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Abstract. The hypervolume has become very popular in current multi-
objective optimization research. Because of its highly desirable features,
it has been used not only as a quality measure for comparing final re-
sults of multi-objective evolutionary algorithms (MOEAs), but also as a
selection operator (it is, for example, very suitable for many-objective op-
timization problems). However, it has one serious drawback: computing
the exact hypervolume is highly costly. The best known algorithms to
compute the hypervolume are polynomial in the number of points, but
their cost grows exponentially with the number of objectives. This paper
proposes a novel approach which, through the use of Graphics Processing
Units (GPU), computes in a faster way the hypervolume contribution of
a point. We develop a highly parallel implementation of our approach and
demonstrate its performance when using it within the S-Metric Selection
Evolutionary Multi-Objective Algorithm (SMS-EMOA). Our results indi-
cate that our proposed approach is able to achieve a significant speed up
(of up to 883x) with respect to its sequential counterpart, which allows
us to use SMS-EMOA with exact hypervolume calculations, in problems
having up to 9 objective functions.

1 Introduction

Several recent studies have shown that Pareto-based multi-objective evolution-
ary algorithms (MOEAs) do not perform properly when dealing with problems
having more than three objectives (the so-called many-objective optimization
problems) [12]. This has motivated the development of new selection schemes
from which the use of quality assessment indicators is one of the most promis-
ing choices. The idea when using this sort of scheme is to maximize a quality
assessment indicator that provides a good ordering among sets that represent
Pareto approximations. From the many indicators currently available, the hyper-
volume has been the most popular choice, mainly because it is the only unary
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quality indicator that is known to be Pareto compliant [20]. The nice mathe-
matical properties of the hypervolume has motivated the development of several
hypervolume-based MOEAs (see for example [2, 19]). However, these approaches
have a very high computational cost which normally becomes unaffordable for
problems having five or more objectives. Although there exist proposals to esti-
mate the hypervolume contribution using sampling (see for example [7]), these
approaches are known to have a poor performance with respect to those that
use exact hypervolume calculations [13]. Here, we propose a parallel approach,
which is implemented in graphics processing units (GPUs), and is coupled to a
hypervolume-based MOEA: the S-Metric Selection Evolutionary Multi-Objective
Algorithm (SMS-EMOA).

The remainder of this paper is organized as follows. Section 2 provides an
introduction to the hypervolume, including a short review of the main algorithms
that have been proposed to compute it. Our proposed approach is described in
Section 3. The experimental results are presented in Section 4, including the
methodology and a short discussion of our main findings. Finally, conclusions
and some possible paths for future research are provided in Section 5.

2 About the Hypervolume

The hypervolume indicator has become widely used in recent years [18]. This
indicator encapsulates in a single unary value a measure of the spread of the
solutions along the Pareto front, as well as the distance of the approximation
set from the true Pareto optimal front. Whenever one approximation completely
dominates another approximation, the hypervolume of the former will be greater
than the hypervolume of the latter. Also, the hypervolume is maximized if, and
only if, the set of solutions contains all Pareto optimal points. The hypervol-
ume is defined as the n-dimensional space that is contained by an n-dimensional
set of points. When applied to multi-objective optimization, the n-dimensional
objective values for solutions are treated as points for the computation of such
space. That is, the hypervolume is obtained by computing the volume (in ob-
jective function space) of the non-dominated set of solutions Q that minimize
a MOP. For every solution i ∈ Q, a hypercube vi is generated with a reference
point W and the solution i as its diagonal corner of the hypercube.

S = V ol

 |Q|⋃
i=1

vi

 (1)

The hypervolume has important advantages over other set measures [18]:

– It is sensitive to any type of improvements, i.e., whenever an approximation
set A dominates another approximation set B, then the hypervolume has a
strictly better quality value for the former than for the latter set.

– As a result from the first property, the hypervolume measure guarantees that
any approximation set A that achieves the maximally possible quality value
for a particular problem contains all Pareto-optimal objective vectors.
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– The ranking of the solutions that it generates is invariant to the linear scaling
of the objective functions.

