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Abstract: A multi-objective genetic algorithm is developed for optimising the tuning parameters
relating to the generalised predictive control (GPC) and performance index table of the self-
organising fuzzy logic (SOFLC) algorithms, using a multi-objective ranking method based on
fuzzy logic theory. A comparative study with more traditional pareto, average and minimum
distance ranking methods shows that the proposed method is superior. The study shows that the
approach leads to a more effective set of tuning parameters, especially those relating to the
important observer polynomial for GPC and to a good reference trajectory for SOFLC. Up to two
objective functions were used in the study, although the method can be extended to more
objectives. A nonlinear muscle-relaxant anaesthesia model is used as a case study to demonstrate

the robustness of the method.

1 Introduction

The number of applications with the popular generalised
predictive control (GPC) algorithm [1] has risen consider-
ably since the early years following its introduction. It is
reaching a wider audience, including industrialists,
academics and clinicians [2]. This is perhaps due to
progress in the understanding of the overall issue of
design for model-based predictive control (MBPC) in
general, followed by an awareness of the criteria governing
the choice of the GPC ‘tuning parameters’ which can be
tailored to a specific application.

One of the main issues in earlier work on GPC was that
of stability results with respect to the choice of its tuning
factors [3]. Such results concerned the minimum output
horizon N}, the maximum output horizon N,, the control
horizon NU and the weighting sequence A. This was
followed by research on the implications of using the
CARIMA model, on which GPC is based. In particular,
investigations have been made into the problems associated
with the selection of the filter polynomial 7(z~') (also
known as the observer polynomial), which is used to offset
the high-filtering characteristics of the A operator [4, S].
Although this filter idea is straightforward, there is another
problem associated with it to be overcome; the choice of its
order and its cut-off frequency. For example, Robinson and
Clarke [4] introduced the notion of stability bounds, with
the bound having to be kept as high as possible to ensure
robustness.
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As GPC is a model-based algorithm, an alternative
approach for selecting the above tuning factors may be
via various optimisation methods which allow for the
search of the best set of parameters suited for the control
of the process in question. In this paper, we propose a
multi-objective genetic algorithm optimisation method for
tuning the maximum output horizon N,, the control hori-
zon NU and the filter characteristics T(z~'). We use two
objective functions, which are based on particular char-
acteristics of the process output response, such as the rise
time, the ability to reject disturbances effectively, the
control activity etc. As there is more than one objective
function, an approach based on fuzzy logic is used to rank
the various individuals produced between generations in a
genetic algorithm (GA) search, which will enable the best
individuals to be selected.

The first self-organising fuzzy logic control (SOFLC)
scheme was proposed by Procyk and Mamdani [6]. Their
scheme includes a policy that can change with respect to
the process it is controlling and the environment in which it
is operating. An interesting feature of this controller is that
it strives to improve its performance until convergence to a
predetermined quality. This online improvement in perfor-
mance is made possible via the specification of a reference
trajectory, which uses a set of fuzzy rules written using a
qualitative feel for a general monotonic undamped process
characterised by a certain amount of overshoot, rise time
and settling time. The original rules, formulated by Procyk
and Mamdani [6], have proved to be quite robust over a
wide range of process dynamics. Their rules have been left
practically unchanged, as it is not straightforward to alter
them, either individually or in blocks of cells. Similarly to
GPC, we propose to optimise these rules via a GA search
using two performance indices.

Various synergies between control methods are known to
exist. As a result, various schemes have been described
where fuzzy logic control (FLC) and GAs have been
integrated [7]. This showed that these intelligent structures
can interact to form a hybrid system, but also can add more
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robustness to the overall control structure in the face of
uncertainties, variability of dynamics and disturbances. For
example, the concept of genetic-fuzzy control has been
shown to work well in producing smoother control than
standard fuzzy control, by allowing more flexibility in the
automatic adjustment of the rule base and definition of
fuzzy sets in terms of widths, peaks, and membership
functions [8]. This successful synergy has also been
extended to include a scheme where the adaptation
mechanism within the SOFLC algorithm is initiated by a
model-based predictive control approach, particularly
GPC [2].

In this paper, we propose to tune the parameters relating
to both popular control algorithms, i.e. GPC and SOFLC,
using an optimisation technique based on a multi-objective
genetic algorithm. In the optimisation process, two objec-
tive functions are used. For ranking the individual candi-
dates, a method based on the theory of fuzzy logic is
proposed, which shows its superiority when compared to
other commonly used ranking methods such as average
ranking, pareto ranking etc.

2 Introduction to GPC and SOFLC

2.1 GPC algorithm

Consider the following locally linearised discrete model in
the backward shift operator z '

A YAV = Bz )Au(t — 1)+ CN@ (D
where
A Y =1+4az " +az 4+ .. Faz"
Bz Y =b, + bz 4 by 4 bz
CzhH= ¢y + ezt + czz“2 +o ez
{(¢) is an uncorrelated random sequence

A=1-z"

u(f) represents the control input and y(¢) is the measured
variable. The controller computes the vector of controls
using optimisation of a function of the form

N,
Jope = Y _IPEW( +)) — ot +))]
J=N,

NU
+ D A+ — DY) 2
j=1

j=

where N| is the minimum costing (output) horizon; N, is
the maximum costing horizon; NU is the control horizon;
w is the future set point; A(j) is the control weighting
sequence; and P(z~') is the inverse model in the model-
following context with P(1)=1.

