

A Parallel Multi-Objective Memetic Algorithm
based on the IGD+ Indicator

Edgar Manoatl Lopez? and Carlos A. Coello Coello??

CINVESTAV-IPN (Evolutionary Computation Group)
Departamento de Computación
México D.F. 07300, MÉXICO

emanoatl@computacion.cs.cinvestav.mx, ccoello@cs.cinvestav.mx

Abstract. The success of local search techniques in the solution of
combinatorial optimization problems has motivated their incorporation
into multi-objective evolutionary algorithms, giving rise to the so-called
multi-objective memetic algorithms (MOMAs). The main advantage for
adopting this sort of hybridization is to speed up convergence to the
Pareto front. However, the use of MOMAs introduces new issues, such
as how to select the solutions to which the local search will be applied
and for how long to run the local search engine (the use of such a local
search engine has an extra computational cost). Here, we propose a new
MOMA which switches between a hypervolume-based global optimizer
and an IGD+-based local search engine. Our proposed local search en-
gine adopts a novel clustering technique based on the IGD+ indicator
for splitting the objective space into sub-regions. Since both computing
the hypervolume and applying a local search engine are very costly pro-
cedures, we propose a GPU-based parallelization of our algorithm. Our
preliminary results indicate that our MOMA is able to converge faster
than SMS-EMOA to the true Pareto front of multi-objective problems
having different degrees of difficulty.

1 Introduction

Most practical real-world problems have several objectives (these objectives are
often in conflict) which need to be optimized at the same time. They are called
Multi-objetive Optimization Problems (MOPs). Contrary to a Single-objective
Optimization Problem (SOP), a MOP does not result in a single optimal solu-
tion. Instead, it results in a set of solutions which represent the best trade-offs
among all the objectives. These solutions are known as Pareto optimal and their
image is called the Pareto Optimal Front (POF). Most researchers are interested
in finding Pareto fronts, which have a good (e.g., uniform) distribution. There
are several methods for solving MOPs such as Memetic Algorithms (MAs) which

? The first author acknowledges support from CONACyT and CINVESTAV-IPN to
pursue graduate studies in Computer Science.

?? The second author gratefully acknowledges support from CONACyT project no.
221551 and from a Cátedra Marcos Moshinsky 2014 in Mathematics.

2 Edgar Manoatl Lopez and Carlos A. Coello Coello

combine a global optimizer (e.g., an evolutionary algorithm) with a Local Search
engine (LS). Recently, MAs have shown to efficiently solve MOPs (see for exam-
ple [16, 17]). In general, LS techniques use decision variable space neighborhoods
whose selected points generate vectors in the objective function space.

It is worth mentioning that combining a global optimizer with a local search
technique for specific MOPs is critical to achieve good results, if the fitness func-
tion computation in real-world MOPs takes a considerable amount of running
time. Likewise, there exist computational trade-offs between local and global
search. Thus, some researchers, such as [4], have raised some specific questions
related to the effectiveness and efficiency of local search engines:

– How often should the LS be applied based upon a probability, PLS?

– On which k solutions should LS be used given a neighborhood N(x) where
x is a current solution?

– How long should LS be run defined by a time period T?

– How efficient does LS need to be versus its effectiveness?

These questions involve some difficulties for designing new multi-objective
memetic algorithms (MOMAs).

Here, we propose a new MOMA which uses a LS technique based on the mod-
ified inverted generational distance (IGD+) (this indicator was recently proposed
by Ishibuchi [12, 13]) combined with a hypervolume-based global optimizer [3].
We want to combine different properties of each indicator for improving the per-
formance of the overall MOMA. This is possible, since these indicators have nice
properties (i.e., hypervolume is Pareto compliant and IGD+ is weakly Pareto
compliant). However, the main drawback of the hypervolume is the high com-
putational cost associated with its computation. So, this limits the use of this
indicator, particularly in problems having many objectives. On the other hand,
IGD+ has a very low computational cost, even in high dimensional problems.
In spite of the fact that this hybridization is possible, there are still some draw-
backs which limit the use of this type of combination, since computing the exact
hypervolume contribution is highly costly.

