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ABSTRACT 
A method is presented for synthesizing multi-component 


structural assemblies with maximum structural performance 
and manufacturability. The problem is posed as a relaxation of 
decomposition-based assembly synthesis [1,2,3], where both 
topology and decomposition of a structure are regarded as 
variables over a ground structure with non-overlapping beams. 
A multi-objective genetic algorithm [4,5] with graph-based 
crossover [6,7,8], coupled with FEM analyses, is used to obtain 
Pareto optimal solutions to this problem, exhibiting trade-offs 
among structural stiffness, total weight, component 
manufacturability (size and simplicity), and the number of 
joints. Case studies with a cantilever and a simplified 
automotive floor frame are presented, and representative 
designs in the Pareto front are examined for the trade-offs 
among the multiple criteria. 


INTRODUCTION 
Most structural products have complex geometry to meet 


customer’s demand of high functionality with enhanced 
structural stability. However, manufacturing those products in 
one piece requires sophisticated methods of process that will 
increase the total production cost. For this reason, most 
structural products are multi-component structures: they are 
made of number of components and these components are 
assembled into the final structure. Designing a multi-
component structural product often requires designers to 
decompose overall product geometry at some point during the 
design process. The decomposition will determine the 
component set to be assembled into the final product. 


For instance, automotive industry utilizes a handful of 
basic decomposition schemes of a vehicle taking into account 
of geometry, functionality, and manufacturing issues. However, 
those decomposition schemes are usually non-systematic and 
have remained more or less unchanged for decades. This is 
because the desired form, functionality, materials, joining 
methods and overall weight distribution of mass-production 
vehicles have not changed much for decades. However, the 
conventional decomposition schemes may no longer be valid 
for the vehicles with new technologies such as space frame, 
ultra-light weight materials, and fuel cell or battery powered 
motors, which would require dramatically different structural 
properties, weight distribution, and packaging requirements. 
This motivates the development of a systematic decomposition 
methodology presented in this paper. 


In our previous work [1,2,3], we have termed assembly 
synthesis as the decision of which component set can achieve a 
desired function of the end product when assembled together, 
and assembly synthesis is achieved by the decomposition of 
product geometry. Since assembly process generally accounts 
for more than 50% of manufacturing costs and also affects the 
product quality [9], assembly synthesis would have a large 
impact on the quality and cost of the end product. In [3], we 
proposed a systematic method for decomposing a given product 
geometry considering the structural stiffness of the end product, 
where joints are modeled as torsional springs. During the work, 
it was observed that the structural integrity (e.g. stiffness) of 
the end-product is heavily influenced by the choice of a 
particular decomposition, as well as the given topology of the 
structure provided as an input of decomposition. This 
observation led us to a natural relaxation of the problem where 
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both topology and decomposition of a structure are regarded as 
variable. This is the problem addressed in the present paper. 


In this paper, topology and decomposition of a structure 
are simultaneously optimized over a ground structure with non-
overlapping beams, for overall structural performance and 
manufacturability. As in [3], the joints between components are 
modeled as torsional springs. A multi-objective genetic 
algorithm with graph-based crossover, coupled with FEM 
analyses, is used to obtain Pareto optimal designs, exhibiting 
trade-offs among structural stiffness, total weight, component 
manufacturability (size and simplicity), and the number of 
joints. Case studies with a cantilever and a simplified 
automotive floor frame are presented, and representative 
designs in the Pareto front are examined for the trade-offs 
among the multiple criteria. 


RELATED WORK 


Structural topology optimization 
Structural optimization can be classified into tree 


categories: topology optimization, shape optimization, and size 
optimization [10]. Among these tree categories, topology 
optimization is considered as the most general optimization 
problem with largest design space that can produce solutions 
with no prior assumptions. As one of the topology optimization 
methods, ground structure approach was first proposed by Dorn 
et al [11]. In the ground structure approach, optimal 
substructures can be found as a subset of predefined exhaustive 
set of discrete beam elements in an extended design domain 
(i.e., ground structure). Extensive researches have been done to 
develop numerical methods for the topology design using 
ground structures: layout theory for frames and flexural 
systems [12,13], an approach using branch and bound 
algorithm [14], simulated annealing [15], and genetic algorithm 
[16]. More detailed development on the ground structure 
approach can be found in [17,18]. 


