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Abstract: The paper proposes an application of
evolutionary programming (EP) to reactive power
planning (RPP). RPP is a nonsmooth and
nondifferentiable optimisation problem for a
multiobjective function. Several techniques to
make EP practicable have been developed. The
proposed approach is demonstrated with the
IEEE  30-bus system. The comprehensive
simulation results show that EP is a suitable
method to solve the RPP problem. A
conventional optimisation method is used as the
comparison method. The comparison shows that
EP is better than the conventional method in the
RPP problem.

List of symbols

N; =set of numbers of load level durations

Ng =set of branch numbers

N, =set of numbers of possible reactive power source
installation buses

N; =set of numbers of buses adjacent to bus i, includ-

ing bus i

Npg =set of numbers of PQ-buses, which are load
buses with constant P and Q injections

N, =set of generator bus numbers

Np =set of numbers of tap-setting transformer
branches

Ng =set of numbers of total buses

Npy=set of numbers of total buses, excluding slack

bus

h  =per unit energy cost (£/p.u.Wh, with Sy =
100MVA)

d;, = duration of load level ()

g, =conductance of branch k (p.u.)

V; =voltage magnitude at bus i (p.u.)

8; = voltage angle difference between bus i and bus j
(rad)

e; =fixed reactive power source installation cost at
bus i (£)

© IEE, 1996

1EE Proceedings online no. 19960296

Paper first received 1st September 1995 and in revised form 14th Decem-
ber 1995

The authors are with the Energy Systems Group, Department of Electri-
cal, Electronic & Information Engineering, City University, Northampton
Square, London EC1V OHB, UK

IEE Proc.-Gener. Transm. Distrib., Vol. 143, No. 4, July 1996

C, = per unit reactive power source purchase cost
at bus i (£/p.u.VAR, Sz = 100MVA)

Q.i =reactive power source installation at bus ¢
(p-u)

P, Q; =real and reactive powers, respectively,
injected into network at bus 7 (p.u.)

Gy, B; =mutual conductance and susceptance, respec-
tively, between bus i and bus j (p.u.)

Gy, B; =self conductance and susceptance, respec-
tively, of bus i (p.u.)

O,i = reactive power generation at bus i (p.u.)

Ty = tap-setting of transformer branch & (p.u.)

Nypgiim =set of numbers of PQ-buses at which volt-
ages violate the limits

Nogiim  =set of numbers of buses at which reactive
power generations violate the limits.

1 Introduction

Reactive power planning (RPP) is one of the most
complex problems of power systems as it requires the
simultaneous minimisation of two objective functions.
The first objective deals with the minimisation of real
power losses in reducing the operation cost and
improving the voltage profile. The second objective
minimises the allocation cost of additional reactive
power sources. RPP is a nonlinear optimisation prob-
lem for a large-scale system with many uncertainties.
During the last decade there has been a growing con-
cern about RPP problems [1-8]. Conventional calculus-
based optimisation algorithms have been used in RPP
for many years [1-4]. Most conventional optimisation
methods are based on successive linearisations and use
the first and second derivatives of the objective func-
tion and its constraint equations as the search direc-
tions. Because the formulae of the RPP problem are
hyperquadric functions, such linear and quadratic
treatments induce many local minima. Furthermore,
the conventional optimisation methods cannot deal
with the nondifferentiable factor in the reactive power
source installation function in RPP. The conventional
optimisation methods can only lead to a local mini-
mum and sometimes result in divergence in solving
RPP problems. Recently, new methods based on artifi-
cial intelligence have been used in RPP or optimal reac-
tive power control. Abdul-Rahman et al. [5] have
presented an artificial neural network (ANN) enhanced
by fuzzy sets to determine the memberships of VAR
control variables to solve the load uncertainties and an
expert system to refine the solution with minimum
adjustments of control variables. Jwo er al. [6] have put
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forward a hybrid expert-system/simulated-annealing in
RPP to solve local minimum problems. Genetic algo-
rithms (GAs) have been given [7, §] for the global opti-
mal solutions of reactive power optimisation problems.
However, the ANN trained by linear programming [5]
may still have the same problem of being stuck in a
focal minimum. With only one solution to compare
with another to obtain the new solution in its iteration,
simulated annealing (SA) would be more likely to
either prematurely converge or keep searching without
a direction. Mutalik et al. [9] have concluded, from
their tested cases, that GA consistently performs better
than SA. The expert systems based on analysis of sensi-
tivities [5, 6] are in the gradient directions to local
minima.

