, in contrast, had the second best average
fitness (30.25), but was able to find circuits with only 6 gates 5% of the
time. Thus, EAMPSO can be considered as the best overall performer in
this example.

The Boolean expression corresponding to the best solution found by a
human designer is: S = (A @ B) ® ((AD)(B+())) + ((A+ C) + D)". This
solution has 9 gates and was generated using Karnaugh maps and Boolean
algebra. This solution has been reported before in the specialized literature
(see 7) and can be used as a reference to compare the results obtained by
our PSO approach. It is worth contrasting the best solution produced by
the human designer with respect to the best solution found by our PSO
approaches which only requires 6 gates.

June 16, 2004 10:23

Using a PSO to Design Combinational Logic Circuits

Table 1.
example 1.

Truth table for

o
Q

H R R H R, R, 00000000
F R, R FP 0000, H~HRLREHOOOO

—FrOoOORHRHOORRROORKHOOIW
—FoOrRrO RO ~ROHRORORORO P

HOFRQOORHREHKRRERFROOORWNM

WSPC/Trim Size: 9in x 6in for Review Volume

chapter5-final

11

Table 2. Parameters adopted for example 1.
Technique | Population size | Iterations | Fitness function evaluations
MPSO 68 1,471 100,028
PSO 50 2,000 100,000
MGA 170 600 102,000

Table 3. Comparison of the results obtained by our multi-objective
versions of PSO, our single-objective PSO versions, MGA and a
human designer for the first example. b.s.=best solution.

approach | gates | freq. | feas. | avg.# | avg. std.
b.s. b.s. circs. | gates fitn. dev.
BMPSO 8 5% 20% 22.8 18.2 | 6.622
EAMPSO 6 5% 85% 10.75 30.25 | 6.680
EBMPSO 6 5% 5% 12.75 28.25 | 7.953
BPSO 9 15% 45% 19.1 21.9 | 7.887
EAPSO 6 5% 65% 14.25 26.75 | 8.902
EBPSO 7 30% 90% 9.8 31.2 | 5.616
MGA 7 15% 35% 19.95 21.05 | 8.929
Human
designer 9 - - - - -

5.2. Example 2

Our second example has 4 inputs and 1 output and its truth table is shown
in Table 4. The additional parameters adopted by each approach are shown

in Table 5.

June 16, 2004 10:23 WSPC/Trim Size: 9in x 6in for Review Volume chapter5-final

12 Herndndez Luna and Coello Coello

S=(CeD)(BaC)+(BaA) e (CaD))

Fig. 6. Diagram and Boolean expression corresponding to the best solution found by
our multi-objective PSO approaches for example 2.

In Table 6, we show a comparison of the results of all the approaches
adopted. The best solution found for this example has 6 gates and is graph-
ically shown in Figure 6. Note that in this example, BPSO had a slightly
better performance than BMPSO (both in terms of average fitness and
in terms of frequency with which the best solution was found). The two
multi-objective algorithms that adopted an integer encoding (EAMPSO
and EBMPSO) showed an excellent performance, being able to find a cir-
cuit with 6 gates (fitness of 35) in every single run (the standard deviation
was zero). This performance is significantly better than that of the single-
objective versions of these two algorithms (EAPSO and EBPSO). Again,
the MGA did not perform too well when compared with any of our PSO
versions. The MGA was not able to produce feasible circuits in all of its
runs, and the best circuit was found only 30% of the time. In this case, both
EAMPSO and EBMPSO were the best overall performers, with an average
fitness of 35 and a standard deviation of zero.

The Boolean expression corresponding to the best solution found by a
human designer is: § = (A®B)®(C®D)+D'(CA)+B(A'D). This solution
has 11 gates and was generated using Karnaugh maps and Boolean algebra.
It is worth contrasting the best solution produced by the human designer
with respect to the best solution found by our PSO approaches which only
requires 6 gates.

5.3. Example 3

Our third example has 5 inputs and 1 output, as shown in Table 7. The
additional parameters adopted by each approach are shown in Table 8. In
Table 9, we show a comparison of the results of all the approaches adopted.

June 16, 2004 10:23 WSPC/Trim Size: 9in x 6in for Review Volume chapter5-final

Using a PSO to Design Combinational Logic Circuits 13

Table 4. Truth table for

example 2.