Furthermore, the C(z~!) polynomial in eqn. 1 is
replaced by a fixed polynomial T(z~'), known as the
observer polynomial, for the predictions P(z~')j(t+)
[1]. As previously mentioned, this allows an offset of the
effect of the A operator as a high-pass filter on the input-
output data.

The minimisation of the cost function described in eqn.
2 leads to the following projected control increment:

Au)) = E'W =), W =[PU+N), RN
3)

where g7 is the first row of the matrix (GG, + AN ~'Gl;
G, is the dynamic (step response) matrix of the form given
by Clartke et al. [1]; and ¥ is the vector of output
predictions up to the horizon N,.

2.2 SOFLC algorithm

The first implementation of a fuzzy controller [9] after
Zadeh’s seminal paper [10] was followed by the self-
organising fuzzy controller (SOFLC) [6], as shown in
Fig. 1. The controller consists of two levels; the first
level is a simple fuzzy controller, whereas the second
level consists of the self-organising mechanism, which
acts as a monitor and an evaluator of the controller
performance. In the first level, the input signal to the

performance
index
— (table 1)

rules
modifier

state buffer

P(nT)  Po(nT)

reference

CE

control

rules

output
process "

Fig. 1 Schematic diagram depicting SOFLC

a Learning part
b Simple fuzzy logic controller part
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controller is taken at each sampling instant in the form of
error and change-in-error. Each signal is mapped to its
correspondent discrete level by using the error and change-
in-error scaling factors, respectively, and sent to the self-
organising controller (SOC). According to control rules
tssued by the second level, the SOC calculates the output
with respect to the inputs. The output control signals are
scaled to real values using the output scaling factors and
sent to the process being controlled. The second level
consists of four blocks: the performance index, the process
reference model, the rules modifier, and the state buffer.
Further details on the design of a SOFLC can be found
elsewhere [11], but here we concentrate on the learning
part.

The SOC is based on observation of the trajectory of the
process to be controlled. Any deviation from the desired
trajectory path should be corrected by modifying the rule
or rules responsible for the undesired performance. The
performance index functions as an evaluation criterion of
the controller performance. In general terms, it measures
the deviation from the desired trajectory and issues the
appropriate correction to the rule that gave the present
behaviour. Tt is derived from linguistic conditional state-
ments by using standard fuzzy operations and is written in
a look-up table form. As far as the rules modification
procedure is concerned, it can be explained assuming that a
process has a time lag of m samples: this means that the
control action at sample (n7-mT) has contributed most to
the process performance at the sampling instance #T. Thus,
if the present instant is n7 the modification is made to the
controller output U, mT samples earlier. The rule to be
included is

E(nT — mT) — CEmT — mT) — UnT —mT)+ P,(nT)
)

where P,(nT) is issued by the performance index table, £ is
the error and CE is its derivative.

The key issue with SOFLC is how to select the perfor-
mance index table. This table is usually selected based on
the knowledge of the operator or the expert, but the table is
commonly interpreted as a flat surface with curvature on
the edges (saturated shapes). The table ignores any existing
small nonlinearities that are located in the middle region of
the table. In light of these considerations, the use of a GA
as a tool for optimising the shape of the table is very
attractive. In this work, a GA is used to find the best fit for
the performance index table, by starting with a linear table
and then repositioning the output of the table with
constrained modifications. A typical linguistic perfor-
mance index table is shown in Table 1.

Table 1: Performance index table

Error, Change in error, CE

E NB NM NS Z0 PS PM PB
NB NB NB NB NM NM NS Z0
NM NB NB NM NM NS 20 PS
NS NB NB NS NS Z0 PS PM
NO NB NM NS Z0 Z0 PM PM
PO NB NM Z0 Z0 PS PM PB
PS NM NS Z0 PS PS PB PB
PM NS Z0 PS PM PM PB PB
PB Z0 PS PM PM PB PB PB
346

3 Overview of genetic algorithms

GAs are exploratory search and optimisation methods,
devised on the principles of natural evolution and popula-
tion genetics. Holland [12] first developed the technique of
GAs, and other studies have provided a comprehensive
review and introduction of the concept [13]. Unlike other
optimisation techniques, the GA technique does not
require gradients, but instead relies on a function (better
known as a ‘fitness function’) to assess the fitness of a
particular solution to the problem in question. Possible
solution candidates are represented by a population of
individuals (generation), and each individual is encoded
as a binary string containing a well defined number of
chromosomes (1s and 0s).

Initially, a population of individuals is generated and the
fittest individuals are chosen by ranking them according to
an a priori defined fitness function, which is evaluated for
each member of this population. To create another better
population from the initial one, a mating process is carried
out among the fittest individuals in the previous generation,
since the relative fitness of each individual is used as a
criterion for choice. Therefore, the selected individuals are
randomly combined in pairs to produce an offspring by
crossing over parts of their chromosomes at a randomly
chosen position of the string. The new offspring is
supposed to represent a better solution to the problem.