Nowadays, this sort of limitations can be addressed by using massive parallel
processors such as a Graphic Processing Unit (GPU). There is plenty of evidence
that indicates that GPU-based approaches can reduce the running time without
losing the advantages of CPU-based approaches (for more details see [14, 18, 2]).
For this reason, we develop here a parallel implementation of our MOMA and
illustrate its performance when using both indicators (hypervolume and IGD+).

The remainder of this paper is organized as follows. Section 2 provides some
basic concepts related to multi-objective optimization. Our MOMA is described
in Section 3. Section 4, presents our methodology and a brief discussion of our
preliminary results. Finally, conclusions and some possible paths for future re-
search are provided in Section 5.

A Parallel Multi-Objective Memetic Algorithm based on the IGD+ Indicator 3

2 Basic Concepts

We are interested in solving problems of the type:

minimize f(x) := [f1(x), f2(x), . . . , fm(x)]T (1)

subject to:
gi(x) ≤ 0, i = 1, 2, . . . , p (2)

hj(x) = 0, j = 1, 2, . . . , q (3)

where x = [x1, x2, . . . , xn] is the vector of decision variables, fi : Rn → R,
i = 1, . . . ,m are the objective functions and gi, hj : Rn → R, i = 0, . . . , p,
j = 1, . . . , q are the constraint functions of the problem.

In order to describe our LS technique, we have to provide more details about
the IGD+ indicator before presenting our proposed algorithm. According to [13],
the IGD+ indicator can be described as follows:

IGD+(A,Z) =
1

|Z|

 |Z|∑
j=1

d+j (z,a)
p

1/p

(4)

where a ∈ A ⊂ Rm, z ∈ Z ⊂ Rm, A is the Pareto front set approximation and
Z is the reference set. d+(a, z) is defined as:

d+(z,a) =
√

(max{a1 − z1, 0})2, . . . , (max{am − zm, 0})2. (5)

Therefore, we can see that the set A represents a better approximation to the
real PF when we obtain a lower IGD+ value, if we consider the reference set
as PFTrue.

3 Our Proposed Multi-Objective Memetic Algorithm

3.1 Global optimizer

Our MOMA consists of two different approaches. The first one is a global opti-
mizer which is based on SMS-EMOA [3]. The second method is our local search
technique which uses an IGD+-based search technique. The global optimizer
starts with an initial population of N individuals. Then, a new individual is cre-
ated through the use of evolutionary operators. This new individual will become
a member of the next population, if replacing an existing individual leads to a
higher quality of the population with respect to the hypervolume contribution.
Afterwards, one individual is discarded from the worst ranked front in order to
maintain the same population size. If the cardinality of this front is larger than
1, the individual which minimizes the hypervolume contribution is eliminated.
The LS technique is launched when a certain percentage of the total number of
generations is reached. Next, we will provide more details of the way in which
our LS works.

4 Edgar Manoatl Lopez and Carlos A. Coello Coello

3.2 Local Search Engine

We focused on how to select the kth solution to which LS should be applied.
A straightforward solution is to apply LS to all the individuals in the popula-
tion. Although this involves a higher computational cost, in our case, this sort
of scheme is possible because of our GPU-based implementation. Thus, our pro-
posal is to apply several local search engines on different regions of the search
space, which are specified by a clustering technique, based on the IGD+ in-
dicator. It is worth noting that this indicator requires a reference set Z. Our
proposed approach creates different neighborhoods for each point in the refer-
ence set. The ith neighborhood is created by N points from the population. Such
points have the nearest distance with respect to the ith reference point in terms
of the d+ distance (see equation (5)). Our LS technique starts with a population
P which contains N individuals obtained by our global search engine. The new
ith offspring is created by choosing three different parents from its neighborhood.
The parents are recombined using the differential evolution operator, where the
first parent is selected by the nearest distance in terms of the d+ distance and
the rest of the parents are randomly chosen. The second step is to combine the
parents and the offspring of each neighborhood to form the so-called Q set. The
new population at generation t+1 is generated by finding the nearest point from
Q for each z reference point in Z. This process is repeated until the stopping
criterion is satisfied (we use the maximum number of iterations).

