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Abstract. This paper presents the integration between a co-operative
co-evolutionary genetic algorithm (CCGA) and four evolutionary multi-
objective optimisation algorithms (EMOAs): a multi-objective genetic
algorithm (MOGA), a niched Pareto genetic algorithm (NPGA), a non-
dominated sorting genetic algorithm (NSGA) and a controlled elitist non-
dominated sorting genetic algorithm (CNSGA). The resulting algorithms
can be referred to as co-operative co-evolutionary multi-objective optimi-
sation algorithms or CCMOAs. The CCMOAs are benchmarked against
the EMOAs in seven test problems. The first six problems cover differ-
ent characteristics of multi-objective optimisation problems, namely con-
vex Pareto front, non-convex Pareto front, discrete Pareto front, multi-
modality, deceptive Pareto front and non-uniformity of solution distribu-
tion. In contrast, the last problem is a two-objective real-world problem,
which is generally referred to as the continuum topology design. The re-
sults indicate that the CCMOAs are superior to the EMOAs in terms of
the solution set coverage, the average distance from the non-dominated
solutions to the true Pareto front, the distribution of the non-dominated
solutions and the extent of the front described by the non-dominated
solutions.


1 Introduction


Genetic algorithms (GAs) have a unique niche in the area of multi-objective
optimisation. Due to the parallel search nature of the algorithms, the approxi-
mation of multiple Pareto optimal solutions can be effectively executed. Various
genetic algorithms are currently available for use in multi-objective optimisation
[1–8]. Similar to the case of single-objective optimisation, as the search space or
problem size increases, the performance of the algorithms always degrade. As
a result, the non-dominated solutions identified by the algorithms may deviate
from the true Pareto front. In addition, the coverage of the Pareto front by the
solutions generated may also be affected. A number of strategies have been used
to solve the problem. Examples of the strategies that have been successfully
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embedded into the algorithms include elitism [6–8], diversity control [9] and co-
evolution [10, 11]. Although the strategies mentioned can be used with almost
all genetic algorithms designed for multi-objective optimisation, these strategies
have rarely been used with more than one algorithm and hence the effect of
the same strategy on different genetic algorithms cannot be determined directly.
In particular, the strategy interested for a detailed study in this paper is the
co-operative co-evolutionary strategy.


A co-evolutionary search involves the use of multiple species as the represen-
tation of a solution to the optimisation problem. Each species can either compete
or co-operate during the search evolution. One particular algorithm that stands
out as one of the algorithms that truly exploit the concept of co-evolution is
a co-operative co-evolutionary genetic algorithm or CCGA [12, 13]. In brief, a
species member in the CCGA represents a part of the decision variable set where
all species will co-operatively produce a complete solution to the problem. Each
species member will then independently evolve using a standard genetic algo-
rithm. By partitioning the problem in this manner, the search space that each
sub-population has to cover would significantly reduce. Although the CCGA is
originally developed for use in single-objective optimisation, the co-operative co-
evolutionary effect has also been successfully embedded into a multi-objective ge-
netic algorithm [10]. Keerativuttitumrong et al. [10] have proven that the multi-
objective co-operative co-evolutionary genetic algorithm or MOCCGA outper-
forms the original multi-objective genetic algorithm or MOGA [2, 5] in six test
problems introduced by Zitzler et al. [14]. As suggested by Keerativuttitumrong
et al. [10], the effects of co-operative co-evolution in other genetic algorithms
that are designed for use in multi-objective optimisation will be investigated
in this paper. The candidate algorithms for the study include a niched Pareto
genetic algorithm or NPGA [3], a non-dominated sorting genetic algorithm or
NSGA [4] and a controlled elitist non-dominated sorting genetic algorithm or
CNSGA [7]. In addition, the modification on the MOCCGA for a further perfor-
mance enhancement will also be covered in this paper. All modified algorithms
will be benchmarked against the original algorithms by means of a performance
comparison. The benchmark problems used include six test problems proposed
by Zitzler et al. [14] and an engineering problem called a topology design [15].