Another class of topology optimization method assumes 
structures made from solid continuum, rather than from discrete 
beams, where topology optimization problem is formulated as a 
material distribution problem within an extended design 
domain. Homogenization Design Method (HMD) is a 
representative of such “continuum-based” topology 
optimization methods [19], where material inside an extended 
design domain is treated as a composite material made of 
microstructures consisting of material and void. HMD has been 
applied to a broad range of problems including multiple 
loading problems [20], compliant mechanism design problems 
[21], multiple constraints problems [22], and topology 
optimization problems with composite material [23]. More 
closely related to the present work, several researchers 
investigated the homogenization-based topology optimization 
of multi-component structures [24,25,26,27]. These 
approaches, however, requires overlapping extended design 
domains for each component and each joint as a predefined 
input. 


Design for assembly and assembly sequence design 
Boothroyd and Dewhurst [28] are widely regarded as 


major contributors in the formalization of design for assembly 
(DFA) concept. In their work [29], assembly costs are first 
reduced by the reduction of part count, followed by the local 
design changes of the remaining parts to enhance their 
assembleability and manufacturability. This basic approach is 
adopted by most subsequent works on DFA. Many researchers 
have investigated the integration of DFA and assembly 
sequence planning [30, 31], where assembly sequence planning 
is proposed as the enumeration of geometrically feasible cut-
sets of a liaison graph, an undirected graph representing the 
connectivity among components in an assembly. In order to 
improve the quality of the best assembly sequence, usually 
local design changes are made to the components These works, 
however, focus on the local design changes of a given assembly 
design (i.e., already “decomposed” product design with “given” 
topology), and have less emphasis on how to synthesize an 
assembly to start with. 


APPROACH 
This section describes our method for synthesizing multi-


component structural assemblies with maximum structural 
performance and manufacturability. Topology of a structure is 
represented as a subset of a ground structure consisting of an 
exhaustive set of non-overlapping beams (we call them basic 
members) within a given design domain. Joints within a 
structure are modeled as torsional springs, which can be placed 
only at the intersections of basic members in the ground 
structure. Joints are assumed to be less stiff than the beam 
elements and therefore reduce the overall structural rigidity.  


Topology of a ground structure can be represented by 
ground topology graph G0 = (V0, E0) with node set V0 of the 
basic members and edge set E0 of the intersections of the basic 
members (i.e., potential joint locations in the ground structure). 
Similarly, we represent the topology of a multi-component 
structural by product topology graph G = (V, E, J), a subgraph 
of G0 augmented with joint set J E⊆  specifying the location 
of joints. Using these notations, the following steps outline the 
approach: 


 
1. Given a design domain with boundary and loading 


conditions (Figure 1 (a)), define the ground structure 
(Figure 1 (b)). 


2. Construct the ground topology graph G0 = (V0, E0) for the 
ground structure (Figure 1 (c)). 


3. Using an optimization algorithm (Figure 1 (d)), obtain the 
product topology graph G = (V, E, J) that gives the best 
structural performance and manufacturability, (Figure 1 
(e)). 


4. Construct the multi-component structure corresponding to 
G (Figure 1 (f)). 
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Figure 1. Outline of the approach. (a) Design domain, (b) 
ground structure consisting of basic members and 
potential joint locations, (c) ground topology graph G0, (d) 
optimization, (e) best product topology graph G (subgraphs 
representing components are annotated as C1-C3, and 
edges in joint set J is shown in dashed lines), and (f) 
optimal multi-component structure. 


Definition of design variables 
In order to uniquely specify a product topology graph G = 


(V, E, J), two binary vectors x and y are defined as design 
variables. Topology vector x represents the existence of each 
basic member (a node in ground topology graph G0) in a multi-
component structure represented by product topology graph G: 


 
x = (x0, x1, … , xi, …, xn-2, xn-1)           (1) 


 
where n = |V0| and  
 


1 if basic member  exisits in the structure


0 otherwise                                             i


i
x =







 


 
For a given x, therefore, node set V of G can be written as: 
 


0{ | 1}i iV n V x= ∈ =    (2) 
 
and edge set E as: 
 


0{ | { , } , },E e e u v E u V v V= = ∈ ∈ ∈  (3) 
 
In Figure 1 (e), for example, the gray nodes indicate the 
corresponding basic members with xi = 0.  