To provide extra excitation to the process of generation,
randomly chosen bits in the strings are inverted (0s to 1s
and 1s to 0s). This mechanism is known as mutation, and
helps to speed up convergence and prevents the population
from being predominated by the same individuals. All in
all, it ensures that the solution set is never empty. A
compromise, however, should be reached between too
much excitation and none, by choosing a small probability
of mutation.

Thus, for a given population of trials and set of opera-
tors, together with procedures for evaluating each trial, a
GA proceeds as follows.

(a) An initial random population of trials is generated,
(0)=4,(0), m=1,...,M, where M is the number of
trials in the population.

(b) For successive sample instances

(i) the performance of each trial, u(4,,(D), T=0,1,..., s
evaluated and stored.

(ii) one or more trials are selected, by taking a sample of
I1(7) using the probability distribution

o) = Al D) ©)

; A7)

(iii) one or more genetic operators are applied to the
selected trials to produce new offspring, A% (7),
m=1,...,N, where N is the number of offspring, which
is usually equal to the number of selected trials (parents).
(iv) the next generation of population, II(7+ 1), is formed
by selecting A(T) e I(T), j=1,...,N to be replaced by
the offspring, A?(7): the criterion for selecting which trials
should be replaced may be random, on the basis of the least
fit or some other fitness basis.

(c) The GA process is terminated after a pre-specified
number of generations or on the basis of a criterion
which determines convergence of the population.

The successful running of a GA involves having to set a
number of control parameters, which include population
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size, the nature and rates of the recombination operators,
crossover, mutation and reproduction. Reproduction is
defined as the process through which ‘parent structures’
are selected to form new offspring, by applying the above
genetic operators, which can then replace members of the
old generation. The method of selecting an individual to
produce offspring (or to be deleted from the population)
determines its lifespan and the number of its offspring. For
example, if p; is the probability that an individual 4 € T is
selected to produce offspring during a sample step, and p,
is the probability that it will be deleted during that sample
step, then the expected number of offspring of 4 is p,/p,
[14].

The most common reproduction techniques are genera-
tional replacement (GR), steady-state (SS), generational
gap (GG), and selective breeding (SB). Only SB is the
subject of study here, as described below.

3.1 Selective breeding reproduction technique

The SB reproduction technique is designed to overcome
some of the deficiencies in the other methods. In the SS
breeding method, a sampling error still occurs in selecting
the parents and deleting individuals from the population,
and often good individuals can appear and be deleted
without a chance of recombination. SB introduces deter-
minism to eliminate stochastic sampling error in deletion
of candidates. The method operates as follows.

(a) An initial population TI(0) is created in the usual
manner.

(b) The population is evaluated to determine the perfor-
mance of each individual, u(4,,, m=1,..., M).

(¢) For successive generations, thereafter

(i) an entire population of offspring I1°(7) is produced by
selecting parents and applying genetic operators.

(ii) the offspring population is then evaluated.

(iii) the next generation of population is obtained by
choosing the best M individuals from both II(7) and

(7).

3.2 Evaluation of trials

Each individual (genotype) in a population is a hypothe-
tical candidate solution to the optimisation problem under
consideration. The procedure of evaluating these candidate
solutions consists of submitting each to a simulation model
and returning an assessment value, according to a given
fitness function. A controlled process is defined by a set of
state variables X= {x, x,, ..., x,}, which are controlled by
a set of control variables C={c,c,,...,c,}. The geno-
types are trial ‘control policies’ for selecting C as a
function of X. The role of the adaptive plan is to derive
an optimal policy 4,,,,, which minimises a given perfor-
mance function J. In the majority of cases, J is determined
as a cumulation over time of some instantaneous cost rate:

7
LX), CQ)), ie.J =Y OX(®,COI  (6)
1

For example, the sum of errors over the response trajectory
can be directly related to the objective fitness of the trial;
this is a measure of the overall worth of a solution and, in
the case of this study, that is the performance of GPC or
SOFLC algorithms. The configuration of such a learning
scheme is shown in Fig. 2.

The control objective is defined as the ability to follow
the set point with minimum error. This objective can be
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(genetic algorithm)
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(trials)

Fig. 2 Opfline learning model

expressed in terms of minimisation of the controller
performance indices. These include integral of absolute
crror (IAE) plus the integral of absolute value of control
effort (ICE), and the integral of time absolute error (ITAE)
plus the integral of absolute value of control effort (ICE):

!

IAE + ICE = L[yc(t) + |ou(t){1dt 7

and
ITAE + ICE = J [BleOlt + 15u(o) |l ®)
4}

e(?) is the error (difference between the measured output
and the sct point), du(?) is the control increment, and y, f§
are arbitrary chosen scaling factors, whose selection is
discussed in Section 7. These indices were those used in
this study. Note that the idea behind using both objectives
at the samc time is that the objective function in eqn. 7
tends to minimise just the error and the control effort,
especially during the transient period; whereas the sensi-
tivity of objective function in eqn. 8 to errors at a large
time is well known, i.e. incffective rejection of steady-state
disturbances is usually heavily penalised by such objective
formulation [2].