In spite of its nice features, the use of the hypervolume is limited by its high
computational cost. Hypervolume computation has been proven to be #P -hard
(analogous to NP -hard for counting problems) in the number of objectives [3].
As a result, hypervolume algorithms have been used primarily for performance
assessment.

Many algorithms have been created to compute hypervolume, each of which
has a different worst-case complexity. Next, we introduce the main algorithms
that have been proposed for this sake, and we briefly discuss their time com-
plexities.

2.1 Inclusion-Exclusion Algorithm

The Inclusion-Exclusion hypervolume algorithm [17] is perhaps the easiest me-
thod for calculating the hypervolume. It works by the inclusion-exclusion prin-
ciple in the following way: the algorithm adds volumes of rectangular polytopes
(n-dimensional rectangular volumes) dominated by each point individually, then
subtracts the volumes dominated by intersections of pairs of points; after that,
it adds back in volumes dominated by intersections of three points, and so on.
Unfortunately, while simple, this method has a time complexity of O(n2m) that
makes it infeasible on all but the smallest sets.

2.2 LebMeasure Hypervolume Algorithm

The LebMeasure algorithm was proposed by Fleischer [8]. He realized that for
any space covered by a set of non-dominated points, one can always identify a
rectangular polytope that does not intersect with any other region, so that this
region can be lopped off. Then, the hypervolume contributions of these lopped
off regions can be easily computed. The hypervolume of the space dominated
by these polytopes is then added to a hypervolume accumulator and new points
are spawned to reflect the removal of such region. This process can then be
repeated until the remaining polytopes no longer dominate any region of space.
LebMeasure was initially thought to have polynomial time performance, however
it was later demonstrated empirically to exhibit exponential time complexity
in the number of objectives and later was proved that the lower bound for
LebMeasure’s worst case complexity is O(2n−1). Thus, it is also exponential in
the number of objectives [15].

2.3 HSO Hypervolume Algorithm

Another hypervolume calculation algorithm is HSO (Hypervolume by Slicing
Objectives) [16]. It manages a front by processing one objective at a time and
slicing it along the chosen objective. This is known as a dimension-sweep al-
gorithm. HSO is given with a front that is pre-sorted with respect to the first
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objective. Point values in this objective are used to create cross-sectional slices
along this objective. When sweeping along an objective, each point in the list is
visited in turn. A list of points is maintained which is sorted in the (n − 1)th-
objective, containing points that have been processed so far, i.e., the points
contributing to the current slice. At each slice, there is an n−1-objective hyper-
volume, its hypervolume is calculated recursively and multiplied by the depth
of the slice, i.e., the difference between the current point value and the next
point value. The point is then added to the n− 1-objective slice, after removing
any points that it dominates. This process is repeated until every point in the
list has been visited. While et al. [16] proved that HSO’s computational cost is
exponential in the number of objectives with a lower bound of O(mn−1), so it
still performs poorly for data sets with high dimensionality.

2.4 The FPL Hypervolume Algorithm

The FPL hypervolume algorithm [10] is another dimension-sweep algorithm
which improves upon HSO. It adds a new linked data structure which reduces the
work required to maintain the fronts built iteratively by HSO. Dominated points
must be retained, as points must be reinserted in the reverse order of their dele-
tion. Therefore, dominated points are marked instead of deleted and are skipped
over in lower objectives. This data structure improves performance by minimiz-
ing the number of comparisons necessary to maintain the sorting within the
n − 1-dimensional slices. It reuses previous calculations when a smaller dimen-
sional slice has already been calculated. Also, hypervolumes are stored along
with the current coordinate in the current objective. As these values become
staled, bound values which keep track of reusable hypervolumes are updated
whenever points are deleted or reinserted. The worst-case complexity of FPL is
O(mn−2 logm). Although all previous described exact hypervolume algorithms
and recent ones have led to improved feasibility or better worst-case time com-
plexities, hypervolume calculation remains #P -hard and exponential in the num-
ber of objectives [3].