This paper proposes an application of evolutionary
programming (EP) to RPP. EP and GAs belong to
evolutionary algorithms (EAs), which are search algo-
rithms based on the simulated evolutionary process of
natural selection and natural genetics [10-14]. EAs are
randomised search algorithms, which, however, do not
necessarily mean directionless random walk. EAs are
different from other optimisation methods in the fol-
lowing respects:

(1) EAs search from a population of points, not a sin-
gle point. The population can move over hills and
across valleys. EAs can therefore discover a globally or
near globally optimal point. Because each individual in
the population is computed independently, EAs have
an inherent parallel computation ability.

(2) EAs use payoff (fitness or objective functions)
information directly for the search direction, neither
derivatives nor other auxiliary knowledge. EAs there-
fore can deal with nonsmooth, noncontinuous and
nondifferentiable functions that are the real-life optimi-
sation problems. This property also relieves EAs of the
approximate assumptions for many practical optimisa-
tion problems, which are quite often required in tradi-
tional optimisation methods.

(3) EAs use probabilistic transition rules to select gen-
erations, not deterministic rules, so they are a kind of
stochastic optimisation algorithm which can search a
complicated and uncertain area to find the global opti-
mum. EAs are more flexible and robust than conven-
tional methods.

These features make EAs robust and parallel algo-
rithms which can adaptively search the globally opti-
mal point. EAs offer new tools for the optimisation of
complex system problems. EP is different from GAs in
these two aspects: EP uses the control parameters, not
their codings; the generation selection procedure of EP
is mutation and competition, not reproduction, muta-
tion and crossover. GAs emphasise models of genetic
operators, while EP emphasises mutational transforma-
tions that maintain behavioural linkage. It has been
indicated [11, 15] that EP outperforms GAs. The
encoding and decoding of each solution and the opera-
tions of crossover and mutation on binary-coded varia-
bles of GAs use a lot of computing time. The new
generation of GAs after mutation and crossover may
lose advantages obtained in the last generation, while
by competition in the combined old generation and
mutated old generation, EP successfully takes such
advantages.

The theory of EP has been well established, but some
practical problems need to be solved to make EP prac-
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ticable. In this paper, some techniques have been devel-
oped to solve RPP and other practical problems: first,
adaptive mutation scales are introduced to guarantee
the global optimum and produce a smooth conver-
gence; secondly, relative fitness values are used to deal
with practical problems, where the value of one indi-
vidual does not differ much from that of the others;
and finally, the population size and competition size
are carefully studied. These techniques are essential in
practical search problems.

The IEEE 30-bus system is used in this paper as the
simulation system. The results of EP are compared
with those from a conventional method, the Broyden—
Fletcher-Goldfarb-Shanno (BFGS) method [16].

2 Problem formulation

The objective function in RPP problem comprises two
terms. The first term represents the total cost of energy
loss as follows:

We=hY dPl,

leN;
!
=h> d| > gV +V} —2V,Vcosbi))
leNy kENE

k=(s.7)

(1)
where P,/ is the network real power loss during the
period of load level /.

The second term represents the cost of reactive power
source installation which has two components, the
fixed installation cost and the purchase cost

IC' — Z (ei + Cci|ch|) (2)
iEN,
where Q. can be either positive or negative, capaci-
tance or reactance installation, so the absolute variable
is used to compute the cost.

The above two objective functions are put into one
comprehensive equation which can easily be adjusted
by changing the parameters in W, and /- according to
the practical problem under consideration. The objec-
tive function can therefore be expressed as:

min fo = We + Io
s.t. 0 :Pi —‘/;ZVVJ(GU CcOS eij-'rsz sin 01]) 7;6]\73_1

FEN;
0 :Q/L*ViZVj(Gij sin@;; — By; cos6i;) 1€ Npg
JEN;
QU™ < Qu < QI i€ N,
QU™ < Qgi < QU 1 € N,
T < T, <Te” k&€ Np
v <V < ymes 1€ Np