3.3 Reference Set

We can approximate the geometrical shape of certain types of Pareto Fronts
(PFs) using superspheres. A γ-supersphere is a type of curve which is described
as follows:

{(y1, . . . , ym) ∈ Rm+ | yγ1 + · · ·+ yγm = 1} (6)

where γ ∈ R+ is an arbitrary and fixed value. We only consider the “positive”
parts of the γ-superspheres. According to [8], we can view the positive parts of
the γ-superspheres as concave if γ > 1 or as convex if 0 < γ < 1. Clearly, we can
see that a set of weight vectors satisfies equation (6) when γ = 1, since a weight
vector is defined as:

Definition 1 Let w = [w1, . . . , wm] ∈ Rm. We say that w is a weight vector if∑m
j=1 wj = 1 and wj ≥ 0.

In order to build the reference set, we assume that we have a set of weight vectors
which is used to construct the reference set. We need to find the γ-value which
will be used to transform the weights set into the reference set. Clearly, in order
to find the γ-value, equation (6) would become a root-finding problem and we
can say that the γ-value needs to satisfy:

yγ1 + · · ·+ yγm − 1 = 0 (7)

A Parallel Multi-Objective Memetic Algorithm based on the IGD+ Indicator 5

For solving equation (7), we use Newton’s method for approximating the γ-value.
Now, we can see that the next approximation to the root is defined as:

γk+1 = γk −
(
∑m
j=1 y

γk
j)− 1∑m

j=1 y
γk
j log(yj)

(8)

Let Q be the current set which was created combining the parent and offspring
population. Thus, the reference set is created by Algorithm 1.

Algorithm 1: Computation of the reference set which is based on super-
sphere curves

Require: A current set Q ⊂ Rm, a set of weighted vectors
W ⊂ Rm, where m is the number of objectives, expand value e ⊂ R and translate
value t ⊂ R

Ensure: The reference set Z which is the best approximation of the set Q
1: Find the nondominated points from Q and

save to Q′

2: for each p ∈ Q′ do
3: for each w ∈ W do
4: Compute d⊥(p,w) =‖ p−wTpw/ ‖ w ‖2‖
5: end for
6: Assign r(w) = argmin

p∈Q′
d⊥(p,w)

7: end for
8: j ← 0
9: for each w ∈ W do

10: stepsize← pr(w)·w/ ‖ w ‖2
11: y ← stepsize ∗w
12: Approximate the γ value using equation (7)
13: Compute the supersphere point as zj,k ← e(wγj,k)− t for all j = 1, . . . ,m
14: j ← j + 1
15: end for

In the first step of the algorithm, we find the non-dominated points from set
Q which will establish the non-dominated region. After that, in the first loop, we
search the nearest perpendicular distance between each weighted vector w and
the non-dominated points (we find the best relationship between each weighted
vector and each non-dominated point). In order to construct the reference sur-
face, we project the nearest non-dominated point to a specific weighted vector
w. Once this is done, we can search the γ-value using Newton’s method, which
is described by equation (8). Finally, the reference point is computed using the
γ-value. After that, we apply the expand and translate operations. These oper-
ations transform the surface for spreading the reference set along of objective
space. We can see that this process is considered as a generation and is repeated
for each weighted vector. For generating the weighted vectors, we adopted Das
and Dennis’ approach [5] and the number of weighted vectors was set to N .