2.5 Hypervolume within MOEAs

The most common way to use the hypervolume as a selection method in MOEAs
is through the measure of how much an individual contributes to the hypervol-
ume value of the whole set it belongs to. Then, the solutions that contribute the
least to the hypervolume of a front are discarded. The contributing hypervolume
of an individual a which belongs to a population P can then be stated in the
following way:

Ca = S(P, yref )− S(P\{a}, yref ) (2)

Nowadays, there exist several MOEAs that incorporate the hypervolume in
their selection mechanism [19, 2]. However, these approaches have a high compu-
tational overload and this creates the necessity of develop alternative strategies
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to deal with this problem. Because of this, approximation approaches have also
been proposed (e.g., [7] which uses Monte Carlo sampling to approximate expen-
sive hypervolume calculations). Another example is an approach by Bringmann
and Friedrich [3] that has a polynomially bounded error and shows promise.
These types of methods are faster when the samples are small. However these
approaches do not guarantee a bound on the error and most of them deteriorate
their behavior as the number of objetives of the problem increases. In fact, in
some cases the number of samples needed to produce a good approximation is
too large, turning these approaches impractical for many-objective optimization.

3 Proposed Approach

The main idea of our proposed approach is to use all the available hardware re-
sources to calculate the exact contributing hypervolume in a more efficient way,
in order to alleviate the high computational overload that current hypervolume-
based MOEAs present. Since the computation of the exact hypervolume involves
a high computational complexity, in this work we try to circumvent this problem
by developing a faster way of computing the exact contributing hypervolume,
instead of the hypervolume itself. We propose a way of saving unnecessary hyper-
volume points computations and a model that is efficient and highly paralleliz-
able. For the descriptions provided next, we assume that we are dealing with sets
of non-dominated solutions. Next, we describe our proposed approach, which is
implemented in CUDA-C.1 For the bi-objective case, we take the points of the
non-dominated front and sort them in ascending order according to the values
of the first objective function f1. We get then, at the same time, a sequence that
is additionally sorted in descending order concerning the f2 values, because the
points are mutually non-dominated. Given a sorted front SF = {p1, . . . , p|SF |}
the contributing hypervolume of a point CPi

is given by:

CPi
= ∆f1 ∗∆f2 = (pi+1,1 − pi,1) ∗ (pi,2 − pi−1,2) (3)

The graphical representation of this computation can be seen in Figure 2.
The parallelization of this two-dimensional approach is done in the following
way: using the SIMD2 model, we work in each thread of the GPU with the com-
putation of the contribution of a point. First, a sorting procedure is performed.
For this purpose, we used the so called bitonic sort [1], which is a parallel sort-
ing algorithm, originally created for sorting networks. Once the non-dominated
front is sorted in ascending order, according to the values of the first objective,

1 The GPU platform and API developed by Nvidia called CUDA [14] (Computer
Unified Device Architecture), which is the one adopted in this work, is based on
the CUDA-C language, which is an extension to C that allows development of GPU
routines called kernels. Each kernel defines instructions that are executed on the
GPU by many threads at the same time.

2 SIMD (Single Instruction Multiple Data) is a computer architecture which can han-
dle only one instruction but applies it to many data streams simultaneously [9].
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the ith thread computes the Cpi , so that a set of threads T H can obtain CP .
We consider the case where there might exist more non-dominated points in
a set than threads in the GPU and the assignment of the number of threads
created in the GPU is done with that in mind. This procedure is presented in
Algorithm 1 which shows the architecture of the kernel used for the GPU imple-
mentation. The communication between host (CPU) and device (GPU) is done
in a synchronous way, since we first need to send the whole set of non-dominated
solutions to the device’s global memory in order to compute the whole set con-
tributions CP ; once the CP set is ready, it is sent back to the host.

