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Abstract 
Improvements in performance modeling and identification of computational regimes within software libraries is a 
critical first step in developing software libraries that are truly agile with respect to the application as well as to the 
hardware. It is shown here that Pareto ranking, a concept from multi-objective optimization, can be an effective tool 
for mining large performance datasets. The approach is illustrated using software performance data gathered using 
both the public domain LAPACK library and an asynchronous communication library based on IBM LAPI active 
message library. 


1. Introduction 
The porting of a software library across computers of different architectures entails more than just running the existing 
code on the target machine. Performance can suffer much from a straightforward port. The first line of attack is to seek 
optimal values of implementation parameters, such as block sizes, unrolling loop level, etc. Deep memory hierarchies 
ranging from scalar and vector registers, several levels of cache and to possibly remote memory or disk as well as other 
advanced architectural features all increase the complexity of software performance tuning, see for example10. The 
second line of attack is often to replace the underlying algorithm, a costly process. Performance tuning can thus be a 
major operational cost for software that spans several generations of computers.  
 
The ideal agile software library would auto-calibrate its internal algorithms and parameters to maximize the 
performance of any given application using it in any given runtime environment. Agile software libraries that 
implement the sequential Basic Linear Algebra Subroutines (BLAS) interface4 such as ATLAS37 and PHiPAC3  
calibrate some of their internal parameters and algorithms during an initial training phase at installation time. The 
success of these libraries is in good part based on a precise knowledge of which software parameters matter for dense 
linear algebra on most computer architecture.  The main three components of the PHiPAC approach are: an automatic 
code generator that produces the trial source code, support for robust benchmarking of the resulting code, and a search 
algorithm that explores the space of feasible codes. The scope of PHiPAC extends beyond linear algebra but its main 
impact so far has been in generating optimized matrix-matrix multiplication software. The most common algorithms for 
matrix-matrix multiplication have the property that they can be expressed in terms of either matrix blocks or matrix 
elements without altering their overall control structure. The matrix-matrix multiplication algorithms generated by 
PHiPAC are composed of nested matrix multiplication algorithms that achieve an optimal trade-off between hardware 
features for a given matrix size. At the register level, all loops are unrolled. The optimal amount of loop unrolling, or 
register block size, is determined by the relative speed of integer arithmetic compared to that of floating point 
arithmetic. At the next higher level, all matrix blocks must fit entirely in the level-1 data cache. The optimal level-1 
cache block size is determined by the relative speed of level-1 cache accesses compared to floating-point arithmetic.  
The next higher level is tuned with respect to the level-2 data cache, etc. The ATLAS Project on the other hand, focuses 
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on linear algebraic computations but considers a search space that extends beyond register and data cache block sizes; it 
also covers matrix-vector operations that are significantly more data intensive than the matrix-matrix operations. The 
automated empirical optimization software (AEOS) approach of ATLAS and PHiPAC can be very effective and it is 
being actively applied to other domains such as signal processing algorithms13, 32. The Fast Fourier Transform (FFT) 
and related transforms can be seen as specialized matrix multiplications and in that sense they are closely related to 
PHiPAC and ATLAS. They do have some additional levels of complexity. First, the prime number decomposition of 
the size of their input, which was first exploited in adaptive software by Frigo13, determines the required number of 
floating point operations. Second, those computations are data intensive. This last point raises what may be the main 
obstacle to extending the AEOS approach to distributed memory computing platforms, or multi-computers, namely the 
need to tune communication operations for optimal performance. 
 
Extending the two-stage approach of ATLAS and PHiPAC to larger libraries, such as LAPACK2 or SCALAPACK7, is 
an active area of research. One hurdle is the size of the datasets that results when all software parameters are taken into 
account. For example, a parallel algorithm for solving a dense distributed system of linear equations AX=B, where A is 
a mxn and B is mxq has about 8 parameters: 3 parameters govern the size of the problem, 2 parameters govern the 
shape of the process mesh, 2 parameters govern the data distribution of A, one arithmetic block size governs the size of 
Level 3 BLAS arguments14, 20. The problem sizes and the arithmetic block size affect the amount of level-3 BLAS 
operations that can be performed, which in turns has an impact on which algorithm is most efficient. On the other hand, 
the parameters governing the data distribution impact the number of communications and their volume. The 
relationship between such software parameters and hardware features that drive the wall-clock time is complex. First, 
one needs to determine which hardware features drive the wall-clock time for a given class of library applications and 
then one needs to relate those hardware features to software parameters that are under the control of the library or the 
application. A third aspect becomes important in the context of automatically tuned, agile, libraries: due to the 
complexity of the algorithms and the generality of the library API, different hardware events drive the wall-clock time 
performance for different applications of the library. For instance, the wall clock time for solving AX=B with a dense 
matrix A may be related most closely to the number of branches and the amount of integer arithmetic for a small 
matrix, to the number memory load and store operations for a medium sized matrix, and to the amount of floating point 
operations for very large matrices. Advances in computer hardware and architecture have enabled the development of 
on-chip registers, so called hardware event counters, that can tally such things as data and instruction cache misses, 
branch misprediction, etc. These hardware event counters are now widely available through Application Programming 
Interfaces (API) such as PAPI5, RS2HPM23, Rabbit19, Photon MPI36, WatchTower21. It is thus possible to gather 
datasets that combine software parameters and hardware event counts including wall-clock time. Such datasets enable 
the systematic search for performance regimes, which are regions of the input space where some specific combinations 
of hardware event counts are highly correlated to the wall clock time.  Agile software libraries should be able to detect 
and adapt to changes in performance regimes. 
 