()
where power flow equations are used as equality con-
straints. Reactive power source installation restrictions,
reactive power generation restrictions, transformer tap-
setting restrictions and bus voltage restrictions are used
as inequality constraints. The transformer tap-setting
T, generator bus voltages V, and reactive power source
installations Q, are control variables so they are self-
restricted. The load bus voltages V,,,, and reactive
power generations (), are state variables, which are
restricted by adding them as the quadratic penalty
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terms to the objective function to form a penalty func-
tion. Eqn. 3 is therefore changed to the following gen-
eralised objective function:

minFC :fc-’"Z)\vi(%*V;“m)z‘FZAQgi(Qgi* éz;m)Z

tENyPQlim 1ENQglim
s.t. 0 :Pi—%Z‘/j(Gij CcOs 0¢j+Bij sin 0”) 1ENp_
JEN;
0= wa‘/-bZV](G” sin Bij —'Bz'j CcOS 9”) 1€ NPQ
JEN;

(4)
where Ay; and A,; are the penalty factors which can be
increased in the optimisation procedure; V/™ and Q,/™
are defined as:

V'lim _ { Vimzn
2 maz
Vi

if V; <V
if V; > ymer

lim _ { Zzzn if Qgi < Z‘?L;zn

gt ;r]riaw lf Qgi > Q;r;aw
It can be seen that the generalised objective function F
is a nonlinear and noncontinuous function. The factor
¢; in Io is nondifferentiable. Gradient-based conven-
tional methods are not good enough to solve this
problem.

)

3  Evolutionary programming

EP is different from conventional optimisation meth-
ods. It does not need to differentiate cost function and
constraints. It uses probability transition rules to select
generations. Each individual competes with other indi-
viduals in a combined population of the old generation
and the mutated old generation. The competition
results are valued using a probabilistic rule. The win-
ners of the same number as the individuals in the old
generation constitute the next generation. The EP pro-
cedure for RPP is briefly listed as follows:

Step 1. Initialisation: The initial control variable pop-
ulation is selected by randomly selecting p; = [V}, O/,
T,i=1,2, ..., m, where m is the population size, from
the sets of uniform distribution ranging over [V,
ymax) (@i Q7] and [1T7", T%¥] The fitness value f;
of each p; is obtained by running the P-Q decoupled
power flow.

Step 2. Statistics: The values of maximum fitness,
minimum fitness, sum of fitnesses and average fitness
of this generation are calculated as follows:

fmaz = {fl|fl > f]vfja] = 1)'* . 7m}
fmin = {fz|fz S fjvfj7j = 17 s 7m}

fe= Zfi (6)

favg = 'f‘?'

m
Step 3. Outer loop start
Step 4. Inner loop start
Step 5. Mutation: Each p; is mutated and assigned to
Dirm 1N accordance with the following equation:

Pi+m,]‘ :pi,j+N(Ovﬁ($jmax —I'szn) fi i=1,2,...,n

fm—m)d
(7)

where, p;; denotes the jth element of the ith individual;
N(u, 6°) represents a Gaussian random variable with
mean W and variance 6% f,,, is the maximum fitness
value of the old generation which is obtained in step 2;
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Xjmax a0d X, are the maximum and minimum limits,
respectively, of the jth element; B is the mutation scale
which is given as 0 < B < 1. If any pjy,,, 7= 1, 2, .. 11,
where » is the number of control variables, exceeds its
limit, p;y,,; will be given the limit value. The corre-
sponding fitness value f;,, is obtained by running
power flow with p;,,. A combined population is
formed from the old generation and the mutated old
generation.

Step 6. Competition: Each individual p; in the com-
bined population has to compete with some other indi-
viduals to have a chance to be transcribed to the next
generation. A weight value w; is assigned to the individ-
ual according to the competition as follows:

q
o 1, ifuy < £

i ;{0, otherwis{e ! ®)
where ¢ is the number of competitors; f; is the fitness
value of the sth randomly selected competitor in the
combined population; f; is the fitness value of pj; u; is
randomly selected from a uniform distribution set, U(0,
1). When all individuals p,, i = 1, 2, ..., 2m, obtain their
competition weights, they will be ranked in descending
order of their corresponding value w;. The first m indi-
viduals are transcribed along with their corresponding
fitness values f; to be the basis of the next generation.
The values of maximum, minimum and average fitness
and sum of fitnesses of this generation are then calcu-
lated in step 2.

Step 1. Inner loop convergence criterion: The conver-
gence is achieved when either the maximum fitness
value converges to the minimum fitness value or the
generations reach the maximum generation number. If
the condition is met, the process will go to the next
step, otherwise, the process will go back to step 4.