Input: A non-dominated set P with ‖P‖ = k, where Pi = (pi,1, pi,2) and a reference point
R = (r1, r2)

Output: A hypervolumen contribution set CP

Assign an Id for each thread ;
Assign the number of threads created in the GPU to Dimblock;
CP ← 0;
if Id = 0 then

Add the reference point R to P;
end
k ← k + 1;
Sort in ascending order the set P in the first objective. i← Id + 1;
while i < k do
CPi
← (pi+1,1 − pi,1) ∗ (pi,2 − pi−1,2);

i← i + Dimblock;

end
return CP ;

Algorithm 1: Computation of the hypervolumen contribution set P for
two dimensions in a GPU.

For the case of problems with three or more objetives we propose a model in
which we try to save unnecessary hypervolume points computations by finding
which points in the non-dominated front are not needed for the computation of
the contributing hypervolume of an individual. Having a set of non-dominated
solutions of µ individuals, the contributing hypervolume of each of the individ-
uals in the whole set can be expressed in the following way:

∀Pi ∈ P, CPi = S(P, yref )− S(P\{Pi}, yref ) (4)

This means that we will need to compute the hypervolume µ+1 times. Here,
we try to discard the points that are unnecessary for computing the hypervol-
ume contribution of a point, in order to compute volumes of subsets with less
dimensions, thus reducing the cost. So, instead of computing each hypervolume
contribution CPi

with the aforementioned formulation 4, we are able to calculate
this contribution CPi in the following way:

CPi
=

n∏
k=0

(|Pi[k]− yref [k]|)− V ol

 ⋃
y∈P′i

{y′|y ≺ y′ ≺ yref}

 (5)
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where P ′i is a set of points shifted to be delimited by the non-dominated
point Pi. So, we can reformulate the contributing hypervolume as the volume
delimited by Pi and a reference point yref , which we will call V ol(Pi), less the
volume of the set P ′i, which is a subset of V ol(Pi), that we will call V ol(P ′i), also
with the same reference point. This idea is presented in Figure 1, where we show
a graphical representation of the way in which the hypervolume contribution of
a point is computed. The P ′i set contains the points that we want to find for each
non-dominated solution Pi of a set P, so that we can compute the hypervolume
contribution CPi

of a point Pi as: CPi
= V ol(Pi)− V ol(P ′i).

∆f2

∆f1

∏3
k=0 (b[k]− yref [k])− vol (P ′, yref) = Cb

∆f3

f2

f3

f1

yref = (0, 0, 0)

b
c′

e′

e

a

a′

d′

d

c′a′

d′

e′

b
b

c

Fig. 1. Computation of the hypervolume contribution of a point b which belongs to
a set P = {a, b, c, d, e} of non-dominated solutions with the use of a set of points
P ′ = {a′, c′, d′, e′} delimited by Pi.

This is possible since it is always the case that V ol(P ′i) ≤ V ol(Pi), because
P ′i ⊂ P. So, what we want is to cut the volume given by the set of non-dominated
solutions P and the reference point yref , in order to compute the volume V ol(P ′i)
of reduced sets of points P ′i, i = 1, 2, . . . , |P |. This is less costly than the way
the original aforementioned approach works, for obtaining each individual’s con-
tribution. This new P ′ set of points, created from a specific non-dominated
solution Pi of a set, might have dominated solutions, so it is necessary to find
only the non-dominated solutions of this new set before performing the hyper-
volume computation of this. The kernel procedure for the computation of the
shifted set of points Pi’, delimited by a point Pi of the non-dominated set, is
shown in Algorithm 2.
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Input: A non-dominated set P ⊆ Rd with ‖P‖ = k, where Pi = (pi,1, · · · , pi,k) and the
current index is i for the point Pi

Output: A set P′

Assign an Id for each thread ;
Assign the number of threads created in the GPU to Dimblock;
Size← d ∗ k;
i← I;
// Restrict all points which are in the box delimited by Pi

while i < Size do
l← i/d;
m← i%d;
if P[I][m] > P[l][m] then
P′[l][m]← P[l][m];

end
i← i + Dimblock;

end
// Filter out all points which are covered by others points
i← Id;
for i < k do

if ∃P′j ∈ P
′|P′j � P

′
i then

Remove P′i of P′;
end
i← i + Dimblock;

end

Sort in ascending order the set P′ in the first objective.
return P′;

Algorithm 2: Computation of a set P ′i for a point Pi.