Floating point arithmetic dominates the performance of most linear system solvers for very large dense linear systems, 
but communication is dominant for medium sized distributed linear systems. Automatic tuning of communication is 
therefore at the center of the problem. There is a large body of research aimed at the optimization of communication 
within specific parallel applications such as linear algebra, FFT's etc. There is also a growing body of research done on 
optimization of generic communications9, 27, 29. Whereas the execution time of any basic floating-point operation can be 
assumed constant, the execution time of point-to-point communication, such as send and receive, depends on the length 
of its message. This complicates matters, because the optimization can either reduce the number of communications or 
the volume of data moved across process boundaries. Collective operations can be very effective for dense linear 
algebra computations26 but their runtime depends also on the number of processors executing the operation. The 
automatic tuning of collective communication has recently received some attention34. Collective communication 
operations defined in the Message Passing Interface Standard (MPI)15 are blocking. Each operation corresponds to a 
single procedure call that should be issued by all active processes before the operation can complete. Such operations 
have a well-defined runtime and are good candidates for automatic tuning. Asynchronous communication operations, 
implemented on top of multiple threads30, one-sided communications15, 33 or active messages22, 6 may be key to scalable 
statistical estimation algorithms24, 25, but pose other challenges if only because their runtime is not so well defined. 
They have an initiation time, a completion time in addition to a barrier time that each correspond to a distinct phase of 
communication. The initiation time is the time required for the origin process to issue a communication request to a 
target process. The completion time is the time needed for the communication operation to complete at the origin once 
it has been initialized. The barrier or global time is the minimum time between two barriers that enclose this 
communication operation.  
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Communication optimization at the application level is often most profitable but harder to extend to other applications; 
it is akin to replacing a dense matrix computation by a faster sparse matrix computation. Optimization at the 
middleware level could be for instance to switch between two possible broadcast algorithms based on the length of the 
message and the number of processors. Such optimization is akin to replacing a loop-based matrix-matrix 
multiplication algorithm by the theoretically faster recursive Strassen Algorithm. If one follows the analogy between 
floating point and communication operations, a natural question to ask is what are the block sizes that characterize 
communication operations and which can be profitably incorporated into an Application Programming Interface (API)? 
That problem is hard: the level of noise introduced by the underlying software and hardware can be very high, the 
performance data has more dimensions than for floating point computations, the data itself has some statistical 
properties that makes it unique. Software performance data is typically unbalanced, possibly longitudinal, meaning that 
the same events are measured many times while others may be measured only a few times. Missing values do occur 
because of overflows in hardware event counters but they are rarely missing at random. Observations may be 
statistically dependant due to contentions for network or CPU resources.  
 
The problem addressed in this paper is that of finding related hardware events in a large performance dataset. 
Commonly several possibly conflicting “measures” of relatedness are agglomerated together into a single figure of 
merit from which experiments can be designed and conclusions can be drawn. However, the fine details of the 
associations between hardware events can be lost that way. It is shown experimentally how concepts from multi-
objective (or vector) optimization11 may be enable the extraction of fine structure in the data that may not be attainable 
by classical data mining techniques. This is a small but important step toward building agile communication libraries. 
The relevant concepts from data mining and mathematical optimization are reviewed in Section 2. That section 
concludes with an application of these concepts to the LAPACK library. Although the LAPACK library is well known 
and sequential, that first example provides some validation of the subsequent application to a novel communication 
middleware. The latter middleware was the main reason why this work on data mining was undertaken in the first 
place. Section 3 is therefore the main section. Conclusions and directions of further research appear in Section 4. 


2. Performance Data 
Multivariate statistics have been used for some time in the context of performance modeling of parallel software. 
Recently Clement and Quinn8 showed how to compute confidence intervals on the expected runtime of programs using 
statistical linear models. A (fixed effects) linear model consists of a system of linear equations, say r = Ax+e together 
with some assumption on the statistical distribution of the components of the random error vector e. The matrix A 
corresponds to known parameters and the vector x is a vector of unknown but fixed parameters. The purpose of the 
computation is to estimate x and e in such a way that the estimated error vector matches some given statistical 
assumptions as closely as possible. An important case is when the components of the vector e are assumed independent 
and normally distributed with zero mean and unit variance; the computed estimate for x is then exactly the least-squares 
estimate. The two important aspects of a linear model is that first, one can incorporate a-priori knowledge of the 
structure of the error; and second, one can compute confidence intervals for e and hence for r. However, the model is 
linear and may be accurate on only part of the data. Figure 1 illustrates this point by showing the base 10 logarithm of 
the wall-clock time for a straightforward broadcast of a length h vector of double precision numbers across a network 
of p/2 Symmetric Memory Multiprocessors (SMPs) with 2 processors per node. The actual platform is a cluster of HP 
workstations with 1.2 GHz Itanium II dual processor nodes connected by a Quadrics Elan3 Interconnect. The parameter 
space has two dimensions: the number p of processors and the length h of the vector; it was sampled along a 
logarithmic grid in both dimensions from 1 to 128 processors and from 1 to 224=16777216 64-bit numbers. All the 
measurements, including repetitions, took about 128 CPU hours. For actual numerical kernels such as parallel matrix-
matrix multiplications, CPU resource allocations and budgets can make random sampling of the parameter space a 
necessity. The main point of Figure 1 is that four, possibly five, regions can be seen, each corresponding potentially to 
a different linear model. The first region, denoted A, contains all measurements for a single processor, which involve 
no communication. The second region, denoted B, consists of all two-processors measurements, which involve a single 
send operation although not necessarily between two processors on the same node.  The third region (C) in Figure 1 
consists of all measurements for more than two processors but with vector lengths vector lengths not exceeding 65563. 
The fourth region (D) includes all other measurements. The upper left corner of the latter region corresponds to a wall 
clock time of 14.3 seconds with its nearest neighbors on the grid at 5.37 seconds for 128 processors, and 3.56 and 1.34 
seconds for 64 processors. The legend for this plot is misleading because no measurement exceeds 14.3 seconds.  
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Figure 1 Base 10 logarithm of the runtime of MPI_Bcast on a cluster of 2-way SMP nodes, see text for details. 