The organisation of this paper is as follows. In section 2, the genetic al-
gorithm integration and additional genetic operators used for the performance
enhancement will be discussed. The test problems and the performance evalu-
ation criteria will be described in sections 3 and 4, respectively. In section 5,
the benchmarking results and discussions are given. Finally, the conclusions are
drawn in section 6.


2 GA Integration and Additional Genetic Operators


The CCGA will be integrated with each one of the four genetic algorithms for
multi-objective optimisation. In order to enhance the combined algorithms, two
additional genetic operators are utilised: a crowding distance selection [7, 8] and
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an elitist strategy. The algorithm integration and the elitist strategy are de-
scribed as follows.


2.1 Genetic Algorithm Integration


Similar to the original CCGA, the population of its multi-objective counter-
part also contains a number of species or sub-populations where each species
represents a decision variable or a part of solution. The objective vector of a
species member or an individual is obtained after combining it with the remain-
ing species extracted from a non-dominated solution, which is randomly picked
from a preserved non-dominated solution set. It is noted that the preserved non-
dominated solution set is initially created by combining different species together
randomly and choosing only the non-dominated solutions. If the complete solu-
tion obtained after combining the individual of interest with other species is nei-
ther dominated by any solutions in the preserved set nor a duplicate of a solution
in the preserved set, then this complete solution will be added to the preserved
set. At the same time, if the newly created solution dominates any existing so-
lutions in the preserved set, the dominated solutions will be expunged from the
set. In order to maintain the diversity within the preserved non-dominated solu-
tion set, the crowding distance selection [7, 8] is used to regulate the size of the
preserved set. After the objective values have been assigned to every individual
in all sub-populations, the evolution of every species is then commenced by one
of the four genetic algorithms for multi-objective optimisation. The resulting co-
operative co-evolutionary multi-objective optimisation algorithms (CCMOAs)
can be uniquely referred to as a co-operative co-evolutionary multi-objective
genetic algorithm (CCMOGA), a co-operative co-evolutionary niched Pareto ge-
netic algorithm (CCNPGA), a co-operative co-evolutionary non-dominated sort-
ing genetic algorithm (CCNSGA) and a co-operative co-evolutionary controlled
elitist non-dominated sorting genetic algorithm (CCCNSGA). The name given
to the resulting algorithm obtained after combining the MOGA with the CCGA
in this paper differs from that used by Keerativuttitumrong et al. [10] since the
integration protocol is quite different.


2.2 Elitist Strategy


Elitism has been proven to be an important part in the success of multi-objective
optimisation using a genetic algorithm [7, 8]. Since the use of an elitist strat-
egy has not been mentioned in the original publications of MOGA, NPGA and
NSGA, such a strategy will be used in conjunction with the MOGA, CCMOGA,
NPGA, CCNPGA, NSGA and CCNSGA. Similar to the case of single-objective
genetic algorithm, the implemented elitist strategy involves passing a number
of individuals (of the same species) from one generation to the next without
either crossover or mutation. However, the elite individuals in this case will be
the non-duplicated non-dominated individuals. The prevention of using dupli-
cated individuals as elite individuals would promote genetic diversity [16, 17].
Note that if the number of non-duplicated non-dominated individuals acquired
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exceeds a preset limit, the crowding distance selection will be used to select the
individuals for the elite individual set.


3 Test Problems


In order to assess the performance of the four combined algorithms, they will be
benchmarked using six optimisation test cases developed by Zitzler et al. [14] and
an engineering problem called a topology design [15]. The optimisation problems
T1–T6 proposed by Zitzler et al. [14] are minimisation problems with m decision
variables and two objectives. T1 is a 30-dimensional problem with a convex
Pareto front, which is continuous and uniformly distributed. T2 is also a 30-
dimensional problem but has a non-convex Pareto front. T3 is a 30-dimensional
problem with five discrete Pareto fronts. T4 is a 10-dimensional problem with
219 local Pareto fronts and therefore is used to test the algorithm’s ability to
deal with multi-modality. T5 is an 11-dimensional problem with deceptive Pareto
fronts. T6 is a 10-dimensional problem with the non-uniform search space.