Decomposition vector y represents the non-existence of a 
joint (in other words, the existence of a solid connection) at 
each intersection of basic members (an edge in ground 
topology graph G0) in a multi-component structure represented 
by product topology graph G: 


 
y = (y0, y1, … , yi, …, ym-2, ym-1)           (4) 


 
where m = |E0| and  
 


0 if a joint exisits in the structure at intersection 


1 otherwise                                                        i


i
y =







 


 
Naturally, joint set J of G for a given y can be written as:  
 


{ | , 0}i i iJ e e E y= ∈ =    (5) 
 
In Figure 1 (e), for example, the edges in dashed lines indicate 
joints, i.e., the intersections with yi = 0. The value of yi is 
simply ignored if the corresponding intersection does not exist 
in the structure, i.e., if edge ie E∉ . In Figure 1 (e), the values 
of yi are ignored for the intersections corresponding to the 
edges in gray lines.  


 
Figure 2.  Multi-component structures represented by 
topology vector x and decomposition vector y. 
 


Figure 2 illustrates examples of topology and 
decomposition represented by x and y. Figure 2 (a) shows a  
one-component structure identical to the ground structure with 
8 nodes V = {n0, n1, … , n7} and 18 edges E = {e0, e1, …, e17}. 
In this case, the corresponding topology vector is x = (x0, x1, 
…, x7) = (1,1,1,1,1,1,1,1) and decomposition vector is y = (y0, 
y1, …, y17) = (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1). Figure 2 (b) 
illustrates a one-component structure represented by topology 
vector x = (0,0,0,1,1,0,1,1), which can be obtained by removing 
basic members with xi = 0 from the ground structure. Since this 
structure is made of one component, the topology vector should 
be of the form y = (*, *, *, *, *, *, *, *, *, *, 1, 1,*, *,1,1,1,*), 
where symbol * means either zero or one, corresponding to the 
ignored edges shown in gray lines. Figure 2 (c) shows a 
decomposition of the structure in Figure 2 (b) into two 
components c0 and c1, represented by decomposition vector y 
= (*,*, *, *, *, *, *, *, *, *, 1,0,*,*,0,0,1,*). Since y11, y14 and 
y15 are 0, corresponding edges e11, e14 and e15 are shown in 
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dotted lines, indicating the existence of joints (torsional 
springs) at the corresponding intersections. 
 


 
Figure 3. Constraints for feasible topology. (a) feasible 
structure, (b) infeasible structure violating Connectivity 
Constraint 1, (c) points considered in Connectivity 
Constraint 2. A: boundary condition, B: loading, and C: 
displacement, (d) infeasible topology violating Connectivity 
Constraint 2 (point A not connected), and (e) infeasible 
topology violating Connectivity Constraint 2 (point B-C not 
connected).  


Definition of constraints 
Topology of the structure defined by the topology vector x 


must satisfy the following constraints to avoid infeasible 
topologies as a mechanical structure: 


 
 Connectivity Constraint 1: All beams should be 


connected to at least one other beam element, i.e., product 
topology graph G should be connected (Figures 3 (a) and 
(b)). 
 


 Connectivity Constraint 2: The following points should 
be connected to at least one beam element (Figures 3 (c), 
(d), and (e)):  


– points at which boundary conditions are defined; 
– points at which loads are applied; 
– points at which displacements are measured for 


the evaluation of structural performance. 
 


Connectivity Constrains 1 can be formally written as: 
 


IS_CONNECTED(GRAPH(x, y1)) = TRUE  (6) 
 
where x is a topology vector and y1 is the decomposition vector 
with all components equal to one, GRAPH(x, y) is a function 
that returns the product topology graph specified by x and y, 
and IS_CONNECTED(G) is a function that checks the 
connectivity of product topology graph G. Connectivity 
Constraint 2 can be written as: 


 


1 1 1


0
BP LP DP


BP LP DPi i i


N N N


j j j
j S j S j Si i i


x x x
∈ ∈ ∈= = =


⋅ ⋅ ≠
     
     
     


∑ ∑ ∑∏ ∏ ∏  (7) 


 
where NBP, NLP, and NDP are the number of points at which 
boundary conditions are defined, loads are applied, and 
displacements are measured, respectively. SBPi, SLPi, and SDPi 
are sets of the indices of basic members attached to the ith point 
at which boundary conditions are defined, loads are applied, 
and displacements are measured, respectively. 


Definition of objective functions 
A multi-component structure represented by a topology 


vector x and a decomposition vector y is evaluated according to 
the following four criteria: 1) stiffness of the structure, 2) 
weight of the structure, 3) manufacturability of each component 
in the structure, and 4) numbers of joints (torsional springs) in 
the structure. 