D C B A |S
0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

Table 5. Parameters adopted for example 2.

Technique | Population size | Iterations | Fitness function evaluations
MPSO 68 1,471 100,028
PSO 50 2,000 100,000
MGA 170 600 102,000

Table 6. Comparison of the results obtained by our multi-objective
versions of PSO, our single-objective PSO versions, MGA and a hu-
man designer for the second example. b.s.=best solution.

approach | gates | freq. feas. avg.# | avg. std.
b.s. b.s. circs. | gates fitn. dev.
BMPSO 6 65% 100% 6.9 34.1 1.3338
EAMPSO 6 100% | 100% 6 35 0
EBMPSO 6 100% | 100% 6 35 0
BPSO 6 75% 100% 6.75 34.25 | 1.6181
EAPSO 6 75% 95% 7.3 33.7 | 4.4615
EBPSO 6 85% 100% 6.15 34.85 | 0.3664
MGA 6 30% 90% 9.3 31.7 | 6.2669
HD 11 - - - - -

The best solution found for this example has 7 gates and is graphically
shown in Figure 7. In this case, none of the binary versions of PSO was
able to produce feasible circuits, which exemplifies the usefulness of adopt-
ing integer encodings in PSO. There were mixed results for the other ap-
proaches. Both EAMPSO and EAPSO found the best solution with the

June 16, 2004 10:23 WSPC/Trim Size: 9in x 6in for Review Volume chapter5-final

14 Herndndez Luna and Coello Coello

%31 :

S=((E+D)Ba®A)(C+ (ED))eB

Fig. 7. Diagram and Boolean expression corresponding to the best solution found by
our multi-objective PSO approaches for example 3.

same frequency (15%), but EAMPSO found feasible circuits 40% of the
time (versus 35% of EAPSO). In terms of average fitness both EAMPSO
and EAPSO had similar results (41.7 vs. 40.45). Thus, we can conclude
that EAMPSO was the best overall performer in this example. Interest-
ingly, EBPSO had both the highest average fitness (41.9) and the highest
percentage of feasible circuits (45%), but was not able to find a circuit with
7 gates. The MGA was able to find circuits with 7 gates, but both its per-
centage of feasible circuits (20%) and its average fitness (36) were low in
comparison with the multi-objective PSO approaches.

The Boolean expression corresponding to the best solution found by a
human designer is: S = B(D'C' + E'(D @ C)) + A(DC + E(D & C)). This
solution has 13 gates and was generated using Karnaugh maps and Boolean
algebra. It is worth contrasting the best solution produced by the human
designer with respect to the best solution found by our PSO approaches
which only requires 7 gates.

5.4. Example

Our fourth example has 4 inputs and 2 outputs as shown in Table 10. The
additional parameters adopted by each approach are shown in Table 11. In
Table 12, we show a comparison of the results of all the approaches adopted.
The best solution found for this example has 7 gates and is graphically
shown in Figure 8. In this case, BPSO produced considerably better results
than its multi-objective counterpart (BMPSO) both in terms of average
fitness (46.95 vs. 38.60) and in terms of percentage of feasible circuits pro-
duced (95% vs. 50%). EAMPSO, however, was able to considerably improve
the results produced by its single-objective counterpart (EAPSO) also in
terms of both average fitness (49.25 vs. 43.55) and percentage of feasible

June 16, 2004 10:23 WSPC/Trim Size: 9in x 6in for Review Volume chapter5-final

Using a PSO to Design Combinational Logic Circuits 15

Table 7. Truth table for ex-
ample 3.

=
o

—F R HH OO0 00O HHRHERPOOOORRLPHRHOOOOR~RHKELOOOODN
P, OO R HOOFRFRPOORHOOHRHRLROORHOORHROORRFR OO
I~~~ OHOHOHROROROROFROROROROHRORORORO|P
—FOH~OFRFOHOHOHOFRFHROOHOFROFRFHOOKHRFLFOOKRKEOOWM

e T T S e S Sy B B = B B S W = Wl W R B B W W =)
F R R R RERERF O 0000000 RHEFHEHHREHRERLODODOOOODOOD

Table 8. Parameters adopted for example 3.