4 Multi-objective genetic optimisation technique

In problems with multi-objective formulation, objectives
are often combined by means of an aggregation function.
Combining the objectives to obtain an optimised solution
has the advantage of producing a single solution, which
requires no interaction with the decision-making. However,
if the solution found is not acceptable, tuning of the
aggregation function is required, followed by a new run
of the optimiser until a suitable solution is found. The
aggregation functions can be as simple as the weighted
sum to a target vector. The method functions by generating
an initial population which is evaluated to determine the
performance of each individual. An off-spring is then
generated which, in turn, is evaluated according to the
performance of each individual. The last step is to select
the best individual from both generations.

Several popular methods exist for producing a single
solution to a multi-objective optimisation operation, as
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explained below, and their respective performances may
differ depending on the problem at hand; these are outlined
below, although comparison is only made between the
proposed fuzzy ranking method and the pareto ranking
method.

4.1 Average and distance ranking

The average multi-objective optimisation approach is
based on ranking the population according to each objec-
tive individually; then a new overall rank can be generated
by taking the average of the newly ranked populations. On
the other hand, the distance optimisation technique is based
on ranking the populations depending on one objective at a
time, then taking the square root of the sum of the squared
objective values, and finally ranking the new vector to
produce the final generation.

4.2 Pareto ranking

A different approach for multi-objective optimisation is
based on ranking according to the actual concept of pareto
optimality proposed by Goldberg [13]. The method guar-
antees equal probability of reproduction to all individuals.
Fig. 3a illustrates the ranking of both objectives F;, F,
when they have the same priority, all the satisfying
individuals, i.e. the ones included in the feasibility area
delimited by arbitrary constraints G; and G,, are preferable
and have a lower rank than the remaining ones. In the
second case (Fig. 3b), the second objective is given higher
priority i.e. individuals who do not meet the second goal
are worse, independent of their performance relating to the
first objective.

4.3 Proposed fuzzy population ranking method
As an alternative to the above ranking methods, we
propose the following approach for ranking the individuals
within a population according to two objective functions.

First, the individuals are all assigned ranks according to
their score with respect to each objective function. The
ranks, which form the inputs to the fuzzy decision table,
are then assigned fuzzy labels ranging from very low to
very high. Five fuzzy labels, very low, low, average, high,
very high are chosen for each input (each objective),
leading therefore to a rule base with 25 rules, as shown
in Table 2. A typical rule should read as follows:

If rank according to objective 1 (eqn. 7) is ‘very low’
and rank according to objective 2 (eqn. 8) is ‘high’
THEN the overall rank is Jow’.

The number of individuals in a population is chosen to
be 34 (Section 5). According to their performance with a
particular controller, each individual (solution candidate)
will be given a rank from 1 to 34; the lower the ranking, the
better this individual will have performed for either control
algorithm (GPC or SOFLC). The same set of rules for

Fiy o Fly &
G1 5 G 5

a2 a4

62 fa G f
Fig. 3 Multi-objective pareto ranking with goal values
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Table 2: Fuzzy decision table for final ranking method of
individuals within population

Objt
VL L A H VH

VL VL L A H VH

L VL L A H VH

Obj 2 A VL L A H VH
H L A H H VH

VH A H H VH

VL =very low, L=low, A=average, H=high, VH=very high,
Obj 1=rank according to objective function in eqgn. 7,
Obj2=rank according to objective function in egn. 8.

ranking the individuals is used for both algorithms. The
rules are handcrafted and refer to the case study described
in Section 5.

A graphical representation of the fuzzy sets relating to
the rules of Table 2 is shown in Fig. 4, where the five
membership functions are defined to have non-equal
spacing to allow for the nonlinear distribution of the
fuzzy labels. Furthermore, particular attention has been
given when designing the membership function shapes,
since the fuzzy sets VL (very low), L (low), and A
(Average) have smaller widths than the labels H (High)
and VH (Very High). In addition, to accommodate the 50%
intersection of two adjacent labels, the membership func-
tions are chosen to be of a Gaussian type with two different
widths, i.e. LHS (left-hand side) width and RHS (right-
hand side) width. Note also that Gaussian functions allow
for smoother inference output than other types of function
such as triangular or trapezoidal, and have the advantage of
being simply defined using fewer parameters, such as
width and peak position. Hence, the membership functions
of Fig. 4 are described by

_L=e)
2 .
e *lus lf x<c¢

ww=1" ©

o
e ¥ms if x>c¢

¢ is the peak position and o is the width of the membership
function. Table 3 gives the peak position and width
assigned to each label.

-

membership function
o 9 o © 9 o © 9
N w i w [} ~ [ ] ©
T T T T T T
A L L L L L

°
T
L

0 h f h I i
1 5 10 15 20 25 30 34

universe of discourse

Fig. 4 Membership functions assignment
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Table 3: Fuzzy labels: width and position

Label VL L A H VH
c 1 6 12 20 34
oLs 25 25 3 4 75
OrHs 25 3 4 7.5 75

VL =very low, L =low, A =average, H==high, VH == very high,
Obj 1=rank according to objective function in eqn. 7,
Obj2=rank according to objective function in egn. 8.