Stiffness of a structure can be measured as the negative of 
the displacement at predefined points in the structure: 
 


fstiffness = -DISPLACEMENTS(GRAPH(x, y))     (8) 
 
where DISPLACEMENTS(G) is a function that returns the 
total displacements at predefined points in the structure 
represented by product topology graph G, using finite element 
analyses. 


Weight of a structure can be calculated as the inner product 
of topology vector x and vector w of the weights of the basic 
members in the ground structure: 
 


fweight = •w x     (9) 
 


Manufacturability of components (to be maximized) is 
evaluated considering the total cost of producing components 
in the structure (to be minimized) represented by a product 
topology graph GRAPH(x, y). It is assumed the components 
are made from sheet metals working, whose cost is estimated as 
the cost of stamping and blanking dies. The die costs consist of 
die set cost and die machining cost, which are functions of die 
usable area Au and shearing perimeter P, respectively [29]. For 
each component, Au is approximated as the convex hull area of 
given component and P is calculated as the outer perimeter of 
the component. Hence, larger size of the component results in 
higher value of Au requiring larger die set with higher cost. 
Also, complex geometry of component increases P value 
accompanied by higher die machining cost. 


Following equation is used to calculate manufacturability 
of a structure: 
 


fmanufac = Wau(1-Au(GRAPH(x, y)) 
+Wp(1-P(GRAPH(x, y))      (10) 


 


(a) (b) 


(c) 
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where Au(G) and P(G) calculate the normalized die usable area 
and normalized shearing perimeter of the components in the 
structure represented by G, respectively, and Wau and Wp are the 
weighting factors. Qualitatively, maximizing fmanufac would 
result in a structure consisting of components in smaller sizes 
and in simpler geometries.  


Components are assumed to be joined with spot welds. 
Since the cost of spot welding for a structure is proportional to 
the number of weld spots in the structure, and the number of 
weld spots in a joint is approximately proportional to the 
torsional stiffness of the joint, the welding cost is estimated by 
the sum of the rates of torsional springs [Nm/rad] in the finite 
element model of the structure: 
 


fspringrate = SPRINGRATE(GRAPH(x, y))    (11) 
 
where TOTALSPRINGRATE(G) calculates the sum of the 
spring rates in FE model defined by graph G. 


In summary, the multi-objective optimization problem to 
be solved can be stated as follows: 
 


maximize fstiffness = -DISPLACEMENTS(GRAPH(x, y)) 
minimize  fweight = •w x  
maximize  fmanufac = Wau(1 - Au(GRAPH(x, y)) 


+Wp(1 - P(GRAPH(x, y)) 
minimize  fspringrate = SPRINGRATE(GRAPH(x, y)) 
 
subject to 
 IS_CONNECTED(GRAPH(x, y1)) = TRUE 


1 1 1


0
BP LP DP


BP LP DPi i i


N N N


j j j
j S j S j Si i i


x x x
∈ ∈ ∈= = =


⋅ ⋅ ≠
     
     
     


∑ ∑ ∑∏ ∏ ∏  


 0 0| | | |{0,1} , {0,1}V E∈ ∈x y  


Optimization Algorithm 
Due to the multi-objective formulation (as opposed to, e.g., 


weighted sum of multiple objectives) and the complexity of the 
underlying graph partitioning problem [32], the above 
optimization problem is solved using a multi-objective genetic 
algorithm (MOGA) [4,5], whose basic steps [5] are outlined 
below: 
 
1. Create a population P of n chromosomes (an encoded 


representation of design variables) and evaluate their 
values of objective functions.  


2. Rank each chromosome c in P according to the number of 
other chromosomes dominating c in Pareto sense (rank 0 is 
Pareto optimal). Store the chromosomes with rank 0 into 
set O. Also, create an empty subpopulation Q. 


3. Select two chromosomes ci and cj in P with probability 
proportional to n-rank(ci) and n-rank(cj). 


4. Crossover ci and cj to generate two new chromosomes ci’ 
and cj’ with a certain high probability. 


5. Mutate ci’ and cj’ with a certain low probability. 


6. Evaluate the objective function values of ci’ and cj’ and 
store them Q. If Q contains less than m new chromosomes, 
go to 3. 


7. Let QPP ∪←  and empty Q, Rank each chromosome in 
P and remove m chromosomes with lowest ranks from P.  


8. Update set O and increment the generation counter. If the 
generation counter has reached a pre-specified number, 
terminate the process and return O. Otherwise go to 3. 