Step 8. Outer loop convergence criterion: The conver-
gence is achieved when either all state variables, voltage
magnitudes of load buses and reactive power genera-
tions, are within their limits or the outer loops reach
the maximum number. If the condition is met, the pro-
gram will stop. If one or more state variables violate
their limits, the penalty factors of these variables will
increase, and the process will return to step 3.

To make EP practicable, the following four tech-
niques have been developed:

(1) Adaptive mutation scale: In general, EP mutation
probability is fixed throughout the whole search
processing. However, in practical applications, a small
fixed mutation probability can only result in a prema-
ture convergence, while the search with a large fixed
mutation probability will not converge. An adaptive
mutation scale is given to change the mutation proba-
bility to solve the problem as follows:

B(k) — Bstep, i fmin(k) unchanged
Bk +1) =< k), if frnin(k) decreased

Btinal, if B(k) — Bstep < Bfinal

(9)

where k is the generation number; B, Brinw and By,
are fixed numbers. B,,, would be around 1 and B,
would be 0.005. By, would be 0.001 — 0.01, depending
on the maximum generation number. The mutation
scale will decrease as the process continues. The
decreasing speed of the mutation scale depends on the
fitness value, that is, the lower the fitness value, the
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faster the mutation scale decreases. Such an adaptive
mutation scale not only prevents premature conver-
gence, but also produces a smooth convergence.

(2) Relative fitness values: In practical problems, the fit-
ness value of one individual does not differ significantly
from that of the others, especially in the RPP problem,
the difference between the minimum point and the
original operating point is small. In deterministic tran-
sition rules, there may be no problem arising from this
situation. However, in probabilistic transition rules,
such a small difference will sink into oblivion because
of added uncertainties, e.g. u; in EP. To deal with the
problem, the program trims the fitness value and the
maximum fitness value that are used in the mutation
and competition procedure. The method is explained as
follows:

fproci:fi_sfmin i:1>27‘~~7m

fproc mazr — fma:c - 5fmz'n
where 0.95 < & < 1, 50 fyrpe; a0 frp0mar Will be always
larger than 0. Only the relative fitness values are used
in the process of mutation and competition. The rela-
tive values are quite distinct among the fitness values
so the better individuals become more competitive. It is
the only way for EP to be practicable in real-life sys-
tems.

(10)

(3) Adaptive population size: To ensure the global
search area, the population size should increase with
the increasing control variable number. We have found
that when the control variable number is very small,
say less than 10, keeping enough individuals in a popu-
lation, say 20 individuals, would not use too much
computation time, because the generations will
decrease with decreasing variable number. However,
when the control variables increase, the population size
does not need to increase in direct ratio to the increase
in variable number. The increase of population size will
stop, for the sake of both computation speed and mem-
ory, when the size reaches a maximum number, which
is given in this paper as 100. The relationship between
the population size and control variable number could
be represented as

Popsize = 20 x Int(5 — 4e %) (11)

where k is the control variable number and Int means
that only integer values will be taken. The population
size will be 20 for the control variables of 1-11, 40 for
12-27, 60 for 28-55 and 80 for more than 55.

(4) Competition size: Since the competition size has very
little influence on the computation speed and has no
influence on storage, it could be kept high to obtain
more information about the generation. However, a
very high value of the competition size would result in
premature convergence. The competition size is given
as 15 for a population size of 20, 20 for 40 and 25 for
the larger population size, respectively. It is relatively
large for a small population size to speed up the proc-
ess and small for a large population size to avoid pre-
mature convergence.

These techniques are essential in practical search
problems. Without these techniques, EP cannot be
applied to real-life problems. The population size in
eqn. 11 and competition size have been obtained by
trial and error. Since the parameters for the four devel-
oped techniques depend only on the generation number
and the number of control variables, they could also be
applied to other systems.
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4 Numerical results

In this section, the IEEE 30-bus system [17] is used to
show the effectiveness of the algorithm. The network
consists of six generator-buses, 21 load-buses and 43
branches, of which four branches, (6, 9), (6, 10), (4, 12)
and (28, 27), are under-load-tap-setting transformer
branches. The system is shown in Fig. 1. The branch
parameters and loads are given in [17]. The possible
reactive power source installation buses are buses 6, 17,
18 and 27. The base power and parameters of costs are
given in Table 1. Three cases have been studied. Case 1
is of light loads whose loads and initial real power gen-
erations, except the generation at the slack bus, are the
same as those in [17]. Case 2 is of heavy loads whose
loads and initial real power generations are twice as
those of case 1. Case 3 has two level load periods, one
light load period having the same loads as those in case
1 and one heavy load period having the same loads as
those in case 2. The one-year energy loss cost is used to
assess the possibility of installing the reactive power
sources. The variable limits are given in Table 2. The
total loads are:

Case 1: Py = 2.834p.u. Qpppy = 1.262p.1u.
Case 2: Pp,q = 5.668p.u. Qe = 2.524p.u.