In contrast, a 2D heat transfer problem is used as a real life case study for
topology design optimisation [15]. Given a wall with linear distributed temper-
ature profile, a limited space is available for attaching a solid protruding con-
figuration that facilitates heat loss from the wall as shown in Fig. 1 (left). The
optimisation aims to obtain lightweight configuration with high dissipated heat
from the wall and body into the surroundings. The boundary between the pro-
truding body and the environment is assumed to be convective with very good
air circulation that the ambient air temperature in close proximity to the wall
and the protruding body remains unchanged. Domains of the available space are
dividing into uniform grids with 10 rows and 10 columns. The problem is thus
encoded using a 100-bit binary representation in the on-off style. The block inser-
tion on a grid is represented by ‘1’ whilst ‘0’ signifies a void in the corresponding
location. A complete solution can be divided into 5 parts, each containing 20
bits that represents 2 rows in the grid. The heat dissipation performance of
each configuration is numerically evaluated by the finite volume simulation and,
thus, the true Pareto front of the problem can only be generated by an exhaus-
tive search. Hence, for this problem solutions obtained from an algorithm will
only be compared with solutions generated by a different algorithm.


4 Performance Evaluation Criteria


Zitzler et al. [14] suggest that in order to assess the optimality of non-dominated
solutions identified by a multi-objective optimisation algorithm, these solutions
should be compared with either the solutions obtained from a different algorithm
or the true Pareto optimal solutions. Four corresponding measurement criteria
are considered: the solution set coverage (C), the average distance between the
non-dominated solutions to the Pareto optimal solutions (M1), the distribution
of the non-dominated solutions (M2) and the normalised absolute difference
between the extent of the front described by the non-dominated solutions and
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that obtained from the Pareto optimal solutions (M ′
3). The solution set coverage


is evaluated in the decision variable space while the remaining three criteria are
calculated from the objective vectors of the solutions obtained. It is noted that
the first three indices are taken directly from Zitzler et al. [14] while the final
index is adapted from the M3 index discussed in Zitzler et al. [14]. The M ′


3


index is introduced in this paper since the extent of the true Pareto front for
each problem has a specific value and hence only the difference between the M3


index calculated from the non-dominated solution set and that obtained from
the true Pareto optimal solutions that yields a meaningful measurement [9].


5 Optimisation Results and Discussions


In this section, the results from using the evolutionary multi-objective optimisa-
tion algorithms (EMOAs) with the elitist strategy described in section 2.2 and
the co-operative co-evolutionary multi-objective optimisation algorithms (CC-
MOAs) to solve T1–T6 problems and the topology design problem will be pre-
sented. The parameter setting for the algorithms that is used in all problems is
displayed in Table 1. It is noted that after all repeated runs have completed, the
final non-dominated solutions are then retrieved from either the individuals in
the last generation from each run of a EMOA or the solutions in the preserved
non-dominated solution set from every CCMOA run. The performance indica-
tors introduced in section 4, i.e. M1, M2 and M ′


3, of each run are calculated and
then averaged to obtain the final indices.


The M1, M2 and M ′
3 indices of the EMOAs and CCMOAs on the test prob-


lems T1–T6 are summarised in Table 2. In addition, the non-dominated solutions
of the topology design problem in the objective space and the non-dominated
solutions and the true Pareto optimal solutions of the test problems T1–T6 are
displayed in Figs. 1–4 while the box plots of the C indices [14] from all seven
problems are illustrated in Fig. 5. It is noted that the results displayed in Figs.
1 (right), 2, 3 and 4 (right) cover only the solutions from the MOGA and CC-
MOGA searches while Fig. 4 (left) illustrates only the solutions produced by the
MOGA, CCMOGA and CCCNSGA. This is because most of the results from
two different algorithms in the same category are very close to one another.
Hence, the display of all search results would render the graphical representa-
tion useless and the displayed results are only used to present the overall effect
of co-evolution.