Technique | Population size | Iterations | Fitness function evaluations
MPSO 99 20,000 1,980,000
PSO 50 39,600 1,980,000
MGA 330 6,000 1,980,000

circuits produced (100% vs. 70%). Note that both EBMPSO and EBPSO
were able to find feasible circuits in all their runs and had similar aver-
age fitnesses (49.85 vs. 49.25), but the former converged more often to the
best solution found (90% vs. 60%). In fact, EBMPSO was the best over-

June 16, 2004 10:23 WSPC/Trim Size: 9in x 6in for Review Volume chapter5-final

16 Herndndez Luna and Coello Coello

Table 9. Comparison of the results obtained by our multi-objective
versions of PSO, our single-objective PSO versions, MGA and a hu-
man designer for the third example. b.s.=best solution.

approach | gates | freq. | feas. | avg.# | avg. std.
b.s. b.s. circs. | gates fitn. dev.
BMPSO * 0% 0% * 29.8 0.410
EAMPSO 7 15% 40% 26.3 41.7 | 14.543
EBMPSO 7 5% 20% 32.25 35.75 | 11.461
BPSO * 0% 0% * 29.9 0.308
EAPSO 7 15% 35% 27.55 40.45 | 14.529
EBPSO 8 20% 45% 26.1 419 | 13.619
MGA 8 5% 20% 38 36 13.322
Human
designer 13 - - - - -
Table 10. Truth table for ex-
ample 4.
D C B A| S| S
0 0 0 0 1 0
0 0 0 1 1 0
0 0 1 0 1 0
0 0 1 1 0 0
0 1 0 0 1 0
0 1 0 1 1 0
0 1 1 0 0 0
0 1 1 1 0 0
1 0 0 0 1 0
1 0 0 1 0 0
1 0 1 0 0 0
1 0 1 1 0 1
1 1 0 0 0 0
1 1 0 1 0 0
1 1 1 0 0 1
1 1 1 1 0 1
.
<

So = ((CA)(B + D) + BD)'
S = (CA)(B + D)(BD)

Fig. 8. Diagram and Boolean expression corresponding to the best solution found by
our multi-objective PSO approaches for example 4.

June 16, 2004 10:23 WSPC/Trim Size: 9in x 6in for Review Volume chapter5-final

Using a PSO to Design Combinational Logic Circuits 17

all performer in this example. Again, the MGA had a poor performance
with respect to the PSO-based multi-objective approaches (EAMPSO and
EBMPSO), although it had a better average fitness than both BMPSO and
EAPSO and was also able to find the circuit of 7 gates generated by the
PSO-based approaches.

The Boolean expression corresponding to the best solution found by
a human designer is: S = B'D' + C'A'(D' + B') and S; = BD(A +
(). This solution has 12 gates and was generated using Karnaugh maps
and Boolean algebra. Note that the outputs were solved separately (as
traditionally done when using Karnaugh maps). It is worth contrasting the
best solution produced by the human designer with respect to the best
solution found by our PSO approaches which only requires 7 gates.

Table 11. Parameters adopted for example 4.

Technique | Population size | Iterations | Fitness function evaluations
MPSO 99 2,000 198,000
PSO 50 4,000 200,000
MGA 330 610 201,300
Table 12. Comparison of

the results obtained by our multi-objective versions of PSO, our
single-objective PSO versions, MGA and a human designer for the
fourth example. b.s.=best solution.

approach | gates | freq. | feas. | avg.# | avg. std.
b.s. b.s. circs. | gates fitn. | dev.
BMPSO 7 10% 50% 18.4 38.6 | 8.210
EAMPSO 7 65% 100% 7.75 49.25 | 1.333
EBMPSO 7 90% 100% 7.15 49.85 | 0.489
BPSO 7 30% 95% 10.05 46.95 | 4.330
EAPSO 7 40% 70% 13.45 43.55 | 8.530
EBPSO 7 60% 100% 7.75 49.25 | 1.160
MGA 7 25% 75% 13.4 43.6 | 8.090
Human
designer 12 - - - - -

5.5. Example 5

Our fifth example has 4 inputs and 3 outputs as shown in Table 13. The
additional parameters adopted by each approach are shown in Table 14. In
Table 15, we show a comparison of the results of all the approaches adopted.

