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Abstract- A multi-objective evolutionary optimisation
algorithm is applied to a Fibre Bragg Grating (optical
filter) design problem. The design specified a dual wave-
length filter with four required spectral characteristics -
total bandwidth, peak separation, peak width and min-
imum transmission. Five parameters which described
the apodised grating profile were used to define the
search space and the transfer matrix method was used to
numerically evaluate the transmission spectrum of can-
didate solutions. Various constraints on the search space
were included in the design algorithm. Two separate se-
lection schemes were tested, a distance based approach
as used in the Nondominated Sorting Genetic Algorithm
(NSGA-II) and a conglomerative clustering approach
as used in the Strength Pareto Evolutionary Algorithm
(SPEA). Non-dominated solutions are found and it is evi-
dent that particular objectives can be achieved more eas-
ily than others. Preliminary results are discussed and
future work is introduced.


1 Introduction


As more demands are made on telecommunications and
other applications of photonics such as sensing, demand for
the complexity and functionality of the interconnecting de-
vices increases. Fibre Bragg Gratings (FBG) for optical fil-
ters and switching are an inherent part of such systems. The
design of these devices is a complicated task, and forms an
excellent set of problems of which to use sophisticated de-
sign algorithms such as Evolutionary Algorithms. Our work
in this area of photonic design has so far focused on using
an Evolutionary Strategy for the design of a complex optical
fibre [1].


The design of FBG’s using Genetic Algorithm’s (GA)
has been previously explored using single objective tech-
niques [2] [3]. Typically, these have been simple designs
(for example, bandpass filters), and GA’s have proven to be
very successful in this domain. In these cases the objective
function was defined as the minimisation of the difference
between the target spectrum and design spectrum. Weights
were used to increase the relative importance of regions of
interest.


In this paper we consider the generalised case of multi-


ple objectives without reducing the problem to a single ob-
jective. The four objectives used here relate to four spec-
tral features of interest of a wavelength filter, which were
explicitly defined and calculated for each solution. The ad-
vantage of multiobjective techniques over single-objective
techniques is that we can find groups of solutions which
inherently represent all possible compromises between the
various target design objectives, leaving the final decision
of optimality to a human decision maker.


2 Fibre Bragg Gratings


Permanent gratings in optical fibre were first demonstrated
experimentally in the late 1970’s. Since then, the theoretical
and experimental aspects of FBG’s have flourished, result-
ing in a multitude of applications. FBG’s have be used as
stand alone devices, for example, sensing applications for
strain, temperature and voltage measurement. They have
also been incorporated into fibre communications systems
where they are used to combine, divide and filter digital
light signals. The manufacture of FBG’s has reached a
level now where designs can be quickly and easily fabri-
cated, making FBG design ideal for sophisticated design al-
gorithms. An overview of FBG history and technological
developments is available in [4].


The theoretical aspects of FBG’s are well developed,
and many techniques have been published which allow us
to obtain a grating structure given a desired spectrum. A
recent example is presented in [5]. A common disadvan-
tage of these methods is that the required transmission spec-
trum and other properties such as the group delay spectrum
have to be specified over a large wavelength range. Further
to that, the inverse algorithms do not allow the inclusion
of other constraints, where the ability to specify important
spectral features that should be present would be extremely
useful. Here we have used a multiobjective evolutionary ap-
proach since it allows us to quantify the particular features
of interest, without the need to over-specify the transmission
spectrum for an inversion algorithm.


Experimentally, FBG’s are produced by exposing a short
length of optical fibre to an intense optical interference pat-
tern, which results in a lengthwise modulation of the re-
fractive index of the silica (glass) of the fibre. This high
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Figure 1: Graphical representation of the seven design variables
q0, z0, z1, n, L, φ0, φ1. The intrinsic grating structure is shown as
the high-frequency curve. The resulting apodised profi le (enve-
lope) is also shown.


frequency modulation is typically in the order of a µm, and
forms an overall envelope profile which is cm’s in length
(Figure 1). The main idea of FBG design is to find a pro-
file which leads to the FBG exhibiting particular spectral
properties of interest, where different wavelengths can be
selectively reflected (or transmitted) in varying degrees.