 
Table 1 shows clearly that different regions of the input space correspond to different least squares estimates. The 
runtime r of a broadcast on 1 and 2 processors, regions A and B respectively, is modeled as r=c+th, where l is the 
latency and b=64*106/t is the bandwidth in MB/s and h is the message length in bytes. Over the other regions, the two 
most common runtime models of broadcast are r=(l+th)log(p) for algorithms based on a single process tree and 
r=llog(p)+th for scatter-gather broadcasts based on recursive-doubling; only the latter model yields realistic 
bandwidth estimates. Table 1 shows a fifth region (E) that encloses tightly the right-hand side upper corner of Figure 1. 
Latency estimates l* vary widely. On this particular system the peak bandwidth for point-to-point communication 
across nodes is 300MB/s latency: the bandwidth estimates b* on the bottom four rows are realistic. The larger than 
real-life b* computed for the 2-processor case reflects that some processor pairs reside on the same node. There does 
not appear to be a single estimate of either latency or bandwidth that is representative of the whole sampled input 
space. A natural question then is how to find a minimum number of convex regions that cover the sample space and 
within which least squares estimates are accurate. That problem is closely related to the problem of identifying 
performance regimes.   
 


Table 1 Least squares estimates of latency and bandwidth depend on which subset of the data is used. 


Region log(p) log(h) l* b* 
A 0 0..24 .334ms 875TB/s 
B 1 0..24 2.46ms 5.29GB/s 
C 2 .. 7 0 .. 16 966ms 215MB/s 
D 2 .. 7 18 .. 24 125ms 220MB/s 
B+C+D 1 .. 7 0 .. 24 28.4ms 198MB/s 
E 5 .. 7 22 .. 24 81.1ms 143MB/s 


 
Vetter et al1, 35, 36 advocate the use of several traditional multidimensional statistics in the context of high-performance 
computing, mostly based on data clustering. For instance, they were able, by clustering trace data, to differentiate 
between slave and master processes as well as between processes communicating through OpenMP from those 
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communicating through message passing. Ahn and Vetter also recommend using Factor Analysis and Principal 
Component Analysis (PCA) along with data clustering for finding small sets of representative hardware event counters 
that capture the runtime behavior of complex applications on Teraflop platforms. Factor analysis, like linear model 
estimation, regroups many procedures and algorithms to classify features (here hardware event counts) based on their 
pair-wise correlations; the correlation between for two events x and y with sample means <x> and <y> is ratio of the 
sample variance of the product xy by the product of the sample variances of x and y. Principal components are simply 
the left and right factors (U and V) of the singular value decomposition of the data matrix A=UDV' where U and V are 
orthogonal and D is a diagonal matrix. One difficulty with the SVD is that it is not defined when A has missing entries.   


2.1 Data Clustering 
The purpose of (data) clustering is to partition a set of observations into disjoint subsets (or clusters) so that 
observations within each cluster are in some sense more similar to one another than to observations belonging to other 
clusters, see for example the book by A. Gordon17 and its bibliography. The notion of similarity can be implemented in 
many ways but very often, when the data is numeric it is defined as proximity in the Euclidean sense. The numerical 
data can also be transformed in many varied ways to increase the signal-to-noise ratio before a clustering algorithm is 
applied. Numeric data is often represented as a table with a fixed number of columns and one row for each observation. 
Missing values can be estimated (imputed), or can be left intact and treated as such by the clustering algorithm. It is 
customary to remove rows and columns that either contain too many missing values or whose values are all nearly 
equal. Commonly, the 'cleaned' data is rescaled so that either the rows or the columns have a mean zero and a unit 
standard deviation or so that their range lies between 0 and 1. The application of scaling and more elaborate 
transformations to the original data to expose the underlying structure is an art and several attempts may be necessary 
before some structure is observed which can then be analyzed statistically. This is easy to see because scaling the rows 
of a data table does not preserve their Euclidean distance. 
 
There are two main strains of clustering algorithms. The iterative ones, such as k-means, start with some putative 
cluster definitions and repeatedly improve these definitions until no further progress occurs. In the case of k-means, 
each cluster is defined by its center of mass, or centroid.  The choice of the initial centroids has an impact on the 
computed clusters. The second strain of clustering algorithm, hierarchical clustering algorithms produce a nested 
sequence of partition ranging from the partition that groups each observation into a separate cluster to the partition that 
regroups all observations into one cluster. The agglomerative hierarchical algorithms start from the former partition; 
divisive algorithms start from the latter. Single-linkage clustering can be implemented by removing from a minimum 
spanning tree of the data all those arcs that exceed a given threshold. The computed clusters are the remaining 
connected components. Single-linkage tends to produce elongated clusters and is often complemented by a few steps of 
another clustering algorithm such as k-means. The clustering algorithm used here is a slight variant of (agglomerative) 
complete-linkage. At each step of complete-linkage, the two clusters merged are those that result in a cluster of smallest 
possible diameter, those are the two nearest clusters.  
 
The diameter of a cluster is the largest distance separating any two of its members. Commonly, the diameter is 
computed relative to the Euclidean distance and this is most efficiently done when all distances between pairs of 
clusters fit in an array in level-1 cache. The diameter computed from the L1 distance is simply the longest side of the 
smallest box enclosing both clusters and whose sides are parallel to the coordinate axes. Using the L1-norm eliminates 
the need to keep in main memory the matrix of pairwise distances. Second, every cluster that may still be merged into a 
bigger one is associated with a pointer to a near neighbor cluster. Traditionally those pointers are to a nearest neighbor 
cluster. When two clusters, say Ci and Cj are merged and form a new cluster Ck, all the nearest neighbor pointers 
directed at either Ci or Cj need to be updated. Say there is a pointer from Ch to Ci. In the absence of a distance matrix, 
one is forced to compute anew the distance between Ch and every other active cluster including Ck. Thus, for a dataset 
with n observations and in the absence of a distance matrix, the standard implementation of complete linkage may 
require up to O(n3) distance computation to terminate. Here, the near neighbor pointer of Ch is reset to a randomly 
selected cluster among the nearest ones that are not already pointing toward a nearer neighbor than Ch. The near 
neighbor links are set initially using a minimum spanning tree of the data. It has been observed in practice, that with 
this heuristic each merge requires at most three passes of the data on average in which case the overall runtime is 
quadratic, the worst case is still O(n3). The book by Gordon contains the details of other fast serial clustering 
algorithms.  In terms of clustering, the main impact of these modifications is on the runtime but the substitution of 
nearest neighbor links by randomly selected near neighbor links could affect the computed clusters.  
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Finally, missing values are kept in the data and are accounted for during distance computations in a most standard way. 
Consider, for example, two vectors u and v, say of length k, with u0 unknown and u1.. k-1 and v0..k-1known; the distance 
between u and v is the distance between u1.. k-1  and v1.. k-1 multiplied by a factor 1-1/k, recall that the L1 metric is used 
here. Each code fragment for which counter increments was collected was manually enclosed in a loop that ranged over 
all measurable hardware events. The resulting readings were then inserted into a single data record. The reason for 
doing so is that the number of counters that can be read simultaneously is limited and that often many pairs of hardware 
events cannot be monitoring concurrently without some additional software support. In so doing, it is assumed that the 
hardware event counters would be incremented by (nearly) the same value at every step of the enclosing loop. To be 
exact, several counters could have been read simultaneously and inserted into a single data record with all other entries 
missing. The resulting dataset could have had in excess of 80% missing values, many more than can be accommodated 
by most existing statistical analysis algorithms. 
 