5 Multi-objective genetic algorithm for GPC
tuning factors selection

5.1 Coding of genetic algorithm

Coding of the genetic algorithm is based on defining the
number of individuals in the population and the chromo-
some length of each onc, using ‘concatenated binary
mapping’. This coding is usually realiscd by joining segment
codes of all the paramecters into one composite string. In this
study, thec GA was set with the following paramecters:

population size =34

chromosome length (bits) = 128
probability of crossover =0.95
probability of mutation =0.03
number of generations = 500

fitness scale = 10 x fitness rank + 100

Each individual was then organised into 128 bits, with
each block of 32 bits (a lower number of bits can be
choscn) representing the following parameters to be opti-
mised: N, NU, nand T, with 7(z" )= (1 — Tz~ ). Fig. 5
summarises the organisation of the chromosome.

The objective functions in cqns. 7 and 8 were used to
cvaluate all individuals of the population. However, because
the above functions are minimised, the least value returned
is the best. Hence, to obtain an objectivce fitness for the trial
cvaluations, the orders of magnitude arc reversed.

The following minima and maxima were assumed for the
GPC tuning parameters:

6 <N, <20

I <NU <5

l<n<4

030 < 7. < 0.95
It is worth noting that the coding of the jth parameter in a
string of codes represents a value S,,,; between the above

predetermined minimum and maximum constraints, which
is given by

i
Z aizif |

- Smin) = - ( 1 0)

Sval - Smm + (Smax *2/,*—|7

I T I T

n NU N,

bit 127 bit 31 bit 0

Fig. 5 Tipical coding of GPC tuning factors relating to one individual
within population
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o; arc binary code bits, starting with the least significant,
and /; is the code length.

5.2 Simulation results

A scries of simulations was conducted for optimising the
above tuning factors relating to GPC. As a process case
study, we used the muscle relaxation process associated
with the drug atracurium [2]. The continuous modcl
associated with the drug atracurium is highly nonlinear
and is identificd as of the Wicner structure:

X (1 4 10.6 s)e™

GO = = T ras (1 £ 344 )3 £31 5

(1

U is the drug input and X is the drug concentration in the
blood. The overall nonlincar model is obtained by combin-
ing eqn. Ll with the following:

X?“US

Llﬂ X298 + (0404)298 ( 12)
£, is the actual output (muscle relaxation).

To simulate the above model represented by eqns. 11
and 12 (which acts as the process block as shown in Fig.
1), a fourth-order Runge-Kutta method with fixed step
length was used for integration, together with a sampling
interval period of one minute. The GPC algorithm assumed
default paramcters of Ny =1, 4=0, and P(z° Y=1. For
parameter cstimation, a UD factorisation version of the
well known RLS algorithm was triggered at time 0 on
incremental filtered data. An initial covariance matrix of
cov,; = 100./ was uscd, where / is the identity matrix, with a
forgetting factor of p == 0.97. A third-order model with 3ds
and 3hs was cstimated, with the first b paramcter initialised
at 0. The following training set point profiles were used:

(a) 80% for the first (00 samples
(D) 95% for the next 100 samples
(¢) 90% until sample 250
(d) 95% until sample 300

A noise sequence of % and a disturbance of 5%, in the
form of an output change at time 70 min, were added to the
system.

The experiment used a GA to optimisc the tuning
parameters relating to GPC (N,, NU and T(z ")), in an
offline study, using the indices in eqns. 7 and 8 as
optimising criteria. The average, minimum distance, and
parcto ranking methods were compared with the proposed
fuzzy ranking method, as cxplained below. Note that as far
as eqns. 7 and 8 are concerned, values of 3 = 0.20, §=0.40
were used.

Table 4 shows results from runs conducted on the model
of eqns. 11 and 12. All ranking mcthods led to more or less
the same output horizon and control horizon. However, as
far as the filter characteristics arc concerned, the distance

Table 4: Objective functions and optimised GPC para-
meters using different ranking methods for multi-
objective genetic algorithm

Ranking methods  Objective functions N, NU n T,

IAE +ICE ITAE +ICE
Average 2980 24820 6 2 072
Distance 2670 25430 8 1 082
Pareto 2820 25010 7 2 062
Fuzzy 3260 24450 6 2 0.56
349
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ranking method failed to agree with previous guidelines on
how to select the order and filter cut-off frequency. These
guidelines recommend that the order should be at least
equal to 2 to hasten the roll-off, and the filter time constant
should be fast enough to reject disturbances effectively [2].
The hand-crafted fuzzy rules, which were easy to obtain,
have succeeded in reaching a reasonable compromise for
the GPC parameters, by producing a fast enough response
(N, =6) with good filter characteristics (T(z™')=
(1 — 0.56z71)?). Furthermore, the evolution of the objec-
tive criteria in time, shown in Fig. 6a suggests that the
fuzzy strategy led to more settled criteria values than those
obtained using the average ranking strategy, where a
compromise was being sought from one generation to the
next, as seen in Fig. 6b.