So, with this idea, we can develop a parallelization of this approach. The
model is implemented in two kinds of parallelism: using data-level parallelism3

and transaction-level parallelism4 through the use of streams5. Each stream in
the whole procedure is responsible for the kernel execution, and for sending a
set P ′i of reduced points solutions from the GPU to the CPU, as well as of the
computation of the hypervolume contribution CPi

of a point Pi, all of which is
done in a parallel way. The number of streams adopted depends of each GPU’s
architecture and on the number of available streams. We perform a dynamic task
assignation to the streams so that the overhead generated is minimal. Figure 3
shows the way the assignation policy is done. The use of streams allows us to
have an asynchronous communication between the CPU the GPU, since while
a streami performs the CP2

computation, another streamj executes the kernel
with its set of parameters and, at the same time, another streaml downloads
data from the GPU.

The overall procedure works in the following way: First, a set of streams is
created in the host to perform concurrent operations with the GPU. Then, the
set of non-dominated solutions P and the reference point yref are sent to the

3 In data-level parallelism, instructions from a single stream operate concurrently on
several data.

4 In a transaction-level parallelism, multiple threads/processes from different transac-
tions can be executed concurrently.

5 A stream is a sequence of commands, possibly issued by different host threads, that
are executed in a certain order.
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b)a)

Cpi = S(P , yref)− S(P\{pi}, yref)

S(P\{pi}, yref)S(P , yref)

c)

pi−1

yref

f1

f2

pi
pi+1

pi−1

pi−1

pi+1

∆f1

yref

f1

f2

pi+1

pi

yref

f1

f2

pi

∆f2

Fig. 2. Contributing hypervolume
computation of a point.

T
im

e

Stream 1 Stream 2 Stream 4Stream 0

GPU with 4 Streams

CP1

CP2

CP5

CP4

CP7

CP6

CP0

CPk−2

CPk−3 CPk

Block Stream

CPU calculates CP6

CP3
CPU downloads the set P ′

GPU calculates the set P ′

CPk−1

Fig. 3. Task assignation to Streams.

GPU. Next, each kernel, executed by an specific stream, finds the set P ′i for a
point Pi. Once the set is computed, P ′i is sent to the host in order to compute
the hypervolume contribution CPi

of such point. Each hypervolume is computed
making use of the FPL Hypervolume Algorithm, which is the fastest existent
algorithm for the hypervolume computation. The procedure goes on until all the
contributions of each point in the non-dominated set had been computed. The
pseudocode of the whole procedure is shown in Algorithm 3.

In order to apply our approach, we adopted SMS-EMOA [2], since it fits
perfectly with our parallel approach. SMS-EMOA is a steady state evolution-
ary algorithm in which each newly created solution is ranked and a solution is
removed from the worst ranked front in order to maintain the population size.
The solution that contributes the least to the hypervolume of the worst ranked
front is then discarded (see [2] for details).

4 Experimental results

For purposes of this study, we adopted MOPs from two benchmarks: the Deb-
Thiele-Laumanns-Zitzler (DTLZ) test suite [6] (DTLZ2, DTLZ3 and DTLZ4)
and the Walking-Fish-Group (WFG) test suite [11] (WFG1, WFG2 and WFG3).
We compare our proposed approach with respect to a sequential version of SMS-
EMOA which uses the FPL algorithm. In our experiments, we used from 2 to 9
objectives. Our proposed approach is called S-Metric GPU Selection Evolution-
ary Multi-Objective Algorithm (SMGPUS-EMOA).