 
Since two design variables, topology vector x and 


decomposition vector y, are binary vectors, the components of 
x and y are simply laid out in a linear chromosome of length 
|V|+|E| as illustrated in Figure 4. 
 


 
Figure 4. Chromosome representation of design variables x 
and y, where the elements of these vectors are simply laid 
out to form a linear chromosome of length |V|+|E|. 
 


Crossover in step 4 combines “genetic materials” of two 
parent chromosomes to produce two offspring chromosomes. 
The role of crossover is to combine high-quality partial 
solutions (building blocks) in parent chromosomes to produce 
higher quality offspring [33]. Since information in x and y are 
linked in a non-linear fashion as defined in the ground topology 
graph, the conventional one point or multiple point crossover 
for linear chromosomes will not effectively preserve the 
building blocks. For this type of problem, graph-based 
crossover has been successfully applied for improved 
performance of GA [6,7,8], which is adapted to fit to our 
problem as described below: 
 
1. Draw an arbitrary crossover line L on two parent structures 


P1 and P2, and use the line to “cut” P1 into two 
substructures S11 and S12,  and P2 into S2 and S22 
(Figure 5 (a)).  


2. Partition product topology graphs of P1 to two subgraphs 
G11 and G12 corresponding to S11 and S12. Do the similar 
to partition the graph of P2 to G21 and G22 (Figure 5 (b)).  


3. Assemble an offspring graph with G11 and G22, and 
another with G21 and G12. During the assembly process, 
edges between two nodes came from different parents are 
randomly assigned (Figure 5 (c)).  


4. Construct offspring structures using the assembled graphs 
(Figure 5 (d)). 
 


  


x0 x1 x|V|-1 
… y0 y1 … y|E|-1 


|V| |E| 


|V|+|E| 
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Figure 5. Graph-based crossover operation. (a) Parent 
structures P1 and P2 cut by crossover line L, (b) 
corresponding partitioning of P1 and P2 in graph 
representation, (c) assembly of offspring graphs C1 and C2. 
Note that in C1, edges e11 and e12 are copied from parent P1 
because nodes n3, n4, and n5 are from P1.  Edges e16 and 
e13 are randomly assigned because n6 is form P2 while n4 
and n5 are from P1. (d) Offspring structures C1 and C2 
constructed from their graphs. Both C1 and C2 have 2 
components. 
 


Crossover line L is selected in the geometrical space 
(where the physical structures belong) rather than in the 
topological space (where the product topology graphs belong) 
to realize the effective preservation of smaller high-quality 
substructures – building blocks for our problem.  


 
Even though both parent graphs are connected, the 


crossover may yield an offspring graphs C that are 
disconnected. In such cases, a repair operator is applied to 
reconstruct the connectivity, where Dijkstra’s algorithm [34] is 


used to find the shortest path on the ground topology graph 
between the disconnected subgraphs of C, and the nodes and 
edges on the shorted path are added to C. 


Mutation modifies a structure in the following three steps:  
 
1. Mutate topology vector x by random bit flipping. This will 


add or remove basic members (Figures 6 (b) and (c)). 
2. If the resulting structure is disconnected, apply the above 


repair operator to reconstruct connectivity.  
3. Mutate decomposition vector y by random bit flipping. 


This will alter the location of joints (Figure 6 (d)). 
 


 
Figure 6. Mutation operation. (a) original structure and 
graph (b) adding beam elements, (c) removing beam 
elements, and (d) altering joint locations. 


 
In addition to the above custom crossover and mutation, 


the implementation of MOGA used in the following examples 
utilizes linear fitness scaling, niching based on the distances in 
objective function space, and stochastic universal sampling [5]. 
Also, the population is initialized to contain only chromosomes 
that satisfy both Connectivity Constraints 1 and 2. Figure 7 
shows the flowchart of multi-component structure synthesis. 
Software implementation, including MOGA code, is done in 
the C++ programming language. LEDA1 library was used for 
graph algorithm and an in-house FEM code2 is used to obtain 
fstiffness. 
 


                                                           
1 Developed by Algorithmic Solution (http://www.algorithmic-solutions.com) 
2  Developed by Mr. Karim Hamza. 
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Figure 7.  Flowchart of multi-component structure 
synthesis.  


 


CASE STUDY 
Multi-component structure synthesis in Figure 7 is applied 


to two case studies: a cantilever structure and a simplified 
automotive floor frame. Tables 1 and 2 list the geometric and 
material properties of the beam elements and the parameter 
values for MOGA runs used in both case studies, respectively. 
The spring rate of 100,000[Nm/rad] is used for all torsional 
springs. 