6 Edgar Manoatl Lopez and Carlos A. Coello Coello

3.4 GPU Implementation

The main idea of our parallel implementation is to use all the available hard-
ware resources for improving the performance of our proposed MOMA. For this
reason, in order to simplify the parallelization we focused only on the most time-
consuming parts of the algorithm. Our implementation is based on two different
parallel implementations, one for handling the local search technique, and an-
other one, which is responsible of computing the hypervolume contribution from
the global search engine. As we indicated in Section 3.2, the LS procedure is
composed by a clustering technique, a procedure for generating new offspring
as well as the evaluation of the objective functions. This process is repeated for
a certain number of iterations. The main idea is to apply the LS technique to
all the individuals of the population. For this reason, the parallelization of this
procedure is done in the following way: we adopt a SIMD1 model to apply the
clustering technique to create each sub-region on the objective space at the same
time. Thus, this procedure creates different blocks of threads, where each thread
computes the d+ value (see equation (5)) between each reference point in Z
and each current point in the population Q. After that, each block searches the
nearest distance (this process is repeated until having b elements for building
the clustering region). After this is done, we create m offspring, each of them re-
siding in a specific sub-region (the ith neighborhood) using a thread of the GPU
for each of them. Thus, each thread in the block can assess the new offspring in
the neighborhood. It is worth mentioning that this process needs to normalize
all points for each generation of the local search technique, in order to handle
objectives having different units.

In [14], the use of a GPU-based approach showed that it is possible to find
a good approximation of MOPs using the hypervolume indicator as a selection
mechanism without losing the advantages of a sequential approach. For this rea-
son, we adopted this approach for implementing the second part of our MOMA.2

4 Experimental Results

We compare the performance of our memetic algorithm with respect to SMS-
EMOA which has two different variants. The first version uses exact calculation
of the hypervolume contribution for each generation of the search process. The
second version incorporates the algorithm proposed in [1] for estimating the
hypervolume using Monte Carlo sampling, instead of the exact hypervolume
calculations adopted in the original implementation of SMS-EMOA. Our MOMA
was compared with respect to its GPU-based implementation. Our proposed
approach was implemented in CUDA-C.3

1 SIMD (Single Instruction Multiple Data) is a computer architecture which can han-
dle only one instruction but applies it to many data streams simultaneously [9].

2 The GPU-based approach computes in a faster way the hypervolume contribution
of a point.

3 The GPU platform and API developed by Nvidia called CUDA [15] (Computer
Unified Device Architecture), which is the one adopted in this work, is based on

A Parallel Multi-Objective Memetic Algorithm based on the IGD+ Indicator 7

4.1 Test problems

For our comparative study, we adopted two benchmarks: (1) the Deb-Thiele-
Laumanns-Zitzler (DTLZ) test suite [7] and (2) the Walking-Fish-Group (WFG)
test suite [10, 11]. These problems include different aspects which make them
more difficult to solve (for more details see [7, 11]).

4.2 Methodology

For our comparative study, we decided to adopt the hypervolume indicator,
which assesses both convergence and maximum spread along the Pareto front.
Mathematically, if Λ denotes the Lebesgue measure, the hypervolume can be
described as:

IH(A,yref) = Λ

 ⋃
y∈A
{x| y ≺ x ≺ yref}

 (9)

where A is the approximation of the Pareto front optimal set and yref ∈ Rk
denotes the reference point. In order to compute IH , we use different reference
points for each test suite, which were set to (1, . . . , 1) for DTLZ1, (2, . . . , 2) for
DTLZ2 to DTLZ6, (2, . . . , 2, 7) for DTLZ7 and (3, 5, . . . , 2m + 1) for the WFG
test problems. Additionally, we also compared the running time of each MOEA,
which was measured in minutes.