From Table 2, in terms of the average distance from the identified non-
dominated solutions to the true Pareto front as described by the M1 criterion, a
major improvement in the search performance of all algorithms can be observed
in the test problems T1, T2, T3, T4 and T6. In the test problem T5, although the
introduction of the co-operative co-evolutionary effect seems to produce only a
minor improvement, this improvement is enough to push the solutions from the
best deceptive Pareto front to the true Pareto front in the case of CCMOGA.
This observation is confirmed by Fig. 4 (left). Nonetheless, even with the use of
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Table 1. Parameter setting for the algorithms that is used in all problems. The fitness
sharing, selection and elitist strategy listed here is not used in the implementation of
CNSGA and CCCNSGA.


Parameter EMOA CCMOA


Chromosome representation Binary chromosome
Chromosome length of a 900 (T1, T2, T3); 300 (T4, T6); 80 (T5);


complete solution 100 (Topology design problem)
Fitness sharing Triangular sharing function with the sharing


radius estimated in the objective space [2]
Selection method Stochastic universal sampling or


tournament selection (NPGA and CCNPGA only)
Crossover method Uniform crossover with probability = 1.0
Mutation method Bit-flip mutation with probability = 0.025
Population/Sub-population size 200 200
Maximum size of preserved non- - 50


dominated solution set
Maximum number of elitist 50 50


individuals
Number of generations 600 Number required for an equivalent number


of objective evaluations
Number of repeated runs 30 30


Table 2. Summary of the EMOA and CCMOA performances on the test problems
T1–T6. The neighbourhood parameters (σ) for the calculation of M2 indices from nor-
malised objective vectors are set to 0.04082. These parameters are set with the extent
of the true Pareto front in the objective space as the guideline.


T Index MOGA CCMOGA NPGA CCNPGA NSGA CCNSGA CNSGA CCCNSGA


M1 0.1469 0.0000 0.1047 0.0002 0.1267 0.0001 0.0426 0.0002
T1 M2 48.061 47.980 48.245 47.980 48.245 48.000 48.041 48.000


M ′
3 0.1629 0.0117 0.1542 0.0032 0.1937 0.0042 0.0805 0.0044


M1 0.2033 0.0001 0.3237 0.0002 0.3156 0.0002 0.0608 0.0003
T2 M2 43.244 48.000 25.255 47.959 27.571 47.959 47.980 47.960


M ′
3 0.0682 0.0015 0.0503 0.0006 0.0776 0.0006 0.0181 0.0003


M1 0.0721 0.0000 0.0638 0.0001 0.0806 0.0001 0.0239 0.0001
T3 M2 46.980 47.776 47.592 47.878 47.510 47.878 47.592 47.755


M ′
3 0.1194 0.0038 0.1093 0.0033 0.1084 0.0033 0.0468 0.0017


M1 2.9706 0.0001 5.7623 0.0000 4.1912 0.0000 2.1231 0.0000
T4 M2 47.082 48.041 11.309 48.000 27.537 48.041 48.674 48.041


M ′
3 1.8915 0.0047 2.5086 0.0016 4.5755 0.0021 0.7483 0.0012


M1 0.0481 0.0456 0.0709 0.0712 0.0788 0.0661 0.0864 0.0847
T5 M2 41.041 46.776 39.347 46.898 40.347 46.857 46.837 46.939


M ′
3 0.5754 0.2000 0.5876 0.3000 0.5267 0.3000 0.5000 0.4500


M1 1.1317 0.0000 2.6990 0.0000 2.4099 0.0000 0.4288 0.0000
T6 M2 17.134 48.000 5.0000 48.000 6.1670 48.000 37.010 47.959


M ′
3 0.1112 0.0000 0.3359 0.0000 0.2240 0.0000 0.0866 0.0000
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Fig. 1. Topology design problem (left) and the corresponding optimisation results
(right).
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Fig. 2. Optimisation results of the T1 (left) and T2 (right) problems.
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Fig. 3. Optimisation results of the T3 (left) and T4 (right) problems.
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Fig. 4. Optimisation results of the T5 (left) and T6 (right) problems.
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C(MOGA, CCMOGA) C(NPGA, CCNPGA) C(NSGA, CCNSGA) C(CNSGA, CCCNSGA)


C(CCMOGA, MOGA) C(CCNPGA, NPGA) C(CCNSGA, NSGA) C(CCCNSGA, CNSGA)


Fig. 5. Box plots of function C(X, Y which is covered by X) indices for each pair
of EMOA and CCMOA. Each rectangle contains seven box plots representing the
distribution of the C values; the leftmost box plot relates to T1 while the rightmost to
the topology design problem. The scale is 0 (no coverage) at the bottom and 1 (total
coverage) at the top per rectangle.


the co-operative co-evolution, the CCNPGA, CCNSGA and CCCNSGA are still
unable to locate the true Pareto optimal solutions of the test problem T5.