The following example illustrates hierarchical clustering and will serve later to introduce concepts from vector 
optimization. The purpose is to see how six hardware events are related to one another during the completion phase of a 
distributed hash table24. There are 14268 samples from randomized micro benchmarks described in Section 3. The 
events are labeled: BRU_IDL_B (number of cycles the branch unit was idle), L2_STM_B (number of level 2 cache 
store misses), BTAC_M_B (number of branch target cache misses), PRF_DM_B (number of data prefetch cache 
misses), PR_PRC_B (number of correctly predicted conditional branches) and SYC_INS_B (number of completed 
synchronization operations). Those events correspond to a completion phase and the suffix _B stands for blocking. The 
number of events was chosen so that the example remains manageable for a printed document. Here the vector of 
values associated with any particular hardware event is called a profile. Each profile has been scaled so that its entries 
range between zero and a unit. Hardware events that are tightly coupled are likely to correspond to similar profiles, and 
one may further expect that the Euclidean distance between these profiles once scaled will be small. That is profiles 
that form tight clusters may also measure closely related things. Table 2 shows the names and distances between every 
pair of profile vectors. The first cluster defined by complete-linkage is C7={L2_STM_B, BTAC_M_B} whose diameter 
is 1.63. At this point {L2_STM_B} and {BTAC_M_B} are removed from consideration and nearest neighbor 
relationships are recomputed using the newly formed cluster. For small data sets, the rows in Table 2 that correspond to 
L2_STM_B and BTAC_M_B could be merged into a single row for the new cluster, and similarly for the columns.  
The operation is simple; the entries in the new row for C7 are the maximum values for the corresponding entries of the 
rows for L2_STM_B and BTAC_M_B, similarly for the new column. 
 


Table 2 All Euclidean distances among six profiles vectors: the minimum distance is shown in bold face.  


 BRU_IDL_B L2_STM_B BTAC_M_B PRF_DM_B BR_PRC_B SYC_INS_B 
BRU_IDL_B 0 3.08 3.86 2.74  1.86 2.61 
L2_STM_B 3.08 0 1.63 2.17 3.52 4.59 
BTAC_M_B 3.86 1.63 0 1.99 4.37 5.43 
PRF_DM_B 2.74  2.17 1.99 0 3.20 4.20 
BR_PRC_B 1.86 3.52 4.37 3.20 0 1.79 
SYC_INS_B 2.61 4.59 5.43 4.20 1.79 0 


 
 
The next clusters are in order C8={BR_PRC_B, SYC_INS_B} with radius 1.79; C9={C7, PRF_DM_B} with radius 
2.17; C10={C8, BRU_IDL_B} with radius 2.61; and C11={C9, C10} with radius 5.43. The whole process is captured in a 
tree, known as a dendogram, where the profiles are represented by leaves and computed clusters correspond to internal 
nodes. The dendogram for the data shown in Table 2 appears in Figure 2. The number of clusters in the final partition is 
determined by stopping the agglomeration at an appropriate step, and this flexibility compared to say k-means, is 
another distinguishing feature of hierarchical clustering algorithms. Once a dendogram has been computed the question 
remains as to which clusters are real and which are numerical artifacts.  
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Figure 2 Six hardware event profiles and the corresponding dendogram computed by complete linkage. 


2.2 Pareto Ranking 
The estimation of the number of clusters present in a dataset involves several conflicting goals. On one hand, the 
computed clusters would ideally be as homogeneous as possible; homogeneity can be defined in many ways, for 
instance as the diameter of the given cluster, as the maximum distance from its centroid, or even as the likelihood of its 
members obeying a Gaussian distribution. On the other hand, the computed clusters would ideally be as far apart as 
possible; separation between two clusters can also be defined in many ways, such as the diameter of the union of the 
two clusters, or the distance between their centroids. Although quantitative measures of separation and homogeneity (or 
its opposite heterogeneity) need not be commensurate, they are routinely combined into a single figure of merit that is 
included into a threshold rule. One such rule found in practice is that the ratio R of the diameter of the largest cluster to 
that of the entire dataset should be as large as possible without exceeding a given threshold (say 75%). Milligan and 
Cooper28 review 30 such rules and do not find one that is systematically better. In addition to homogeneity and 
separation, a priori knowledge might constrain cluster membership, or one might be interested in separation and 
homogeneity with respect to similarity measures that did not drive the classification. For the illustration, consider three 
"measures" of partition quality based on using the L2 distance: H1 is the average diameter of active clusters, S1 is the 
average minimal distance between nearest neighbor clusters, and R.75=|R-0.75| the absolute value of the difference 
between R and its threshold 0.75. 
 
The values of S1, H1 and R for each step of complete linkage applied to the data in Table 2 are shown in Table 3. For 
clarity sake, denote by k the partition of the data into k clusters. The best partition according to the 75% rule is 2. 
From a different perspective, none of 6 through 3 is better than the others with respect to both maximizing S1 and 
minimizing H1. The technical term is that 6 through 3 are non-dominated (in the Pareto sense and relative to the set 
of computed partitions). The next before last partition, 2, is dominated by 3 but not any of 4, 5 or 6. Along this 
line of reasoning 3 would be the natural partition to choose. The important point here is that either ways a decision is 
made based on what are the important characteristics of good partitions for the problem at hand. Pareto ranking 
provides a means to explore such (often implicit) assumptions.  
    