4.3 Parameterization

For the DTLZ test suite, the total number of decision variables is given by
n = m + k − 1, where m is the number of objectives and k was set to 5 for
DTLZ1, to 10 for DTLZ2 to DTLZ6 and to 20 for DTLZ7. The number of
decision variables in the WFG test problems was set to 24, and the position-
related parameter was set to m − 1. Instances with two and three objectives
were adopted.

The parameters of each MOEA used in our study were chosen in such a way
that we could do a fair comparison among them. The distribution indexes for
the SBX and polynomial-based mutation operators [6] were set as: ηc = 20 and
ηm = 20, respectively. The crossover probability was set to pc = 0.9 and the
mutation probability was set to pm = 1/L, where L is the number of decision
variables. In the SMS-EMOA-HyPE, the number of samples was set to 50,000.
The number of generations of the LS technique was set to 50 for the DTLZ test
problems and to 80 for the WFG test problems, where each generation the LS
is applied for each reference point. The control parameter F was set to 0.5 for
the differential evolution operator. The total number of function evaluations was

the CUDA-C language, which is an extension of C that allows the development of
GPU routines called kernels. Each kernel defines instructions that are executed on
the GPU by many threads at the same time.

8 Edgar Manoatl Lopez and Carlos A. Coello Coello

set in such a way that it did not exceed 30,000 for the DTLZ test problems and
50,000 for the WFG test suite. All the implementations were tested on the same
computer which has the following characteristics: An Intel Core i7-3930k CPU
running at 3.20 GHz, with 8GB of RAM 1600 MHz DDR3. Our GPU was a
Geforce GTX 680, and we ran our experiments in Fedora 18 (64-bit version).

4.4 Discussion of Results

Table 1 provides the average hypervolume over the 30 independent executions of
each approach for each test suite. Additionally, we show the average time, which
was measured in minutes, needed to perform the maximum number of function
evaluations in each case and the speed up achieved (in parentheses). The best
results are presented in boldface.

Test Suite 1 Test Suite 2

Problem m SMS-EMOA SMS-EMOA-HYPE IGD+-MA IGD+-MA(GPU) Problem m SMS-EMOA SMS-EMOA-HYPE IGD+-MA IGD+-MA(GPU)

DTLZ1 2 0.8732805 0.8725481 0.8726563 0.8709863 WFG1 2 7.0150395 6.6915866 7.4293168 7.3778004
3 0.974249 0.9666142 0.9737887 0.9731913 3 62.566032 53.1739159 62.4667318 62.4431766

DTLZ2 2 3.2109678 3.2095071 3.2109715 3.2109601 WFG2 2 11.4297746 11.4126833 11.4304887 11.429895
3 7.4313536 7.4260692 7.4312298 7.4312795 3 100.9053244 100.3897934 100.9423556 100.8915152

DTLZ3 2 1.9302655 2.7552999 2.8205047 2.8444797 WFG3 2 10.9301202 10.8957265 10.9346344 10.9320503
3 6.8129142 5.0821156 7.0065842 6.9233977 3 76.0218553 74.3412533 76.0301204 76.0650755

DTLZ4 2 2.9687737 2.8466417 2.9082368 2.9478005 WFG4 2 8.6759874 8.6474796 8.6749735 8.6751788
3 6.927273 6.9031298 6.9659859 7.0188906 3 77.3490714 76.1356581 77.2287144 77.236047

DTLZ5 2 3.2109635 3.2095599 3.2109646 3.210965 WFG5 2 8.2444335 8.2422967 8.2653013 8.2702657
3 6.1052922 6.1009119 6.1050065 6.1050063 3 74.1569177 73.3959324 74.1328251 74.1289772

DTLZ6 2 3.0727714 3.0898 2.9075032 2.8973674 WFG6 2 8.3786401 8.3522619 8.3785062 8.3762176
3 5.6964296 5.2659912 5.2550039 5.2817297 3 74.5010368 73.4821868 74.5165829 74.6646198

DTLZ7 2 4.4180206 4.3527739 4.4174787 4.417529 WFG7 2 8.685331 8.6549507 8.6863782 8.6863691
3 12.8437627 12.7603802 7.878233 7.5641662 3 77.6304566 76.4916201 77.5775899 77.5752613

WFG8 2 8.3184115 8.2791368 8.3251368 8.3208976
3 73.6151505 72.5266533 73.5156236 73.5167815

WFG9 2 8.5957132 8.4786182 8.5693595 8.5555043
3 76.279433 73.9882086 76.3432385 76.3733424

Table 1: Comparison of results for each test suite, using the average hypervolume
indicator.