 
 
 
 
 


Table 1. Geometric and material properties of beam 
elements used in the case studies. 


property value 
cross sectional area 314 [mm2]
moment of inertia (Ixx, Iyy) 7,854 [mm4]
polar moment of inertia 15,708 [mm4]
density 3194.0 [kg/m3]
Young’s modulus 210 [GPa]


 


Table 2. Parameter values for MOGA runs used in the case 
studies. 


property Case I 
maximum # of generation 100
number of population 1000
replacement rate (m/n) 0.5
crossover probability 0.9
mutation probability for x 0.05 (case I)


0.10 (case 2) 
mutation probability for y 0.10


 


Case I: Cantilever Structure 
 For the first case study, a cantilever structure is modeled 


as a design domain in Figure 8 (a), with length 200 [mm] and 
height 100 [mm]. The left side of the domain is fixed on the 
wall and a vertical load P (=100 [N]) is applied at the lower 
right corner of the domain. The displacement is measured at the 
loading point to calculate the stiffness of the structure. Figure 8 
(b) shows the ground structure with 15 non-overlapping beam 
elements, each of which are regarded as a basic member. Figure 
8 (c) shows the ground topology graph of the ground structure 
in Figure 8 (b), containing 15 nodes and 44 edges.  
 


 
Figure 8. Case I model. (a) design domain, (b) ground 
structure with 15 beam elements, and (c) ground topology 
graph of 15 nodes (n0~n14) and 44 edges (e0~e43). 
 


Figure 9 shows the typical convergence histories of 
MOGA runs with three different mutation probabilities for y 
(Figure 10 (a)). All three plots indicate the increase in the size 
of Pareto set (number of Pareto optimal designs) as the number 
of generation increases. Note that as mutation probability 
decreases, the number of individuals in the Pareto Front 
converges closer to the total number of population (= 1000). 
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Figure 9. Typical convergence histories of MOGA runs with 
three different mutation probability for y (black line: 0.1, 
dark gray line: 0.2 and light gray line: 0.3).  


 
Figure 10 shows objective function spaces obtained at the 


terminal generation (= 100). Because there are four objective 
functions, fstiffness, fweight, fmanufac, and fspringrate, the resulting 4-
dimensional space is projected on to four 2-dimensional spaces 
as shown in Figures 10 (a)-(d). Each 2-D plot shows points for 
all 1000 structural designs with respect to the chosen two 
objectives only, ignoring the values of the remaining two 
objectives. In all plots, the utopia points are located at the 
upper right corner. The points with rank < 3 (with respect to all 
four objectives) are marked black in each plot. The following 
observations can be made from these plots: 


 
 Observation 1: In fweight – fstiffness space (Figure 10 (a)), 


designs are concentrated on the upper-right portion.  
Possible explanation: Higher weight implies more beams, 
which tends to increase stiffness. 
 


 Observation 2: fweight – fmanufac space (Figure 10 (b)) shows 
a linear trend between fweight and fmanufac.   
Possible explanation: Shearing perimeter (P) that 
determines fmanufac is highly related to the fweight because we 
are using only beam elements, where component perimeter 
is directly proportional to the size (and weight) of the 
element. As a result, higher manufacturability implies less 
number of beams, which decreases total weight. 
 


 Observation 3: Designs with lower stiffness show higher 
manufacturability (Figure 10 (c)).  
Possible explanation: Higher manufacturability implies 
smaller components, which would require more joints, 
which in turn tends to reduce stiffness.  
 


 Observation 4: Design with higher fspringrate show lower 
stiffness (Figure 10 (d), upper portion). 
Possible explanation Higher fspringrate implies more 
number of springs in the joints, which tends to reduce 
stiffness.  
 


 
Figure 10. Distribution of designs at generation = 100 for 
Case I. In all plots, the utopia points are at the upper right 
corner. Black-marked ones are designs with rank<3 with 
respect to all four objectives. Three representative Pareto 
optimal designs R1, R2 and R3 are shown in Figure 11. 


 
 


Three representative Pareto optimal designs, annotated as 
R1, R2 and R3 in Figure 10, are shown in Figure 11 and their 
objective function values are listed in the Table 3. Objective 
function values in Table 3 are plotted on a spider diagram in 
Figure 12. The geometry of each structure exhibits its unique 
characteristics allowing the following interpretations: 


 
 Structure R1 (Figure 11 (a)) is a very light structure with 


three simple components connected by 2 joints. Each joint 
design is composed of 2 torsional springs with spring rate 
100[Nm/rad]. The structure also fairly stiff thanks to the 
clever arrangement of beams (including a triangular 
structure formed with the wall), which imposes mostly 
axial loading in each beam, thereby avoiding bending of 
joints.  