Table 3: Measures of separation and homogeneity for each step of complete linkage for the data in Table 2. 


Partition Name Last Cluster Formed S1  H1  R.75  
6 Initially  1.78 0.00 0.75 
5 C7 1.96 0.33 0.45 
4 C8 2.39 0.86 0.42 
3 C9 3.03 1.92 0.35 
2 C10 2.82 2.71 0.04 
1 C11 N/A 5.43 0.25 


 
Let there be some number of independent measures of partition quality that one particularly cares to maximize, say m1 = 
S1, m2 = -H1, and m3 = -R.75. The best partitions among all those computed are those that cannot be improved on all 
accounts. Formally, a partition k is non-dominated in the Pareto sense (relative to the set of computed partitions) if 
there does not exist another partition h such that: mi (k) ≤ mi(h) for every 1≤i≤3 and at least one of those inequality is 
strict. In this paper, a non-dominated partition will be called efficient although strictly speaking the partition may be 
dominated with respect to the set of all possible partitions of the data. In what follows, a strong cluster is one whose 
formation resulted in an efficient partition. Pareto efficiency can be used as above to estimate the number of clusters in 
a dataset; but the actual usefulness of Pareto dominance actually comes from the light it sheds on the transitions from 
"strong" to "weaker" partitions and vice-versa within a single dendogram as well as between related dendograms. The 
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notion of strength is translated here in terms of Pareto ranks. Efficient partitions are assigned a rank of 0. The Goldberg 
ranking algorithm16 assigns rank k+1 to all those partitions that would become efficient if all partitions of rank at most 
k were removed from consideration. In essence, the Goldberg rank measures the distance between a datum and the set 
of non-dominated vectors; its worst-case computational complexity for n partitions relative to h metrics is O(n3h). The 
Fonseca-Fleming rank12 of a partition is the number of partitions that dominate it; its worst-case complexity is O(n2h). 
The Pareto rank of a cluster computed by a hierarchical algorithm is the rank of the corresponding partition of the data. 
Neither ranking scheme "dominates " the other. The Goldberg rank is typically more uniform but also harder to 
compute than the Fonseca-Fleming rank because it has as many steps as there are levels in the dataset. The Fonseca-
Fleming scheme penalizes partitions in densely sampled regions of the Pareto front, which is the set of globally 
dominant vectors, and although parallel ranking algorithms are not considered here their worst case communication 
requirement is O(n2h). The Goldberg rank is illustrated in Table 4; it is used throughout the paper. The second through 
seventh columns of Table 4 show the relative strengths of the corresponding partitions relative to m1, m2 and m3 in that 
order. For example, the 101 entry at the intersection of the row for 5 with the column for 6 means that m1(5)>m1(6), 
m2(5)≤m2(6), and m3(5)>m3(6) or equivalently that S1(5)>S1(6), H1(5)≥H1(6), and R (5)<R(6). The symbol x 
is used to denote a missing value. The rightmost four columns show the Goldberg rank computed for various 
combinations of quality measures, the ± superscripts denote maximization or minimization of the corresponding 
measure. In the text that follows, unless otherwise specified, the Goldberg rank is computed relative to S1


+, H1
- and 


maximizing the minimum cluster density, which is the ratio of the number of data records in the cluster divided by the 
volume of the smallest box enclosing that cluster.  


Table 4 Goldberg ranks for the data in Table 3 using different combinations of cluster quality measures.  


Partition Name 6  5 4 3 2 1 S1
+,H1


-,R.75
- S1


+,H1
- S1


+,R.75
-  H1


-,R.75
- 


6 xxx 010 010 010 010 x10 0 0 3 0 
5 101 xxx 010 010 010 x10 0 0 2 0 
4 101 101 xxx 010 010 x10 0 0 1 0 
3 101 101 101 xxx 110 x10 0 0 0 0 
2 101 101 101 001 xxx x11 0 1 0 0 
1 x01 x01 x01 x01 x00 xxx N/A N/A N/A 1 


 
Note that in general, strong clusters are only symptomatic of structure within the data. Once they have been identified, 
their memberships and relevance remain to be explored, which requires a good understanding of the application 
domain. One reason is that computed clusters tend to conform to the underlying assumptions of the clustering 
algorithm, e.g. spherical clusters for k-means and elongated clusters for single linkage. 


2.3 A First Example: LAPACK 
An example based on the LAPACK Library illustrates the use of Pareto ranking in extracting structure from 
dendograms. The LAPACK library is well known and studied, so this example also helps explain the use of Pareto 
ranking for mining performance data. Performance data was generated running the timing program xlintimd on a single 
processor of a dedicated SGI Octane with two 175 MHz R10K (IP30) CPUs. The source code for the program xlintimd 
can be found in the file named dtimaa.f inside the public domain distribution of LAPACK; it times FORTRAN77 
subroutines for the BLAS, for orthogonal factorizations to triangular and Hessenberg form, for solving linear systems 
of equations AX=B where A is a m by n matrix and B is a m by k matrix and where A can be a general or a positive 
definite matrix that is either dense, banded, triangular or symmetric. Packed storage schemes that avoid storing zero 
entries are available for specific types of matrices. All input options of xlintimd were set with matrix sizes ranging from 
50 to 500 for m and n and from 1 to 100 for k, level-1 cache block sizes were 1 and multiple of 16 up to 64. Fortran 
stores matrices in column major order, that is consecutive elements in one column are stored contiguously in memory. 
The columns need not be stored contiguously however and the number of entries that could in principle be stored 
between any two contiguous entries in the same row (the leading matrix dimension) can be larger than the number of 
rows in the matrix. This leading dimension was set to 513 for all matrix arguments. This setup resulted in 3391 
instrumented library calls for various sizes of arguments.  
 