It is clear that the winner in this experimental study is our GPU-based
MOMA in terms of CPU time. We are also able to obtain the same results as
the sequential version, which verifies that our parallel implementation is working
as expected (see Table 2). We can see that our MOMA is able to converge faster
than SMS-EMOA on some test problems (e.g., in the multi-frontal problems)
and it outperforms SMS-EMOA-HYPE in all instances. This confirms that our
proposed IGD+-based LS is an effective way to solve MOPs. It is worth noting,
however, that for DTLZ5, DTLZ6 and DTLZ7, SMS-EMOA performs better
than our MOMA. The reason is probably that the true Pareto front of these
problems is linear and disconnected, which makes the approximations produced
by our approach to converge to a single region of the search space.

5 Conclusions and Future Work

We have proposed a new Multi-Objective Memetic Algorithm which has an
IGD+-based local search engine. The core idea of our proposed algorithm is

A Parallel Multi-Objective Memetic Algorithm based on the IGD+ Indicator 9

Test Suite 1 Test Suite 2

Problem m SMS-EMOA SMS-EMOA-HYPE IGD+-MA IGD+-MA(GPU) Problem m SMS-EMOA SMS-EMOA-HYPE IGD+-MA IGD+-MA(GPU)

DTLZ1 2 0.2353 (2.22x) 1.1378 (10.74x) 0.1571 (1.48x) 0.1059 WFG1 2 0.4365 (2.03x) 1.9709 (9.17x) 0.3661 (1.7x) 0.2149
3 1.3434 (2.54x) 0.7481 (1.41x) 0.9396 (1.78x) 0.5290 3 6.1682 (3.25x) 17.4731 (9.2x) 4.5742 (2.41x) 1.8995

DTLZ2 2 0.3145 (2.36x) 5.1541 (38.69x) 0.2720 (2.04x) 0.1332 WFG2 2 0.6315 (2.64x) 3.8164 (15.94x) 0.4441 (1.86x) 0.2393
3 3.5239 (2.26x) 14.3901 (9.21x) 2.9234 (1.87x) 1.5616 3 7.1067 (3.46x) 4.9679 (2.42x) 5.1835 (2.52x) 2.0555

DTLZ3 2 0.1349 (1.33x) 0.2886 (2.85x) 0.1488 (1.47x) 0.1014 WFG3 2 0.6760 (2.51x) 4.9836 (18.51x) 0.6065 (2.25x) 0.2692
3 1.2725 (1.95x) 1.2460 (1.91x) 0.8001 (1.22x) 0.6534 3 6.4021 (2.75x) 17.4964 (7.53x) 5.7263 (2.46x) 2.3238

DTLZ4 2 0.2803 (2.11x) 3.6041 (27.11x) 0.2221 (1.67x) 0.1329 WFG4 2 0.7430 (2.78x) 7.4647 (27.92x) 0.5865 (2.19x) 0.2673
3 2.9593 (2.67x) 10.6125 (9.59x) 2.0486 (1.85x) 1.1070 3 8.5252 (3.22x) 13.9963 (5.29x) 5.8787 (2.22x) 2.6452