 
 Structure R2 (Figure 11 (b)) shows balanced performances 


in all objectives with very good stiffness. One component 
with the complex geometry (hence causing reduced 
manufacturability) seems the key to very high stiffness 
with low weight. 


 
 Structure R3 (Figure 11 (c)) has three components that are 


more complex and larger than the ones of R1 and R2. It is 
the stiffest among the three structures.  It contains the 
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three triangular structures (including the one formed with 
the wall), which seems to help for increasing the stiffness 
of the structure. 


 


 
Figure 11. Representative Pareto optimal designs for Case I. 
(a) R1, (b) R2, and (c) R3.  R1 and R3 have 3 components and 
R2 has 4 components. 
 


Table 3. Objective function values for R1, R2, and R3. 
 


 fstiffness 
[mm] 


fweight  
[10-3Kg] 


fmanufac fspringrate 
[Nm/rad] 


R1 0.510 341.4 0.960 0.4*106


R2 0.071 541.4 0.764 0.7*106


R3 0.017 653.5 0.673 0.8*106


 


Case II: Simplified Automotive Floor Frame under 
Multiple Loadings 


For the second case study, a simplified automotive floor 
frame under multiple loadings is modeled as a design domain 
in Figures 13 (a)-(c), with length 3000 [mm] and width 1600 
[mm] seen from the above. The structure is subject to the 
following three loading cases: 
 
 


 
Figure 12. A spider diagram for the objective function 
values of designs R1, R2, and R3. Note that R2 shows a 
balanced performance in all 4 objective functions. 
 
 
1. Front wheel locations are fixed on the ground and a unit 


horizontal load P1 (= 1.0 [N]) is applied at each of the right 
end points of the domain that represent rear wheel 
locations (Figure 13 (a)).  


2. Rear wheel locations are fixed on the ground and a unit 
horizontal load P2 (= 1.0 [N]) is applied at each of the left 
end points of the domain that represent front wheel 
locations (Figure 13 (b)).  


3. Both of the front and rear wheel locations are fixed and 
unit horizontal load P3 (= 1.0 [N]) is applied at the middle 
of the domain (Figure 13 (c)).  
 
Displacements are measured at the loading points to 


calculate the stiffness of the structure. Since there are three 
values of displacements corresponding to the three loading 
cases, the number of objective functions becomes 6 (3 stiffness, 
1 weight, 1 manufacturability, and 1 spring rates).  


Figure 13 (d) illustrates the ground structure with 70 non-
overlapping beam elements, each of which are regarded as a 
basic member. Due to the symmetric nature of the automotive 
floor frame, only right half of the floor frame will be modeled 
and the left side of the floor frame will have the mirror image 
of the right side. Figure 13 (e) shows the ground topology 
graph of upper half of the ground structure in Figure 13 (d), 
containing 38 nodes and 130 edges.  
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Figure 13. Case study II model. (a)~(c) Design domain with 
three loading and boundary conditions, (d) ground 
structure with 70 beam elements, and (e) ground topology 
for upper half model with 38 nodes (n0~n37) and 130 edges. 
Note that symmetric design assumption made only the 
beams in the upper half modeled in (e). Edge numbers 
(e0~e129) are not shown in (e) due to the space limitation. 


 
 


 
Figure 14. Typical convergence histories of MOGA runs 
with three different mutation probability for x (black line: 
0.05, and gray line: 0.1).  


 
Figure 14 shows the typical convergence histories of 


MOGA runs with two different mutation probabilities for x in 
Case II. As in Case I, all plots indicate the increase in the size 
of Pareto set (number of Pareto optimal designs) as the number 
of generation increases. 


The six selected objective function spaces obtained at the 
terminal generation (= 100) are illustrated in Figure 15. 
Because there are six objective functions (fstiffness_1, fstiffness_2, 
fstiffness_3, fweight, fmanufac, and fspringrate), the resulting 6-dimensional 
space is projected on to 2-dimensional spaces as shown in 
Figures 15 (a)-(f) as in Case I. The following observations can 
be made from these plots: 


 
 


 
Figure 15. Distribution of designs at generation = 100. In all 
plots, the utopia points are at the upper right corner. Black-
marked ones are designs with rank < 3 with respect to all 
six objectives. Three representative Pareto optimal designs 
R1, R2, and R3 are shown in Figure 16. 
 