The R10K processor has two special performance registers, or counters, for keeping counts of the occurrence of 
anyone of 32 different hardware events. Each register has a designated set of 16 events that it can monitor. The PAPI 
interface maps those 32 events into 24 (virtual) hardware events. Each of calls in xlintimd to the LAPACK library was 
augmented by hand to measure consecutively the corresponding increments in the 24 hardware events counters 
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available through PAPI. The resulting data table was written to file just before xlintimd exited and it was transposed 
into a table of 24 profiles of length 3391. Each column of the table contains the counter increments for a distinct call 
site. Profiles were rescaled to have all their entries between 0 and 1. The data is slightly incomplete with eight values 
missing, due to counter overflows.  The resulting dendogram is shown in Figure 3 where six strong clusters can be 
seen, labeled C, C1, C2, O, O1 and O1a. Their labels reflect set inclusion. It is not possible to choose any one of them 
as the largest cluster in the final partition without making a judgment call on the relative importance of heterogeneity 
versus separation. Clusters C and O enclose all the other strong clusters. Cluster C is formed of profiles for various 
types of level 1 and 2 cache misses. Cluster C1 consists of the profiles of the total number of level-2 data cache misses 
(L2_DCM) and the total number of level-2 cache data and instruction cache misses (L2_TCM), meaning that the 
number of instruction cache misses is either very low or proportional to that of data cache misses. The former 
explanation is more probable and it is reinforced in that the level1 and level-2 instruction data cache misses for a small 
cluster. The fifth element of cluster C is the total number of requests for exclusive access to a shared cache line 
(CA_SHR).  
 
The total elapsed CPU cycles (TOT_CYC) belongs to the second largest strong cluster O. Conditional store instructions 
are the output equivalent of prefetching. When the instruction is issued, a reservation is placed on its destination 
address. The conditional store operation fails if the reservation is invalidated by another instruction. The fact that the 
profiles for the total number of conditional stores issued (CSR_TOT) and failed (CSR_FAL) form a strong cluster 
indicates that a fraction of all issued conditional store operations do fail. The exact fraction could be 10% or 90%; it is 
not possible to know this fraction by simply looking at O1a because profiles are rescaled before clustering. The other 
four profiles in O1 are the number of requests for exclusive access to clean cache line (CA_CLN), the number of 
successful store conditional instructions (CSR_SUC), the average number of floating-point operations per second 
(FLOPS) and the average number of instructions executed per second (IPS). The latter average does not account for 
operations that were issued proactively but failed to execute, such as the failed conditional stores in CSR_FAL. Since 
the total number of conditional stores issued (CSR_TOT) is less closely related to the number of executed conditional 
stores (CSR_SUC) than to the number of failed conditional stores (CSR_FAL) it appears that the latter is not 
negligible. The remaining profiles in cluster O are the number of requests for cache line intervention (CA_ITV), the 
number of translation look-aside buffer misses (TLB_TL), the number of conditional branch instructions mispredicted 
(BR_MSP), the total number of instruction issued (TOT_IIS), the total number of branches tested (BR_INS) and the 
number of elapsed CPU cycles (CPU_CYC).  It appears that the level-1 data cache is used effectively because it does 
not appear closely related to the number of elapsed CPU cycles (CPU_CYC). In that case, the total number of store 
operations for an n by n argument will be roughly O(n2). On the other hand, the number floating-point operations 
computed by many of the subroutines timed by xlintimd for the same argument is roughly O(n3). The closer association 
between CSR_SUC and FLOPS in O1 than with CPU_CYC is in agreement with the relatively small matrix sizes used 
in the benchmark.  
 
Four event profiles in Figure 3 are not included in any strong cluster. They are the total number of executed store 
instructions (SR_INS), the total number of floating point instructions executed (FP_INS), the total number of load 
instructions executed (LD_INS) and the total number of instructions executed (TOT_INS). None of these achieve a 
constant execution rate over all call sites for otherwise its profile would be closely related to that of the total number of 
elapsed CPU cycles.  This fact would be hard to detect from simple inspection of the dendogram but it can be justified 
by the wide variety of algorithms included in the benchmark.  
 
Figure 3 illustrates another advantage of looking at dendograms from the perspective of multi-objective optimization. 
The internal nodes of the dendogram in Figure 3 can be linearly ordered according to their distance from the left 
margin; that distance is indicative of the order in which the clusters were formed. A threshold rule, such as minimizing 
R in Subsection 2.2 is typically implemented by marching through the list of internal nodes say from the left, until the 
threshold condition is met. All visited internal that failed the test are then removed from the tree and the remaining sub-
tree define the final partition. In particular, no such threshold rule would catch both of the largest strong clusters. 
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Figure 3 Annotated dendogram shows two clear clusters of hardware events as well as sub-cluster structure. 


3. A Close Look at a Distributed Hash Table Library 
 
Algorithms for indexing and sorting have been employed in numerical and data intensive applications since the very 
early days of computers. The best-known example of sequences of lists may be in numerical computing where sparse 
matrices are represented either as sequences of sparse vectors or as vertices and edges of adjacency or incidence graphs. 
There are several examples of hash tables used in high-performance computing18, 31. The Multipol library of distributed 
data structures from Katherine Yelick et al.38 contains a general-purpose non-blocking distributed hash table. Several 
design criteria came into play for the hash table library described next. First, it was required that any application 
programmer wishing to use this library should be able to do so without adopting a specific memory or execution model. 
Second, it had to be lightweight enough to support fast implementations of distributed matrix-vector operations on 
sparse vectors that are needed for a fully-adjoint computation of some statistical estimation application.   
 
The main functions of this communication library are HASH_Insert, HASH_Delete, HASH_Find and HASH_Wait. 
The first three functions initiate an appropriate active message and return before completion of the corresponding 
transaction. The same C Language calling sequence for HASH_Insert, HASH_Delete and HASH_Find, looks like this 
 


ierr = HASH_Insert ( hash, tid, key, nval, arrayofvalues, &request ). 
 