June 16, 2004 10:23 WSPC/Trim Size: 9in x 6in for Review Volume chapter5-final

18 Herndndez Luna and Coello Coello

w O

A
Sl
c
s

2

So=(AC® (Ba D)) (Da AC) + (Ba® D))
Si=AC®(B@®D); S=CoA

Fig. 9. Diagram and Boolean expression corresponding to the best solution found by
our multi-objective PSO approaches for example 5.

The best solution found for this example has 7 gates and is graphically
shown in Figure 9. In this case, none of the binary versions of PSO was
able to generate feasible circuits. Note that the performance of EAPSO
was better than that of EAMPSO both in terms of average fitness (55.85
vs. 53.30) and in terms of frequency with which the best solution was found
(10% vs. 5%). However, EBMPSO had a slightly better performance than
EBPSO both in terms of average fitness (58.90 vs. 58.75) and in terms
of the frequency with which the best solution was found (35% vs. 15%).
Nevertheless, EBPSO had a slightly better percentage of feasible circuits
found than EBMPSO (70% vs. 65%). Although marginally, we conclude
that EBMPSO was the best overall performer in this example. The MGA
was not able to generate circuits with 7 gates, but it found feasible circuits
more consistently than most of the PSO-based approaches.

The Boolean expression corresponding to the best solution found by a
human designer is: So = (AC)(B®D)+BD, S; =C'(B&D)+C(A®(Ba®
D)) and S; = A ® C'. This solution has 11 gates and was generated using
Karnaugh maps and Boolean algebra. Note that the outputs were solved
separately. It is worth contrasting the best solution produced by the human
designer with respect to the best solution found by our PSO approaches
which only requires 7 gates.

June 16, 2004 10:23 WSPC/Trim Size: 9in x 6in for Review Volume chapter5-final

Using a PSO to Design Combinational Logic Circuits 19

Table 13. Truth table for example 5.

D C B A | Sy S1 So

0 0 0 0 0 0 0

0 0 0 1 0 0 1

0 0 1 0 0 1 0

0 0 1 1 0 1 1

0 1 0 0 0 0 1

0 1 0 1 0 1 0

0 1 1 0 0 1 1

0 1 1 1 1 0 0

1 0 0 0 0 1 0

1 0 0 1 0 1 1

1 0 1 0 1 0 0

1 0 1 1 1 0 1

1 1 0 0 0 1 1

1 1 0 1 1 0 0

1 1 1 0 1 0 1

1 1 1 1 1 1 0

Table 14. Parameters adopted for example 5.
Technique | Population size | Iterations | Fitness function evaluations
MPSO 147 5,000 735,000
PSO 50 14,700 735,000
MGA 490 1,500 735,000
Table 15. Comparison of

the results obtained by our multi-objective versions of PSO, our
single-objective PSO versions, MGA and a human designer for the
fifth example. b.s.=best solution.

approach | gates | freq. | feas. | avg.# | avg. std.
b.s. b.s. circs. | gates fitn. | dev.
BMPSO * 0% 0% * 44.5 | 1.100
EAMPSO 7 5% 45% 19.7 53.3 | 8.053
EBMPSO 7 35% 65% 14.1 58.9 | 8.985
BPSO * 0% 0% * 45.65 | 1.089
EAPSO 7 10% 55% 17.15 55.85 | 8.610
EBPSO 7 15% 70% 14.25 58.75 | 8.123
MGA 8 10% 70% 15.9 57.1 | 7.490
Human
designer 11 - - - - -

5.6. Example 6

Our sixth example has 4 inputs and 4 outputs, as shown in Table 16. The
additional parameters adopted by each approach are shown in Table 17. In

June 16, 2004 10:23 WSPC/Trim Size: 9in x 6in for Review Volume chapter5-final

20 Herndndez Luna and Coello Coello

[+

JUL

E
n
~

So = (CA)(DB); S3 =CA
S, = DB & (CA)(DB); Sy = DA@® BC

Fig. 10. Diagram and Boolean expression corresponding to the best solution found by
our multi-objective PSO approaches for example 6.