 Observation 1: As in Case I, designs are concentrated on 


the upper-right portion in fweight – fstiffness_1 space (Figure 15 
(a)).  
Possible explanation: Higher weight implies more beams, 
which tends to increase stiffness. 


 
 Observation 2: fweight – fmanufac space (Figure 15 (b)) shows 


two groups of solutions. While upper group is composed 
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of solutions mostly with beam-shaped components, lower 
group solutions contain more number of components with 
larger area. In the upper group, the strong linear trends can 
be seen between fweight and fmanufac as in Case I. 
Possible explanation: As in Case I, in the structures 
composed of linear shaped components, higher 
manufacturability implies less number of beams, which 
decreases total weight. 
 


 Observation 3: As in Case I, designs with higher fspringrate 
show lower stiffness (Figure 15 (d), upper portion). 
Possible explanation: Higher fspringrate implies more 
number of springs in the joints, which reduce stiffness. 


 
 Observation 4: Designs with higher manufacturability 


show higher value of fspringrate (Figure 15 (f)).  
Possible explanation: Higher manufacturability implies 
smaller components, which would require more joints, 
which in turn needs more springs. 
 


 
Figure 16. Representative Pareto optimal designs. (a) R1, (b) 
R2, and (e) R3. R1, R2 and R3 have 18, 8 and 2 components, 
respectively. 


 
Three representative Pareto optimal designs, annotated as 


R1, R2 and R3 in Figure 15, are shown in Figure 16 and their 
objective function values are listed in the Table 4. Objective 


function values in Table 4 are plotted on a spider diagram in 
Figure 17. The geometry of each structure exhibits its unique 
characteristics allowing the following interpretations: 


 
 Structure R1 (Figure 16 (a)) is a light structure with 18 


simple beam shape components connected by 14 joints. 
The structure shows high manufacturability due to the 
simple shapes of components with large number of joints 
sacrificing the stiffness characteristics. In Figure 17, 
Structure R1 shows a biased performance on the fweight and 
fmanufac. 


 
 In Structure R2 (Figure 16 (b)), one middle component 


with the complex geometry (hence causing reduced 
manufacturability) and closed box sub-structures in the 
middle of the structure seem to increase the stiffness of the 
structure with relatively low total weight. In Figure 17, 
Structure R2 shows a well balanced performance on every 
objective functions. 


 
 Structure R3 (Figure 16 (c)) is the heaviest structure 


among these three structures and contains one big 
component that are more complex and larger than the ones 
of R1 and R2. Due to this complex component, 
manufacturability of this structure is low. However, it 
increased the stiffness of the structure in all three loading 
cases. In Figure 17, Structure R3 shows a biased 
performance on the stiffness functions. 


 
 


Table 4. Objective function values for R1 ~ R3 in Case II  
 fstiffness_1


[mm] 
fstiffness_2


[mm] 
fstiffness_3 


[mm] 
fweight  
[Kg] 


fmanufac fspringrate 
[Nm/rad]


R1 119.41 243.56 0.432 4.00 0.998 3.2*106


R2 17.38 1.99 0.068 6.28 0.718 2.2*106


R3 0.08 1.02 0.002 12.10 0.190 1.4*106


 
Figure 17. A spider diagram for the objective function 
values of the representative Pareto optimal designs (R1~R3) 
in Case II. Note that R2 shows a balanced performance in all 
6 objective functions. 
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SUMMARY AND FUTURE WORK 
This paper described a method for synthesizing multi-


component structural assemblies, where the topology and 
decomposition of a structure is simultaneously optimized over 
a ground structure for stiffness, weight, component 
manufacturability, and assembleability. Multi-objective genetic 
algorithm, coupled with finite element analyses, was employed 
to efficiently obtain Pareto optimal designs for the four 
objectives. Two simple case studies were presented to 
demonstrate the effectiveness of the proposed method.  


While the obtained results are inspiring, further relaxation 
of the optimization problem is desired, for example, by 
allowing variable spring rate at joints and variable cross section 
of beam elements. We also believe it would be possible to 
extend the present approach to continuum based topology 
optimization by extending the framework of, for example, the 
Homogenization Design Method [19]. The developments in 
these directions are currently in progress and will be reported at 
other future opportunities. 
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