JJ‘:—@—’?P,O
28 1T 29

Fig.1 [EEE 30-bus system

Table 1: Base power and parameters of costs

Sg h e C,; d;(h)

(MVA) (E/p.uWh) (£)  (£/p.uVAR) Case 1 Case 2 Case 3

100 6000 1000 3000,000 8760 8760 4380 for
each level

Table 2: Variable limits {p.u.)

Bus 1 2 5 8 11 13

Q,max 0.596 0.480 0.6 0.53 0.15 0.155

Og""’" -0.298 -0.24 -0.3 -0.265 -0.075 -0.078

Vmax Vmin 7'!775)( Tmin acma)( Qcmin

1.05 0.95 1.1 0.9 0.36 -0.12

4.1 Initial power flow results

The initial generator bus voltages and transformer taps
are set to 1.0p.u. The total generations and power
losses are given in Table 3. The limit-violating quanti-
ties are given in Table 4. In case 2, because of the
heavy loads, all reactive power generations and almost
all load bus voltages violate their limits.

Table 3: Initial generations and power losses (p.u.)

Py Q, Ploss Qloss
Case 1 2.89388  0.98020  0.05988  -0.28180
Case 2 5.94588  3.26368  0.27788  0.73968
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Table 4: Limit-violating variables (p.u.)

Case 1

Bus 26 29 30 Bus 8

v, 0932 0.940 0928 Q, 0.569

Case 2

Bus 9 10 12 14 15 16 17

v 0.945 0.909 0.940 0.901 0.893 0.910 0.897
Bus 18 19 20 21 22 23 24

v, 0.870 0.863 0.872 0.879 0.880 0.866 0.849
Bus 25 26 27 29 30

V; 0.855 0.811 0.880 0.829 0.799

Bus 1 2 5 8 11 13

Qi -0.402 0.496 0.952 1.497 0.281 0.439

4.2 EP optimal results

The optimal results are given in Table 5. The trans-
former taps are discrete variables with the change step
of 0.025p.u. All the state variables are regulated back
into their limits.

Two sets of control variables are obtained for two
different load level periods in cases 3. The P-Q decou-
pled power flow has to run twice for two sets of con-
trol variables, so the computation time almost doubles
for the same generation as in cases 1 or 2. In case 3,
because the installation cost is only counted in the
heavy load period, which has more installation than the
light load period for every bus, the reactive power
sources used in the light load period do not induce any
cost. Therefore, in the light load period, there are some
reactive power source installations, which are in fact
the reactive power generations from the existing reac-
tive power sources installed for the heavy load period.
The real power loss is lower than that in case 1 because
of these reactive power sources. The real power savings
and annual energy cost savings are given as follows:

Case 1:

Pjinit — i
Psave% s W x 100
0.05988 — 0.05159
= 100 = 13.84%
0.05983 x ‘
W = hdy( Bt~ P)
= 6000 x 8760 x (0.05988 — 0.05159)
= £435722.4
Case 2:
0.27788 — 0.
Pope %o = 88 — 0.23311 x 100 =16.11%

0.27788
WEeve = 6000 x 8760 x (0.27788 — 0.23311)

= £2353111.2

Case 3:
Light load period :
0.05988 — 0.05085

0.05988
Heavy load period :
0.27788 — (0.23396
Pogoch = —— =
e % 0.27788
W2e¢ = 6000 x 4380

x [(0.05988 — 0.05085) + (0.27788 — 0.23396)]
= £1391526
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Pogeho = x 100 = 15.08%