Table 18, we show a comparison of the results of all the approaches adopted.
The best solution found for this example has 7 gates and is graphically
shown in Figure 10. In this case, none of the binary versions of PSO was able
to produce feasible circuits. The performance of EAMPSO was considerably
better than that of its single-objective counterpart (EAPSO) both in terms
of frequency of the best solution found (30% vs. 10%) as in terms of the
percentage of feasible circuits found (80% vs. 35%). EBMPSO had also a
better performance than its single-objective counterpart (EBPSO) both in
terms of frequency of the best solution found (25% vs. 15%) as in terms of
the percentage of feasible circuits found (75% vs. 35%). In this case, the
MGA performed better than any of the PSO-based approaches, producing
the highest average fitness (80.4) with the lowest number of fitness function
evaluations. Thus, the MGA was the best overall performer in this example.

The Boolean expression corresponding to the best solution found by a
human designer is: So = (DC)(BA), S1 = (DB)(CA)', S, = CB® DA
and S3 = C'A. This solution has 8 gates and was reported in 7, where a
multi-objective genetic algorithm was used. It is worth noticing that the
best solution found by our PSO approaches uses only 7 gates.

6. Conclusions and Future Work

In this chapter, we have introduced a population-based PSO approach (sim-
ilar to VEGA 26) to design combinational logic circuits. We have also pre-
sented a study in which six PSO-based algorithms were compared (using
both single- and multi-objective schemes and different encodings). Also, a

June 16, 2004 10:23

Using a PSO to Design Combinational Logic Circuits

WSPC/Trim Size: 9in x 6in for Review Volume

chapter5-final

21

Table 16. Truth table for example 6.
D C B A | Sy |S1|S2| Ss
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 1
0 1 1 0 0 0 1 0
0 1 1 1 0 0 1 1
1 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0
1 0 1 0 0 1 0 0
1 0 1 1 0 1 1 0
1 1 0 0 0 0 0 0
1 1 0 1 0 0 1 1
1 1 1 0 0 1 1 0
1 1 1 1 1 0 0 1
Table 17. Parameters adopted for example 6.
Technique | Population size | Iterations | Fitness function evaluations
MPSO 195 5,000 975,000
PSO 50 19,500 975,000
MGA 650 500 325,000

Table 18. Comparison of the results obtained by our multi-objective
versions of PSO, our single-objective PSO versions, MGA and a hu-
man designer for the sixth example. b.s.=best solution.

approach | gates | freq. | feas. | avg.# | avg. std.
b.s. b.s. circs. | gates fitn. dev.
BMPSO * 0% 0% * 60.35 | 0.7452
EAMPSO 7 30% 80% 11.8 77.2 | 7.7432
EBMPSO 7 25% 75% 13.15 75.85 | 8.0934
BPSO * 0% 0% * 60.75 | 0.6387
EAPSO 7 10% 35% 21.2 67.8 | 8.9713
EBPSO 7 15% 35% 22.05 66.95 8.64
MGA 7 15% 100% 8.6 80.4 1.14
Human
designer 8 - - - - -

population-based genetic algorithm (MGA) was included in the compari-
son, since we were interested in analyzing the effect of the search engine
adopted in the quality and consistency of the results obtained. The results
obtained clearly indicate that the population-based PSO approaches pro-
posed perform better than the MGA.

June 16, 2004 10:23 WSPC/Trim Size: 9in x 6in for Review Volume chapter5-final

22 Herndndez Luna and Coello Coello

Within the six PSO-based techniques compared, it was clear that the
approaches that adopted both a multi-objective selection scheme and an
Integer B encoding ® were the best overall performers. The results also
suggest that the use of binary PSO for designing combinational logic circuits
is not advisable, since this sort of approach had difficulties even for reaching
the feasible region in some cases. An interesting outcome of our study is
that we found that PSO acts as a better search engine than a genetic
algorithm when adopting a population-based selection scheme for designing
combinational logic circuits.

As part of our future work, we are interested in exploring alternative en-
codings (e.g., graphs and trees) that have not been used so far with particle
swarm optimizers '°. We are also interested in studying some alternative
multi-objective selection schemes (e.g., Pareto ranking !2) in the context of
combinational circuit design using PSO °.

Acknowledgements

The first author acknowledges support from CONACyT through a scholar-
ship to pursue graduate studies at the Computer Science Section of the Elec-
trical Engineering Department at CINVESTAV-IPN. The second author
gratefully acknowledges support from CONACyT through project 42435-
Y.