DTLZ5 2 0.3151 (2.38x) 5.1250 (38.66x) 0.2710 (2.04x) 0.1325 WFG5 2 0.7245 (2.49x) 9.0330 (31.02x) 0.7122 (2.45x) 0.2912
3 2.2238 (2.4x) 10.8695 (11.71x) 1.4279 (1.54x) 0.9283 3 8.1814 (3.15x) 14.4043 (5.55x) 5.9147 (2.28x) 2.5967

DTLZ6 2 0.1501 (1.56x) 0.6505 (6.76x) 0.1114 (1.16x) 0.0962 WFG6 2 0.5864 (2.31x) 6.1397 (24.17x) 0.5381 (2.12x) 0.2540
3 1.7579 (2.51x) 4.2780 (6.12x) 1.2497 (1.79x) 0.6993 3 6.0747 (2.8x) 12.14762 (5.6x) 5.1019 (2.35x) 2.1701

DTLZ7 2 0.3111 (2.66x) 3.5508 (30.4x) 0.2026 (1.74x) 0.1167 WFG7 2 1.1146 (3.32x) 12.5224 (37.31x) 0.8211 (2.45x) 0.3356
3 2.8511 (3.31x) 11.2552 (13.07x) 1.6282 (1.89x) 0.8611 3 8.4301 (2.53x) 19.5875 (5.89x) 7.6072 (2.29x) 3.3255

WFG8 2 0.5485 (2.43x) 3.9599 (17.56x) 0.4466 (1.98x) 0.2255
3 4.6612 (2.69x) 8.9829 (5.18x) 4.6498 (2.68x) 1.7358

WFG9 2 0.9392 (2.91x) 10.4772 (32.51x) 0.7952 (2.47x) 0.3222
3 8.8769 (2.67x) 18.8293 (5.67x) 7.8688 (2.37x) 3.3232

Table 2: Computational time (measured in minutes) required by each execution of the
MOEAs compared. In the parentheses show the speed up.

to combine properties of two different performance indicators. Our proposal in-
cludes a GPU-based implementation which makes it possible to launch multiple
local search processes at the same time. Our preliminary results indicate that
it is possible to improve the convergence of a hypervolume-based approach in
multi-frontal problems.

Our proposed GPU-based multi-objective memetic algorithm is able to achieve
a significant speed up (of up to 38x) with respect to SMS-EMOA. As part of our
future work, we would like to improve the method for building the reference set,
which is used for computing the IGD+ value, since it has a few drawbacks on
some test problems. Additionally, we would like to test our approach in many-
objective problems.

References

1. J. Bader and E. Zitzler. HypE: An Algorithm for Fast Hypervolume-Based Many-
Objective Optimization. Evolutionary Computation, 19(1):45–76, Spring, 2011.

2. F. Bernardes de Oliveira, D. Davendra, and F. G. G. aes. Multi-Objective Dif-
ferential Evolution on the GPU with C-CUDA. In V. Snášel, A. Abraham, and
E. S. Corchado, editors, Soft Computing Models in Industrial and Environmental
Applications, 7th International Conference (SOCO’12), pages 123–132. Springer.
Advances in Intelligent Systems and Computing Vol. 188, Ostrava, Czech Republic,
2013.

3. N. Beume, B. Naujoks, and M. Emmerich. SMS-EMOA: Multiobjective selection
based on dominated hypervolume. European Journal of Operational Research,
181(3):1653–1669, 16 September 2007.

4. C. A. Coello Coello, G. B. Lamont, and D. A. Van Veldhuizen. Evolutionary Algo-
rithms for Solving Multi-Objective Problems. Springer, New York, second edition,
September 2007. ISBN 978-0-387-33254-3.

5. I. Das and J. E. Dennis. Normal-Boundary Intersection: A new method for gen-
erating the pareto surface in nonlinear multicriteria optimization problems. SIAM
J. on Optimization, 8(3):631–657, Mar. 1998.

10 Edgar Manoatl Lopez and Carlos A. Coello Coello

6. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A Fast and Elitist Multiobjec-
tive Genetic Algorithm: NSGA–II. IEEE Transactions on Evolutionary Computa-
tion, 6(2):182–197, April 2002.