x 100 = 15.81%

4.3 Comparison with BFGS method
A nonlinear programming algorithm, the BFGS
method, is used as a comparison. After the optimisa-
tion of BFGS, the real power losses are 0.05470,
0.23483, 0.05729 and 0.24070 per unit in cases 1 and 2
and the light load period and heavy load period of case
3, respectively. The total reactive power installations
are 0.265, 1.071, 0.567 and 0.959 per unit in cases 1
and 2 and the light load period and heavy load period
of case 3, respectively. The power savings with the
BFGS method are 8.65% in case 1, 15.50% in case 2
and 4.33% in light load period and 12.38% in heavy
load period of case 3. The annual energy cost savings
are £272 260.8, £2 263 233.6 and £1 045 155.6 in cases
1-3, respectively. The computation times are 0.8, 1.5
and 3.7 min in cases 1-3, respectively. The annual
energy cost savings from EP are 160%, 104% and 133%
of those from BFGS in the three cases, respectively.
The total cost of energy losses and investments,
which the objective of RPP in eqn. 4, are:

Case 1:

EP: fo = We+ 1o = £2711570 + 0 = £2 711 570
BFGS: fo = We + Io = £2875032 + £799000 =
£3 674032

Case 2:

EP: fo = We + I = £12252262 + £2272000 =
£14 524 262
BFGS: fo = We + I = £12342665 + £3217000 =
£15 559 665

Case 3.

EP: f. = We + I, = £7484807 + £2257000 =
£9 741 807
BEGS: fo = We + I = £7831177 + £2881000 =
£10 712177

In case 3, each installation bus has two reactive power
source installations for two load level periods. The
larger installation is used to compute the installation
cost I, while the smaller quantity can be obtained by
regulation during the light load period. In both EP and
BFGS, the installation at any bus in the heavy load
period is larger than the installation in the light load
period, so the installation cost of case 3 is the cost for
the heavy load period.

The total costs from EP are 74%, 93% and 91% of
those from BFGS in the three cases, respectively. From
the comparison, it can be seen that in all three cases,
EP gives better results. Therefore, in this simulation,
EP always goes to the global or near global optimum,
while BFGS goes to a local minimum.

5 Conclusions

The use of EP for the RPP of power systems has been
reported. RPP is an optimisation problem of a nonlin-
ear, nonsmooth and noncontinuous function. This type
of less well behaved function is met with in most engi-
neering problems so the devising, testing and refining
of new techniques for finding optimal solutions has
become more important with the advent of even more
powerful computers. The proposed EP approach has
been evaluated on the IEEE 30-bus power network.
The simulations show that EP always leads to satisfac-
tory results for multiobjective RPP, especially in non-
continuous and nonsmooth situations. The comparison
shows that the proposed EP method is more powerful
for global optimisation problems of the nonsmooth,
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Table 5: Optimal control variables

Generator bus voltages, p.u.

Bus 1 2 5 8 11 13
Case 1 1.050 1.044 1.023 1.025 1.050 1.050
Case 2 1.050 1.022 0.973 0.959 1.050 1.050
Case 3 Light load 1.050 1.044 1.023 1.026 1.027 1.050
Heavy load 1.050 1.022 0.973 0.959 1.045 1.048
Transformer tap-settings, p.u.
Branch (6, 9) (6,10) (4,12) (28, 27)
Case 1 0.95 1.1 1.025 1.05
Case 2 1.05 1.1 1.1 1.1
Light load 0.975 1.1 1.05 1.025
Case 3
Heavy load  1.05 1.075 1.1 1.1
Reactive power source installations, p.u.
Bus 6 17 18 27
Case 1 0 0 0 0
Case 2 0.198 0.229 0.133 0.196
Light load 0.150 0.077 0.068 0.077
Case 3
Heavy load  0.198 0.227 0.131 0.195
Power generations and power losses, p.u.
P, Q, Pross Qees
Case 1 2.88559 0.92579 0.05159 -0.33626
Case 2 5.90110 2.20392 0.23311 0.43591
Case 3 Light load 2.88485 0.52662 0.05085 -0.36343
Heavy load 5.90195 2.21541 0.23396 0.44257
Iteration and computation time (486/50 MHz)
Outer loop 1 2 3 4 5 Time, min
_ Case 1 85 108 4.2
(G]t‘z::tr::r"‘;';s Case 2 91 112 134 97 8.5
Case 3 97 129 106 141 93 20.21

noncontinuous functions. The only disadvantage of EP
is that it takes much more computation time than the
conventional method. However, with the inherent par-
allel computation ability and the advance of computer
technology, it would not be so difficult to solve such a
problem. The comprehensive simulation results show a
great potential for applications of EP in economical
and secure power system operations, planning and reli-
ability assessment.
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