References

1. Peter J. Angeline. Evolutionary optimization versus particle swarm optimiza-
tion: philosophy and performance differences. In Waagen D. Porto V.W.,
Saravanan N. and Eiben A.E., editors, Evolutionary Programming VII: Pro-
ceedings of the Seventh Annual Conference on Evolutionary Programming,
pages 611-618. Springer, 1998.

2. R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L. Sangiovanni-
Vincentelli. Logic Minimization Algorithms for VLSI Synthesis. Kluwer Aca-
demic Publishers, Dordrecht, The Netherlands, 1984.

3. R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. R. Wang. MIS:
A multiple-level logic optimization system. IEEE Transactions on Computer-
Aided Design, CAD-6 (6):1062-1081, November 1987.

4. Bill P. Buckles, Arturo Hernandez Aguirre, and Carlos Coello Coello. Circuit
design using genetic programming: An illustrative study. In Proceedings of the
10th NASA Symposium on VLSI Design, pages 4.1-1-4.1-10, Albuquerque
NM, 2002.

5. Carlos A. Coello Coello, Alan D. Christiansen, and Arturo Herndndez
Aguirre. Use of Evolutionary Techniques to Automate the Design of Combi-

June 16, 2004 10:23 WSPC/Trim Size: 9in x 6in for Review Volume chapter5-final

10.

11.

12.

13.

14.

15.

16.

Using a PSO to Design Combinational Logic Circuits 23

national Circuits. International Journal of Smart Engineering System Design,
2(4):299-314, June 2000.

Carlos A. Coello Coello and Arturo Herndndez Aguirre. Design of combi-
national logic circuits through an evolutionary multiobjective optimization
approach. Artificial Intelligence for Engineering, Design, Analysis and Man-
ufacture, 16(1):39-53, January 2002.

Carlos A. Coello Coello, Arturo Herndndez Aguirre, and Bill P. Buckles. Evo-
lutionary Multiobjective Design of Combinational Logic Circuits. In Jason
Lohn, Adrian Stoica, Didier Keymeulen, and Silvano Colombano, editors,
Proceedings of the Second NASA/DoD Workshop on Ewvolvable Hardware,
pages 161-170. IEEE Computer Society, Los Alamitos, California, July 2000.
Carlos A. Coello Coello, Erika Herndndez Luna, and Arturo Herndndez
Aguirre. Use of particle swarm optimization to design combinational logic cir-
cuits. In Pauline C. Haddow Andy M. Tyrell and Jim Torresen, editors, Evolv-
able Systems: From Biology to Hardware. 5th International Conference, ICES
2003, pages 398-409, Trondheim, Norway, 2003. Springer, Lecture Notes in
Computer Science Vol. 2606.

Carlos A. Coello Coello, David A. Van Veldhuizen, and Gary B. Lamont.
Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Aca-
demic Publishers, New York, May 2002. ISBN 0-3064-6762-3.

Carlos A. Coello Coello, Rosa Laura Zavala Gutiérrez, Benito Mendoza
Garcia, and Arturo Herndndez Aguirre. Automated Design of Combinational
Logic Circuits using the Ant System. Engineering Optimization, 34(2):109-
127, March 2002.

Edgar Galvdn Lépez, Riccardo Poli, and Carlos A. Coello Coello. Reusing
Code in Genetic Programming. In Genetic Programming, 7th European
Conference, EuroGP’2004, pages 359-368, Coimbra, Portugal, April 2004.
Springer. Lecture Notes in Computer Science. Volume 3003.

David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison Wesley, Reading, MA, 1989.

Venu G. Gudise and Ganesh K. Venayagamoorthy. Evolving digital circuits
using particle swarm. In Proceedings of the NNS-IEEE International Joint
Conference on Neural Networks, pages 468-472; Portland, OR, USA, 2003.
Xiaohui Hu, Russell C. Eberhart, and Yuhui Shi. Swarm intelligence for per-
mutation optimization: a case study on n-queens problem. In Proceedings of
the IEEE Swarm Intelligence Symposium 2008 (SIS 2003), pages 243-246,
Indianapolis, Indiana, USA., 2003.