Here, hash is a handle to a hash table, and tid designates the target process. The third argument is the value of the key, 
and nval is the number of values transferred into the hash table on the target process. HASH_Delete and HASH_Find 
return up to the specified number nval of values to the origin process. These operations are complete when a matching 
call to HASH_Wait returns. The values transferred between processes are stored contiguously in the one-dimensional 
array arrayofvalues. HASH_Wait operates on an array of request handles and returns only after all the corresponding 
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operations are completed. In the present context, the initiation time is the time for a call to HASH_Insert, HASH_Find 
or HASH_Delete to return. The completion time includes the time spent in a subsequent matching call to HASH_Wait 
in addition to the initiation time. The barrier time includes also the time needed for processes to synchronize at a 
barrier immediately after the call to HASH_Wait returns. Different strategies are actually required for reducing each 
one of these three runtimes.  The LAPI execution model for active messages consists of three types of threads for each 
process. A user thread carries the application and calls the LAPI library. A unique header thread assembles the content 
of the active message in a buffer allocated by a user-defined header handler. Finally, a single completion thread calls a 
user defined completion handler that processes the assembled message. Under this specific LAPI implementation, there 
can be only one active header handler at any time, and similarly with completion handlers. The broad-brush description 
of how remote accesses are implemented is that the source process initiates an active message toward the appropriate 
target process. When the appropriate completion handler is called, it locks the appropriate local hash table, performs 
that requested operations and returns the result by a one-sided put operation. There are effectively three times when a 
remote access can stall at the target process: waiting for the message body to arrive in the header thread, waiting to lock 
the local hash table in the completion thread and waiting for completion of the put operation before releasing unneeded 
storage. The third cause is a major one, so it is handled in the user thread using a simple queue. The active completion 
handler is forced to wait when that queue is full, but it returns early otherwise. 
 
The second datasets considered in this paper consists of hardware event counter measurements for two hundred 
randomized micro-benchmarks on an IBM SP with 4-Way 375MHz Power III nodes. Keys and values were long 
integers. A global unsorted sequence of one million unique keys between 0 and m=7,000,000 was generated. PAPI 
measurements were done in batch (and dedicated) mode. The same sequence of table accesses was repeated for each of 
the 44 hardware events measurable through PAPI on this IBM SP. One column of data was produced for each type of 
table accesses by each process and for each run. Each of the three wall-clock times corresponds to a separate PAPI 
measurement; the final dataset is a 3x44=132 by 14268 table, excluding record and feature tags. The number of keys 
per process was fixed at 10,000. For each run, a single array length nval was randomly selected between 1 and 8 
inclusively for all calls to HASH_Insert, HASH_Find and HASH_Delete, see the calling sequence for HASH_Insert on 
page 10. Within each run, all but the last call to HASH_Wait received the same number of pending requests. That 
number was a random multiple of ten ranging between 10 and 200. The number of computer nodes varied from 1 to 11 
with each of the four processors one a node running one process. The number p of processors is four times the number 
of nodes. Each micro-benchmark implements a randomized all-to-all scenario where the ith process is both the target for 
all operations involving keys whose residue modulo p is i and the origin for all table accesses for the keys m/p*i 
through m/p*i+i-1 in the sequence. Runtime averages are taken over the number of values inserted by each origin 
process. The mapping from hash key to processor, which is not defined by the API, is that all values for the key k are 
mapped to process number k%p.    
 
Each hardware event profile, one row in the data table, was scaled before clustering so that its entries range between 0 
and 1. Again, the object is to identify controllable hardware events that are closely related to measures of elapsed CPU 
cycles. Figure 4 shows two separate dendograms from clusterings separately all profiles from the initiation phase (_I 
suffix for immediate) and from the completion phase (_B suffix for blocking) respectively. Strong clusters are outlined 
in the dendograms. An important point can be made from Figure 4: the two computational phases correspond to 
different fine scale structures. Precisely, during the initiation phase of hash table accesses, the profile of the elapsed 
CPU cycles (TOT_CYC_I in Figure 4) is most similar to that of the number of load-store instructions completed 
(LST_INS_I) and to that of the number of synchronization operations completed (SYC_INS_I). The middle cluster in 
the top dendogram shows that the profile of instruction-cache misses (L1_ICM_I) is mostly related to the profile of 
requests for exclusive access to shared cache lines (CA_SHR_I). The implication is that the initiation time is dominated 
by requests to process active messages. The dendogram in the lower part of Figure 4 shows a different picture for the 
completion phase, with the profile of the total CPU cycles mostly related to the counts of issued and completed 
instructions. The impact of incoming active messages can still be seen in the lower dendogram.  
 
Data clustering can only point at interesting connections between hardware events or between library calls. Once an 
observation has been made, it remains to be explained from the applications perspective and it should be validated. The 
observation that different phases correspond to different performance regimes is confirmed by looking at the strong 
clusters of another dataset, which includes all possible 132 profiles. The resulting dendogram is partitioned into three 
strong clusters but is not shown here for reasons of space. A first cluster contains all and only all profiles for the 
initiation phase. A second cluster contains all but six profiles from the completion phase and no barrier profiles. A third 
strong cluster contains all profiles for the barrier phase plus the latter six completion profiles. Those profiles were 
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encountered earlier during the presentation of hierarchical clustering; they do not form any strong sub-cluster on their 
own within the larger context. 
 
 


 


 
 


Event profiles from the initiation phase 
 


 
Event profiles from the completion phase 


  


Figure 4 Associations among hardware event readings differ between the initiation and completion phases. 


 
The suggestion that incoming messages impact the initiation time is verified indirectly. The data from the 200 
randomized micro-benchmarks is binned according to one software parameters that influences the number of active 
messages issued, that is the block size called nval in the function prototype above. A Krukal-Wallis test is able to show 
with a high degree of confidence that the variation across processes for the ratio of the initiation (and completion) time 
to the number of values processed has different statistical distributions across these bins. The variation is defined here 
as the ratio of the maximum value (across all processors) to the mean value (across all processors), see [24] for details. 
Better non-parametric tests would be needed to demonstrate the existence of a trend in this variation as a function of 
nval. Validation from the application is given by the observation that the “optimal” block size depends on the length of 
the queue of pending put operations. In a sense, this last queue operates as an anti-cache; it would be interesting to see 
how well it might work if implemented in hardware.  
 