4.1 Methodology

For our comparative study, we decided to adopt several performance measures
as described next.
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Input: A non-dominated set P ⊆ Rd with ‖P‖ = k, where Pi = (pi,1, · · · , pi,k)
and a reference point R = (r1, · · · , rk)

Output: The set of hypervolumen contributions CP of the non-dominated set P
Create s for asynchronous managing of the data ;
Assign an Id for each stream of the GPU;
CP ← 0;
if IdStream = 0 then

Send the non-dominated set P to the GPU;
Send the reference point R to the GPU;

end
Wait until all the data are sent to the GPU by the CPU;
IdSig ← 0; // Where IdSig is a shared memory for streams

// Start of the transaction parallelism

for each stream of the GPU in parallel manner do
while IdSig < k do

i← IdSig;
if i < NumStreams then

i← IdStream;
end
// Start of the data parallelism

Launch the kernel P ′
i computation <<<

NumSMs/NumStreams, SizeBlock >>> (P, i, k, d);
Copy the set P ′

i to the CPU ;
Calculate the V ol(Pi);
Calculate the V ol(P ′);
CPi ← V ol(Pi)− V ol(P ′

i);

end
// Wait until the shared resource is available

while IdStream is not increased do
if IdSig is available then

IdSig ← IdSig + 1
end

end

end
return CP ;

Algorithm 3: Computation of the hypervolumen contribution set P for
three or more dimensions in a GPU.
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One of the most important actions in parallel computing is to actually mea-
sure how much faster a parallel algorithm runs with respect to the best sequential
one. This measure is known as speedup. For a problem of size n, the expression
for speedup is:

Sp =
Ts(n, 1)

T (n, p)
(6)

where Ts(n, 1) is the time of the best sequential algorithm and T (n, p) is the
time of the parallel algorithm with p processors, both solving the same problem.

In order to measure the uniformity of the solutions produced by a MOEA,
we adopted spacing [4]. This indicator is computed using:

S =

√√√√ 1

|Q|

|Q|∑
i=1

(di − d)2 (7)

where di = mink∈Q
∧

k 6=i

∑m
j=1 |f ij −fkj | and d is the mean value of the above

distance measure d =
∑|Q|

i=1
di

|Q| .

Low values of this indicator reflect a good (uniform) distribution of solutions.

We also analyze its convergence rate with respect to that of the sequential
version of SMS-EMOA. For this purpose, we adopted the hypervolume. The
reference points used for each of the problems are shown in Table 1. The aim of
this study is to identify which of the MOEAs being compared is able to reach
the results in a faster way. So, we decided to run each of the MOEAs being
analyzed, until reaching a maximum number of function evaluations. At that
point, we applied the performance measures previously indicated.

It is worth noting that the sequential version of SMS-EMOA may be unable to
achieve the desired number of function evaluations in a reasonable computational
time. For that reason, we used an additional stopping criterion: if an algorithm
hasn’t reached the desired number of objective function evaluations after 8000
minutes, then we stop it. We performed 25 independent runs for each algorithm,
problem instance and (given) number of objective functions. The number of
objectives used for each problem is shown in Table 2

Problem Reference points

DTLZ1 (1, 1, 1, . . . , 1)

DTLZ2-4 (2, 2, 2, . . . , 2)

WFG1-3 (3, 5, 7, . . . , 2m + 1)

Table 1. Reference points used for the hypervolume indicator.
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4.2 Parameterization

The parameters of each MOEA used in our study were chosen in such a way
that we could do a fair comparison among them. Thus, for both approaches we
used the same parameter values since they are similar in everything but the
way the hypervolume contribution is computed. The distribution indexes for the
SBX and polynomial-based mutation operators [5], used by SMS-EMOA were
set as: ηc = 20 and ηm = 20, respectively. The crossover probability is pc = 0.9
and the mutation probability is pm = 1/L, where L is the number of decision
variables. The internal population size and the maximum number of function
evaluations for each problem is defined as indicated in Table 2. For the case of
our SMGPUS-EMOA, the number of threads used within the GPU was set in
the next way: for problems with two objective functions, 1024 threads were used,
with just one stream in the whole process. For the case of three up to 9 objective
functions, 1024 threads and seven streams were used. The main characteristics of
the hardware used for the experiments are the following: An Intel Core i7-3930k
CPU running at 3.20 GHz, with 8GB of RAM 1600 MHz DDR3. Our GPU was
a Geforce GTX 680, and we ran our experiments in Fedora 18 (64-bit version).