7. K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable Test Problems for
Evolutionary Multiobjective Optimization. In A. Abraham, L. Jain, and R. Gold-
berg, editors, Evolutionary Multiobjective Optimization. Theoretical Advances and
Applications, pages 105–145. Springer, USA, 2005.

8. M. T. Emmerich and A. H. Deutz. Test Problems Based on Lamé Superspheres.
In S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, and T. Murata, editors, Evolution-
ary Multi-Criterion Optimization, 4th International Conference, EMO 2007, pages
922–936, Matshushima, Japan, March 2007. Springer. Lecture Notes in Computer
Science Vol. 4403.

9. M. J. Flynn. Some computer organizations and their effectiveness. IEEE Trans.
Comput., 21(9):948–960, Sept. 1972.

10. S. Huband, L. Barone, L. While, and P. Hingston. A Scalable Multi-objective Test
Problem Toolkit. In C. A. Coello Coello, A. Hernández Aguirre, and E. Zitzler, ed-
itors, Evolutionary Multi-Criterion Optimization. Third International Conference,
EMO 2005, pages 280–295, Guanajuato, México, March 2005. Springer. Lecture
Notes in Computer Science Vol. 3410.

11. S. Huband, P. Hingston, L. Barone, and L. While. A Review of Multiobjective
Test Problems and a Scalable Test Problem Toolkit. IEEE Transactions on Evo-
lutionary Computation, 10(5):477–506, October 2006.

12. H. Ishibuchi, H. Masuda, and Y. Nojima. A Study on Performance Evaluation Abil-
ity of a Modified Inverted Generational Distance Indicator. In 2015 Genetic and
Evolutionary Computation Conference (GECCO 2015), pages 695–702, Madrid,
Spain, July 11-15 2015. ACM Press. ISBN 978-1-4503-3472-3.

13. H. Ishibuchi, H. Masuda, Y. Tanigaki, and Y. Nojima. Modified Distance Calcula-
tion in Generational Distance and Inverted Generational Distance. In A. Gaspar-
Cunha, C. H. Antunes, and C. Coello Coello, editors, Evolutionary Multi-Criterion
Optimization, 8th International Conference, EMO 2015, pages 110–125. Springer.
Lecture Notes in Computer Science Vol. 9019, Guimarães, Portugal, March 29 -
April 1 2015.

14. E. Manoatl Lopez, L. Miguel Antonio, and Carlos A. Coello Coello. A GPU-Based
Algorithm for a Faster Hypervolume Contribution Computation. In A. Gaspar-
Cunha, C. H. Antunes, and C. Coello Coello, editors, Evolutionary Multi-Criterion
Optimization, 8th International Conference, EMO 2015, pages 80–94. Springer.
Lecture Notes in Computer Science Vol. 9019, Guimarães, Portugal, March 29 -
April 1 2015.

15. NVIDIA Corporation. Cuda zone, 2014.
16. M. Pilát and R. Neruda. Hypervolume-Based Local Search in Multi-Objective

Evolutionary Optimization. In 2014 Genetic and Evolutionary Computation Con-
ference (GECCO 2014), pages 637–644, Vancouver, Canada, July 12-16 2014. ACM
Press. ISBN 978-1-4503-2662-9.

17. Y.-Y. Tan, Y.-C. Jiao, H. Li, and X.-K. Wang. MOEA/D-SQA: a multi-
objective memetic algorithm based on decomposition. Engineering Optimization,
44(9):1095–1115, 2012.

18. M. L. Wong and G. Cui. Data Mining Using Parallel Multi-objective Evolutionary
Algorithms on Graphics Processing Units. In S. Tsutsui and P. Collet, editors, Mas-
sively Parallel Evolutionary Computation on GPGPUs, pages 287–307. Springer,
2013. ISBN 978-3-642-37958-1.