Fig. 7 shows the result of a run conducted in closed loop
using GPC, with the optimised tuning factors obtained
using the fuzzy ranking approach. As can be seen, despite
the noise and disturbance, the controller displayed reason-
able control activity, with the output tracking the targets
effectively.

disturbance
100 | } -
1 Ei g _ul
i
1 [H |l|
80 ik i 'ﬁ.!
i it 2 e {
{q 1
i le 2 [ *ﬁ"
60 gl i{
® =i i ) =ui
iy
40 ! 'Il'" A A |§|\ i ?
20 |
i
0 v
0 50 100 150 200 250 300

time, min
Fig. 7 Closed-loop control under GPC using multi-objective optimised
settings from fuzzy ranking method

——— output
—-— target
——— input
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6 Multi-objective genetic algorithm for SOFLC
design

6.1 Coding of genetic algorithm

As mentioned above, the fuzzy rules included in the
performance index of most SOFLC algorithms are similar
to those originally formulated by Procyk and Mamdani
[6]; in other words, a rule base containing at least 56 fuzzy
rules. In this study, we aim to use a considerably reduced
number of rules; 25 rules in total, which incidentally has
to be the same number of rules for the low-level simple
fuzzy controller: this reduced number of rules will still
make the controller retain its adaptive capabilities without
loss of performance. Traditionally, the structure of a fuzzy
rule is made up of the coding of the fuzzy sets of the
linguistic predicates of the rule. As a linguistic variable is
defined by its membership function, which is determined
by the position of its peak and the width (non-zero
membership grades), each linguistic fuzzy variable can
be represented by a two-part code: one for the position p
and the other for the width w [8]. However, note that, at
most, a third part can be used by adding a linguistic value
or name / [8].

As far as the performance index (PI) table (1) is
concerned, only the consequent part (the output, P,)
needs tuning, since it is this part that plays the role of
the adaptive mechanism. Furthermore, because the PI table
is configured as a ‘look-up table’, singleton values are used
[2, 11]. Hence, Fig. 8 shows a typical format for coding a
population of fuzzy rules within the PI table. Note that the
use of a ‘look-up table’ configuration in SOFLC has the
advantage of reducing the computational burden.

rule 1 rule 5

rule 6 rule 10

rule 21 rule 25
PP

Fig. 8 Coding of rule base relating to PI table of SOFLC

09l 1
0.8f -
07 .
0.6} NB NS z PS PB |
051 i
04 .

membership values

03 4
0.2F J
0.1 |

0 L L L
-1 -0.5 0 0.5 1

universe of discourse
Fig. 9 Definition of fuzzy sets
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Table 5: (IAE +ICE) and (ITAE + ICE) criteria for testing conditions with SOFLC for three patient

sensitivities

Ranking Low sensitivity Medium sensitivity High sensitivity

methods IAE + ICE ITAE +ICE IAE +ICE ITAE +ICE IAE+ ICE ITAE +ICE
No training 844.302 35340.299 715.292 25403.657 603.874 19873.367
Pareto 735.664 25624.442 633.833 21739.281 557.371 19267.719
Fuzzy 682.670 23608.763 567.921 20337.059 536.611 18013.472

For our research, the low-level simple fuzzy controller
assumed five fuzzy sets; negative big (NB), negative small
(NS), zero (Z), positive small (PS), and positive big (PB),
which have been defined in a universe linearly partitioned
as shown in Fig. 9.

In addition, the GA was set with the following para-
meters:

population size =34

chromosome length (bits) =250

probability of crossover =0.95

probability of mutation =0.06

number of generations = 500

fitness scale =10 x fitness rank + 100

40000
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25000
20000
15000
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5000

0
training testing training testing training testing
low sensitivity medium sensitivity ~ high sensitivity

a

900
800
700
600
500
400
300
200

100

training  testing training testing
fow sensitivity

training  testing
high sensitivity

medium sensitivity
b

Fig. 10  Training and testing error criteria for three patient sensitivities
Jfor SOFLC PI adjustment

a ITAE +ICE

b 1AE +ICE

no training

W pareto

 fuzzy

| =low sensitivity

m =medium sensitivity
h=high sensitivity
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The PI table includes 25 rules, with each rule having
only one parameter that needs tuning (the output of the
table). With 10 bits allocated to each parameter, the PI rule
basc will require a 250-bit chromosome.

6.2 Simulation results

For this series of experiments, thc model is described by
eqns. 11 and 12. A bolus dose of the drug was used
initially to speed up the response time. Three categories
of patient were used, depending on their sensitivity to the
drug; low, medium and high sensitivity. A training set point
profile of 90%, then 80%, was used and changed every
70 min, and a testing profile was chosen to have a set point
change of 95%, 80% and 90% every 70 min. Note that the
use of different set point profiles for training and testing

100 T T T

paralysis
90
80 { A

70 b
60
50
40 (i)
30

1 I
0 50 100 150 200
time, min
a

3.5

ITAE+ICE error

15 &

IAE+ICE error x20
ARAA_AMNM.- o oy

1 1 1 1 d
0 100 200 300 400 500
training number
b

Fig. 11 Simulation results of SOFLC using multi-objective genetic
optimisation with pareto ranking

a Simulation run using training set point profile
b Objective criteria
(i) drug input, (ii) number of rules
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has the advantage of indicating how robust a particular
control strategy is. The controller used in this series of
experiments was of an incremental type (linguistic PI). We
used a GA to optimise the PI table relating to the SOFLC,
in an offline study, using the indices in eqns. 7 and 8§ as
optimising criteria. We used three configurations for the
SOFLC algorithm: a SOFLC with a standard PI table [11]
(no training); a multi-objective GA-optimised PI table with
pareto ranking; and a multi-objective GA-optimised PI
table with fuzzy ranking.