Problem Objectives Population size Generations Function evaluations

DTLZ1
2 to 4 and 8 100 250 25000

5 to 7 95 263 24985
9 90 277 24930

DTLZ2
2 to 8 100 150 15000

9 90 166 14940

DTLZ3, WFG1 and WFG3.
2 to 6 100 750 75000

7 and 8 95 789 74955
9 90 830 74700

DTLZ4 and WFG2
2 to 7 100 500 50000

8 110 454 49940
9 90 555 49950

Table 2. Parameterization values

4.3 Results

Table 3 shows the mean of the spacing and hypervolume values obtained for
each final result obtained by the two versions of SMS-EMOA used in our study.
Additionally, we show the average time, in minutes, needed to perform the maxi-
mum number of function evaluations in each case. When no value is shown in the
table for any of the algorithms, this means that it was not able to perform the
maximum number of function evaluations after 8000 minutes. The results show
that our proposed approach SMGPUS-EMOA is considerably faster and that it
achieves a speedup of up to 883x with respect to the sequential algorithm (this
speed up is achieved in WFG2). We are also able to obtain the same results as
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the sequential version, which verifies that our parallel implementation is working
as expected.6

5 Conclusions and Future Work

We have proposed a new approach for computing the hypervolume contribution
of a point. The core idea of our proposed algorithm is to exploit the paralleliza-
tion provided by the use of GPUs, combined with a novel implementation that
allows us to save unnecesary computations.7 The proposed algorithm was incor-
porated within SMS-EMOA, and was tested in several well-known test problems
having up to 9 objectives. Our results indicate that our proposed approach is
able to achieve a speed up of up to 883x with respect to the sequential version
of SMS-EMOA, using the FPL algorithm.

As part of our future work, we would like to incorporate our proposed ap-
proach into other hypervolume-based MOEAs (e.g., IBEA [19]). We would also
like to develop indicator-based MOEAs that combine the use of the hypervolume
with another (less computational intensive) indicator.

References

1. K. E. Batcher. Sorting networks and their applications. In Proceedings of the April
30–May 2, 1968, Spring Joint Computer Conference, AFIPS ’68 (Spring), pages
307–314, New York, NY, USA, 1968. ACM.

2. N. Beume, B. Naujoks, and M. Emmerich. SMS-EMOA: Multiobjective selection
based on dominated hypervolume. European Journal of Operational Research,
181(3):1653–1669, 16 September 2007.

3. K. Bringmann and T. Friedrich. Approximating the volume of unions and inter-
sections of high-dimensional geometric objects. Computational Geometry–Theory
and Applications, 43(6-7):601–610, August 2010.

4. C. A. Coello Coello, G. B. Lamont, and D. A. Van Veldhuizen. Evolutionary Algo-
rithms for Solving Multi-Objective Problems. Springer, New York, second edition,
September 2007. ISBN 978-0-387-33254-3.

5. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A Fast and Elitist Multiobjec-
tive Genetic Algorithm: NSGA–II. IEEE Transactions on Evolutionary Computa-
tion, 6(2):182–197, April 2002.

6. K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable Test Problems for
Evolutionary Multiobjective Optimization. In A. Abraham, L. Jain, and R. Gold-
berg, editors, Evolutionary Multiobjective Optimization. Theoretical Advances and
Applications, pages 105–145. Springer, USA, 2005.

6 There are a few differences in the spacing indicator, which are due to stochastic
variations produced by a few isolated runs, which affected the computation of the
mean values.

7 The source code of our proposed approach is available from the first author, upon
request.



14 Edgar Manoatl Lopez, Luis Miguel Antonio and Carlos A. Coello Coello

SMS-EMOA SMGPUS-EMOA
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