A third way to assess the hypothesis that incoming active messages impact the initiation time is to look at the data from 
the other end. Pareto ranking can be applied to call sites instead of profiles. The Goldberg ranks of all 14268 data 
columns (library calls) were computed with respect to the two events SYC_INS_I and CA_ITV_I (requests for cache 
line intervention). These two profiles were chosen because they appear closely related to elapsed CPU cycles during the 
initiation phase. The computed ranks ranged from 0 to 228. This represents a coarse quantization of the data since the 
actual values for these two events are different for almost every data record. It was achieved without setting an arbitrary 
threshold value. It can be seen in Figure 5 that library calls that have a low Goldberg rank, with respect to SYC_INC_I 
and CA_ITV_I, have relatively uniform initiation and completion wall-clock times. Spikes in either of those wall-clock 
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times appear associated with higher Goldberg ranks. Figure 5 also illustrates the performance of this hash table library. 
For comparison, repeated measures of the one-sided point-to-point latency for the IBM’s proprietary MPI library on the 
same IBM SP ranged between 25ms and 34 ms.  
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Figure 5 Scatter plots of wall clock times for the initiation and completion phases for 200 randomized micro-
benchmarks versus Goldberg ranks based on the SYC_INC_I and CA_ITV_I event profiles. 


Call sites that involve larger numbers of processors also correspond to somewhat larger Pareto ranks, so the possibility 
of sampling bias (over and under sampling) is real. Figure 6 that shows scatter plots of the completion and initiation 
times versus the Goldberg rank for four groups of library calls arranged by numbers of processors. In all four plots, the 
initiation wall clock time can be seen as a line at the bottom of the plot that increases slowly with the rank. These 
graphs suggest that hardware that would improve the rate of completion of synchronization operations and speedup 
requests for cache line intervention is also likely to result in a more uniform initiation and completion time for this 
communication library. 


4. Conclusions and Further Work 
 
Some of the clustering and data mining techniques discussed here are computationally expensive, e.g. hierarchical 
clustering and Goldberg ranking. To give an order of magnitude of the work involved, each of the dendograms in 
Figure 4 is computed serially by a java (non-native) code in about 26 seconds on a 3GHz Xeon processor: 1.7 seconds 
for the initial minimum spanning (MST) tree needed to start the hierarchical clustering, 18 more seconds for the 
complete linkage variant and the rest for computing Goldberg ranks and writing the results to an ASCII file. On the 
other hand, the transpose table takes 14 minutes for the MST, 72 minutes for hierarchical clustering and 78 minutes for 
Goldberg ranking. Parallel Pareto ranking algorithms are easy to write in MPI at least and experience suggests that they 
scale well in practice. Hierarchical clustering of very large data sets is a key problem in other areas such as bio-
informatics and atmospheric sciences. This paper focus on complete-linkage clustering for conciseness sake but the 
multi-objective concepts discussed are orthogonal to the way clusters are computed; the successive partitions generated 
by k-means could be used instead. Another possible use for Pareto ranking is in data compression; when 14268 call 
sites of the second data set are ranked according to all 132 pairs of hardware events and computation phases, only 799 
of them turn out to be non-dominated.  
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Figure 6 Scatter plot of the initiation (∆) and completion (+) times of library calls versus Goldberg ranks for 


various numbers of processors. 


 
The project that led to the work described here was tightly focus on the development of efficient middleware for 
managing distributed dynamic data structures. Data mining efforts were aimed at answering specific questions relevant 
to this middleware rather than on software tool development. With this context in mind, data collections and summary 
tools such as Photon MPI and WatchTower would have been very useful to have then. Data collection code was 
inserted by hand and summarization was done at the end of each benchmark by each process. Randomized micro-
benchmarks ran in batch mode and most were submitted in succession to avoid disabling the batch scheduler. Batch 
requests were generated by a small C program.  Data tables were assembled using shell scripts whenever possible, 
although a C program was written for computing the transpose of the larger table because some utilities silently 
truncated all columns to the right of some internal limit. Surprisingly, one of the most troublesome aspects of this work 
was related to editing drafts on an off-the-shelf laptop. The sizes of those drafts varied between 15 and 25 Mbytes. 
Some serious editing sessions required that swap space be defragmented and the hard disk cleaned up. Another 
observation may be helpful to the reader. Non-parametric statistical tests such as Kruskal-Wallis are based on some 
ranking of the data with appropriate tie-braking rules. On the other hand, performance data from hardware event 
counters, or instruction profilers, is read out of 32-bit or 64-bit registers. The low order bits can “confuse” a non-
parametric test by preventing ties to occur where they could or should. It helps in this respect to repeat the tests for data 
rounded or truncated to the same units, for example with 1.9876 and 10.777 first rounded to 2.0 and 10.7 and then to 
1.99 and 10.78. 
 
The use of data caches and arithmetic blocking factors in dense matrix algebra pushes the envelope of achievable 
computations along one dimension of computer architecture, raw arithmetic speed. The performance of data intensive 
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applications is driven by other factors such as the speed of branching, latency of remote memory accesses, and the need 
for very high numerical accuracy. It is likely that the hardware advances that will enable adequate sustainable 
performance of data intensive applications on Teraflop and Petaflop architectures will be the result from systematic 
studies based on real performance data. This work on communication middleware using micro benchmarks suggests 
that novel statistical tools and techniques will be needed to carry such studies. 
 
Software performance data is typically longitudinal. Missing values do occur but they are rarely missing at random. 
Data records are typically dependant due to contentions for network or CPU resources. Modestly complex algorithms 
such as parallel dense matrix factorization algorithms can result in huge datasets. Because software performance 
datasets are challenging from a statistical perspective, novel techniques are needed to sort out which software 
parameters can most effectively drive the performance of communication software libraries. Pareto ranking of 
dendogram nodes and their associated clusters is shown to be an effective technique for detecting sub-cluster structures. 
Pareto ranking of data records is also shown to be an effective technique for identifying subset of the data with good 
runtime properties. 
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