Table 5 shows results from runs using three categories of
patient, according to thcir scnsitivity to the drug; low
sensitivity, medium sensitivity, and high sensitivity.

Figs. 10a and b illustrate the results for the ITAE + ICE
and TAE+ICE criteria. They clearly show that the
proposed fuzzy ranking method led to lower values for
the above objection functions than the other methods for
ranking. Figs. 11-16 show the results of runs for a
medium-sensitive patient (medium gain) using the pareto
ranking of individuals within a population of 34 and the
proposed fuzzy ranking method, respectively.

Comparing Figs. 1la and 14« for the training set point
profile, and Figs. 13 and 16 for the testing set point profile,
it can be scen that, although the performances appear to be
similar, a closc examination rcveals that the output
response in the fuzzy ranking casc tracked the set point
with a faster rise time, cspecially during the time phasc
140-200 min.

output gain

c_error

put

Pl_out

c_error 4 error

Fig. 12 Simulation results of SOFLC using multi-objective genctic
optimisation with pareto ranking

a Control surface after learning

b Modified PI surface
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Fig. 13  Simulation results of SOFLC using multi-objective genetic
optimisation with pareto ranking
Simulation using training st point profile
(i) drug input, (ii) number of rules

Furthermore, Fig. I5 a shows a rule base with a flatter
surface around the centre than that of Fig. 12« (pareto ranking
method). A similar pattern was also obtained with low and
high-seusitive patients, although this is not shown here.
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b
Fig. 14  Simulation results of SOFLC using multi-objective genetic
optimisation with fuzzy ranking

a Simulation run using training sct point profile
h Objective criteria
(i) drug input, (i) number of rules
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Fig. 15  Simulation rvesults of SOFLC using multi-objective genctic
optisisation with fuzzy runking
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b Objective criteria
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Fig. 16  Sinudation results of SOFLC using multi-objective genetic
optimisation with fuzzy ranking

Simulation using training set point profile

7 Conclusions

It is widely recogniscd that, for control designs to be
flexible, they need to incorporate tuning factors (‘knobs’)
to allow them to be tailored to particular applications.
Concomitant disadvantages of a relatively large number

IEE Proc.-Control Theory Appl., Vol 147, No. 3, May 2000

of tuning factors are the lack of clear guidelines for optimal
settings. In this study, we have looked at two adaptive
control schemes, which although similar in philosophy, can
be classificd as two different paradigms: onc is a mathe-
matical modcl-bascd technique widely known as the genet-
aliscd predictive control (GPC) algorithm; the other is a
fuzzy linguistic based technique known as the self-orga-
nising fuzzy logic control (SOFLC) algorithm. A previous
comparative study [2] has highlighted strengths and weak-
nesses of the two paradigms in a scnsitive cnvironment
such as muscle relaxation therapy and anaesthesia.

As far as GPC is concerned, stability thcorems relating
to the choice of these factors have already been reported
[3] and they mainly relate to linear systems, whereas in this
study we arc concerncd with highly nonlincar systems.
Coupled with thesc results is the better understanding over
the years of their influence on performance and robustness,
which make the whole GPC design so attractive to acadce-
mia and industry alike [2]. In this research, we have
proposcd a method of tuning the GPC parameters using
multi-objective GAs. This study follows other studies with
the same agenda but using different tools, such as the
analysis via stability margins [3-5]. For SOFLC, wc
focused on the optimal tuning of the reference trajectory,
which is normally represented by a performance index (Pl)
table. Procyk and Mamdani [6] proposcd the original Pl
table, which was the same table used in many engineering
applications. We used the optimisation technique as above
to find the optimal settings for the table. The problem is
simple in single objective optimisation and becomes more
‘tricky” when two ot more objectives are specified.

Indeed, in multi-objective optimisation, the concept of
optimality becomes relative as a number of potential best
candidates arc proposed, rather than only onc best candi-
date, for the optimisation problem. As a result, a number of’
ranking mecthods have been proposed, including the,
pareto, distance and average ranking methods, with one
common feature; to decide which candidate is the best. The
main difficulty we found with the parcto ranking method
was the choice of the constraints boundaries to decide on
the feasibility constraints, other than a dry run using
another type of ranking method (average ranking method
for example) which helps decide on these boundaries. As
far as the average and distance ranking mecthods are
concerned, we believe that the final rank they gencrate is
so crisp that the decision seems almost too rigid. There-
fore, it does not represent the same judgement that humans
would make if presented with the same knowledge of the
data.

Hence, we have proposed a method of ranking bascd on
fuzzy rcasoning. The idea scems reasonable, especially in
the SOFLC case where the control concept is fuzzy
anyway. The idea consists of ranking the individual of a
population according to each objective function. These
ranks arc then fuzzified and fed into a fuzzy decision
table with rules, which arc built using human judgement.
Note that this idea can casily be extended to include more
than two objective functions using nested if then rules. The
advantages of this mcthod include various features of
ordinary decision-making, i.c. averaging, minimum
distance, weighting ctc.