Eduardo Islas Pérez, Carlos A. Coello Coello, and Arturo Herndndez Aguirre.
Extraction of Design Patterns from Evolutionary Algorithms using Case-
Based Reasoning. In Yong Liu, Kiyoshi Tanaka, Masaya Iwata, Tetsuya
Higuchi, and Moritoshi Yasunaga, editors, Evolvable Systems: From Biology
to Hardware (ICES’2001), pages 244-255. Springer-Verlag. Lecture Notes in
Computer Science No. 2210, October 2001.

Tatiana Kalganova. A new evolutionary hardware approach for logic design.
In Annie S. Wu, editor, Proc. of the GECCO’99 Student Workshop, pages
360-361, Orlando, Florida, USA, 1999.

June 16, 2004 10:23 WSPC/Trim Size: 9in x 6in for Review Volume chapter5-final

24

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Herndndez Luna and Coello Coello

M. Karnaugh. A map method for synthesis of combinational logic circuits.
Transactions of the AIEE, Communications and Electronics, 72 (I):593-599,
November 1953.

James Kennedy and Russell C. Eberhart. Particle Swarm Optimization. In
Proceedings of the 1995 IEEE International Conference on Neural Networks,
pages 1942-1948, Piscataway, New Jersey, 1995. IEEE Service Center.
James Kennedy and Russell C. Eberhart. Swarm Intelligence. Morgan Kauf-
mann Publishers, San Francisco, California, 2001.

John R. Koza. Genetic Programming. On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, Massachusetts, 1992.
Sushil J. Louis. Genetic Algorithms as a Computational Tool for Design. PhD
thesis, Department of Computer Science, Indiana University, August 1993.
E. J. McCluskey. Minimization of boolean functions. Bell Systems Technical
Journal, 35 (5):1417-1444, November 1956.

Julian F. Miller, Dominic Job, and Vesselin K. Vassilev. Principles in the
Evolutionary Design of Digital Circuits—Part 1. Genetic Programming and
Evolvable Machines, 1(1/2):7-35, April 2000.

Julian F. Miller, Tatiana Kalganova, Natalia Lipnitskaya, and Dominic Job.
The Genetic Algorithm as a Discovery Engine: Strange Circuits and New
Principles. In Proceedings of the AISB Symposium on Creative Evolutionary
Systems (CES’99), Edinburgh, Scotland, April 1999.

W. V. Quine. A way to simplify truth functions. American Mathematical
Monthly, 62 (9):627-631, 1955.

J. David Schaffer. Multiple Objective Optimization with Vector Evaluated
Genetic Algorithms. In Genetic Algorithms and their Applications: Proceed-
ings of the First International Conference on Genetic Algorithms, pages 93—
100. Lawrence Erlbaum, 1985.

Peter J. Bentley Timothy G. W. Gordon. On evolvable hardware. In Seppo J.
Ovaska and Les m Sztandera, editors, Soft Computing in Industrial Electron-
ics, pages 279-323, Heidelberg, 2002. Eds,.Physica-Verlag.

Jim Torresen. A Divide-and-Conquer Approach to Evolvable Hardware. In
Moshe Sipper, Daniel Mange, and Andrés Pérez-Uribe, editors, Proceedings of
the Second International Conference on Evolvable Systems (ICES’98), pages
57-65, Lausanne, Switzerland, 1998. Springer-Verlag.

E. W. Veitch. A Chart Method for Simplifying Boolean Functions. Proceed-
ings of the ACM, pages 127-133, May 1952.

Xin Yao and Tetsuya Higuchi. Promises and Challenges of Evolvable Hard-
ware. In Tetsuya Higuchi, Masaya Iwata, and W. Liu, editors, Proceedings
of the First International Conference on Evolvable Systems: From Biology to
Hardware (ICES’96), Lecture Notes in Computer Science, Vol. 1259, pages
55-78, Heidelberg, Germany, 1997. Springer-Verlag.

Ricardo S. Zebulum, M. A. Pacheco, and M. Vellasco. Evolvable Systems
in Hardware Design: Taxonomy, Survey and Applications. In T. Higuchi and
M. Iwata, editors, Proceedings of the First International Conference on Evolv-
able Systems (ICES’96), pages 344-358, Berlin, Germany, 1997. Springer-
Verlag.