Moving onto the consideration of the distribution of the identified non-
dominated solutions. The M2 indices in Table 2 indicate that the use of the
co-operative co-evolution does not improve the solution distribution in the test
problems T1, and T3. In contrast, a major improvement in the search results
produced the CCNPGA and CCNSGA can be noticed in the test problems T2,
T4, T5 and T6. In addition, some improvements can also be observed from the
CCMOGA and CCCNSGA searches in the case of test problem T6. In overall,
the co-operative co-evolutionary effect helps creating a uniform distribution of
solutions across the front.


In terms of the normalised absolute difference between the extent of the front
described by the non-dominated solutions and that obtained from the true Pareto
optimal solutions via the M ′


3 index, the co-operative co-evolutionary effect im-
proves the performance of all algorithms. However, the search improvement in
test problem T5 is rendered less obvious numerically since the extent of the best
deceptive Pareto front is very close to that of the true Pareto front. In other
words, the M ′


3 index calculated from the solutions at the best deceptive Pareto
front would only be slightly higher than that obtained from the solutions at
the true Pareto front. For the test problem T5, an additional use of graphical
representation of solutions as shown in Fig. 4 (left) is required for the correct
interpretation of the M ′


3 indices.







Multi-objective Optimisation by Co-operative Co-evolution 9


Finally, the solution set coverage using the C index is analysed. In contrast to
the M1, M2 and M ′


3 indices, the C index can only be used to indicate whether the
solution set obtained from one algorithm is dominated or equal to the solution
set generated by another algorithm or not. The box plots illustrated in Fig.
5 clearly show that the solution sets obtained from the CCMOAs cover the
solution sets generated from the corresponding EMOAs in the cases of T1–T6


problems. On the other hand, the solution sets obtained from the CCMOAs in
the topology design problem only partially cover the solution sets generated from
the counterpart EMOAs. This implies that the real-world problem considered is
actually easier than the artificially generated benchmark problems. These results
lead to the conclusion that although the EMOAs are not as efficient as the
proposed CCMOAs, the EMOAs may still be good enough for the engineering
problem considered.


6 Conclusions


In this paper, the effect of co-operative co-evolution on evolutionary multi-
objective optimisation algorithms (EMOAs) has been investigated. The inter-
ested co-operative co-evolutionary effect is based on that described in a co-
operative co-evolutionary genetic algorithm or CCGA [12, 13]. The co-operative
co-evolutionary effect has been embedded into four genetic algorithms: a multi-
objective genetic algorithm or MOGA [2, 5], a niched Pareto genetic algorithm
or NPGA [3], a non-dominated sorting genetic algorithm or NSGA [4] and a
controlled elitist non-dominated sorting genetic algorithm or CNSGA [7]. Sub-
sequently, the co-operative co-evolutionary multi-objective optimisation algo-
rithms (CCMOAs) have been benchmarked against the EMOAs in seven test
problems. The first six problems cover different characteristics of multi-objective
optimisation problems, namely convex Pareto front, non-convex Pareto front,
discrete Pareto front, multi-modality, deceptive Pareto front and non-uniformity
of solution distribution [14]. In contrast, the last problem is a two-objective real-
world problem, which is generally referred to as a topology design [15]. The
simulation results indicate that in general the CCMOAs are superior to the
EMOAs. This conclusion is based upon the solution set coverage, the average
distance from the non-dominated solutions and the true Pareto front, the distri-
bution of the non-dominated solutions and the extent of the front described by
the non-dominated solutions [14].
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