One important issuc in any optimisation problem is the
selection of the fitness function. As far as this study is
concerned, we chose the (/AE+ ICE) and (ITAE+ ICE)
criteria, as defined by eqns. 7 and 8. The choice of thesc
two functions is the trade-off between obtaining a relatively
fast responsc with a rcasonable control activity. For exam-
ple, in the GPC case, the control horizon was allowed to
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vary up to maximum value of 5, which usually makes the
control signal highly active, especially in the stochastic
case. Hence, there was a need to use low weighting factors
for IAE and ITAE in eqns. 7 and 8 with respect to the /CE;
we used 0.20 and 0.40, respectively. Note that we did not
find the proposed method sensitive to this choice, as long
as the right priorities between IAE or ITAE and ICE in the
above objectives are taken into account.

For GPC parameter tuning, we chose the prediction
horizon N,, the control horizon NU and the filter poly-
nomial 7(z~'). The proposed optimisation tool succeeded
in obtaining a compromise set for these parameters. It is
surprising, but also encouraging, that the order of the
obtained filter is higher than 1, which increases the
frequency roll-off; incidentally, such a filter order always
leads to a more robust control structure, as far as distur-
bance rejection and unmodelled dynamics are concerned
[4]. Particular attention must be paid to the choice of the
lower and higher boundaries of these tuning factors. For
example, to avoid GPC reverting to a minimum variance
controller (N, = NU), the higher boundary of NU should be
chosen to be less than the lower boundary of N,. In
addition, the multi-objective GA optimiser should be run
in stochastic mode, with a possible injection of sudden
disturbances, which has the advantage of obtaining a good
T(z~") filter polynomial as possible.

As far as SOFLC is concerned, the objective was to use a
small number of rules in the PI table, without the loss of
the reference trajectory properties of the table itself. The
tool optimiser succeeded in reducing the number of rules to
25 from the original 56. Simulation studies on a difficult
nonlinear process, i.e. the muscle relaxation process,
showed that the performance obtained was still good; in
other words, the low-level simple fuzzy logic controller
was guided by a good reference trajectory with a much
reduced number of rules. Future work will concentrate on
the use of this scheme within a multi-input multi-output
(MIMO) environment with up to eight objective functions
that have to be carefully chosen, in order to reflect a
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particular performance. Such MIMO environment, in our
case, is the realm of anaesthesia, which includes muscle
relaxation (the subject of this study), unconsciousness, and
analgesia (pain relief) together with cight ‘quality’ factors
to optimise.

8 Acknowledgment

The authors acknowledge financial support for this work
from a Leverhulme Trust Research Grant.

9 References

1 CLARKE, D.W.,, MOHTADI, C., and TUFFS, PS.: ‘Generalised
predictive control-part T and II’, Automatica, 1987, 23, pp. 149-160

2 MAHFOUF M., and LINKENS, D.A.: ‘Gencralised Predictive Control
and Bioengincering’, (Taylor and Francis Publishers, 1998)

3 CLARKE, D.W, and MOHTADI, C.: ‘Properties of genecralised
predictive control’, dutomatica, 1989, 25, pp. 859-875

4  ROBINSON, B.D,, and CLARKE, D.W.: ‘Robustness effects of a
prefilter in generalised predictive control’, /EE Proc., Control Theory
Appl., 1991, 138, pp. 2-8

5 MCINTOSH, A.R., SHAH, S.L., and FISHER, D.G.: ‘Selection of
tuning parameters for adaptive generalised predictive control’. Proc.
American Control Conf., 1989, Pittsburg, USA, pp. 1828-1833

6  PROCYK, T.J., and MAMDANI, E.IL: ‘A linguistic self-organising
process controller’, Automatica, 1979, 15, pp. 15-30

7  PEDRYCZ, W. (Ed): ‘Fuzzy evolutionary computation’ (Kiuwer
Academic Publishing, Boston, USA, 1997)

8 LINKENS, D.A., and NYONGESA, H.O.: ‘Genetic algorithms for
fuzzy control’, IEE Proc. Control Theory Appl., 1995, 142, (3), pp.
i61-176

9  MAMDANI, E.H.: ‘Applications of fuzzy algorithms for control of a
simple dynamic process’, IEE Proc. Control Theory Appl., 1974, 121,
pp. 1585-1588

10 ZADEH, L.A.: ‘Fuzzy sets, Inform. Control’ 1965, 8, pp. 338-353

Il MAHFOUE M., and ABBOD, M.E.: ‘Self-adaptive and self-organising
control applied to nonlinear multivariable anaesthesia: a comparative
modcl-based study’ ir ‘Intelligent control in biomedicine’ LINKENS,
D.A. (Ed.) (Taylor and Francis Publishers, 1994) Chap. 4, pp. 79-132

12 HOLLAND, J.H.: ‘Genetic algorithms and the optimal allocation of
trials’, SIAM J. Comput., 1973, 2, pp. 89-104

13 GOLDBERG, D.E.: ‘Genetic algorithms in scarch, optimization and
machine learning” (Addison-Wesley Publishers, 1989) ISBN 0-201-
15767-5

14  HOLLAND, J.H.: ‘Adaptation in natural and artificial systems’ (Addi-
son Wesley Publishers, 1975)

IEE Proc.-Control Theory Appl., Vol. 147, No. 3, May 2000