Generally, the strongest interaction of the FBG with light
occurs at the Bragg wavelength λB, defined by


λB = 2neffΛ (1)


where neff is the model effective index of the propagative
wave and Λ is the grating period. For the purposes of this
study we set λB = 1.55µm, but the factor Λ has itself previ-
ously been used as a design variable [2]. Since we can tune
this with relative ease during the manufacturing process, it
is not included as a design variable.


One of the simplest FBG’s consists of a uniform grat-
ing, which leads to a sinc like function transmission spec-
trum. To smooth out these side ripples in the spectrum, an
apodisation can be introduced at each end of the grating.
This process of apodisation refers to gradually changing the
strength of the grating, rather than an abrupt change as in
the uniform FBG. In addition to that, phase changes can be
introduced in the grating to induce transmission peaks in the
spectrum. Various functions are used to describe this type
of FBG, where we have a rolloff on the ends and a constant
central region. The raised cosine cos2(z) is one of these
commonly used functions.


2.1 Design parameters and manufacturing constraints


The design parameters used in this problem are associated
with details of the raised cosine function which describes
the apodised profile. The most general form of the raised


cosine grating structure is defined as


q(z) = q0 cos2
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where


φ(z) = φ0, z < z0


= φ1, z > z1


= 0, otherwise


containing seven design parameters: q0 is the peak strength
of the grating, L is the total length of the grating, n con-
trols the curvature of the end drops and z0, z1 relate to the
locations of the φ0, φ1 phase changes respectively. Since
the spectrum of interest in this study is symmetrical about
λ = λB, we impose φ0 = φ1 and z0 = −z1, resulting in
a search space of five dimensions. The contribution of the
various parameters to the FBG design is shown graphically
in Figure 1.


Constraints were included in the design process since
various manufacturing limits exist relating to factors such
as the maximum strength of the grating and maximum man-
ufacturable length. These were taken as Lmax = 15cm and
q0max = 500m−1. Some constraints also exist due to the
definition of the design, such as 0 ≤ φ0, φ1 < 2π, n > 1.0
and 0 ≤ z0 < z1 ≤ L.


2.2 Numerical Modelling


Derived from Maxwell’s equations, the coupled mode equa-
tions describing a simple FBG can be written as


+iu′(z, δ) + δu(z, δ) + q(z)e+iφ(z)v(z, δ) = 0 (3)


−iv′(z, δ) + δv(z, δ) + q(z)e−iφ(z)u(z, δ) = 0 (4)


where q(z) represents the apodisation (overall strength en-
velope) of the FBG, φ(z) encodes the chirp (phase change)
of the grating, and δ is defined as the de-tuning value


δ = 2πn̄(
1


λ
−


1


λB
) (5)


where n̄ is the average refractive index of the FBG. The
forward and backward propagating waves are represented
by u and v respectively.


We solve the coupled mode equations using a transfer
matrix approach. The fibre grating is divided into discrete
layers of width h along z between 0 and L. The transfer
matrices propagate the fields from z to z +h, layer by layer
through the structure. Both matrices Tδ and Tκ depend on
the choice of h, but Tδ only depends on the detuning value
δ, whereas Tκ depends on the grating properties defined by
q(z).


Tκ =


[


cosh(qh) sinh(qh)e+iφ


sinh(qh)e−iφ cosh(qh)


]


(6)







Tδ =


[


e+iδh 0
0 e−iδh


]


(7)


At z = L we specify the boundary conditions u(L) = 1 and
v(L) = 0. Layer by layer the matrices are applied to [u, v]


[


u(0)
v(0)


]


= TκTδ · · ·TκTδ


[


u(L)
v(L)


]


(8)


and the final reflectance at λ is given by r(λ) = v(λ)
u(λ) .


This is repeated for a range of wavelengths to obtain the
spectrum over the range λB ± 1nm. The resulting transmis-
sion spectrum in decibel units is evaluated using


TdB(λ) = 10 log10(1.0 − |r(λ)|2) (9)


3 Multi-objective Evolutionary Optimisation


Real-world engineering problems generally involve multi-
ple objectives, and to simultaneously meet these most opti-
misation techniques will combine these multiple objectives
into a single one. In these cases, different objectives are as-
signed different levels of importance in the form of weights,
which directs the design algorithm to emphasize a particular
type of solution in its search.


One of the advantages of Pareto based design schemes
is that they automatically find solutions with all possible
weights, that is, a range of structures where different fea-
tures are expressed to varying degrees. This translates to the
fact that we don’t need to make a previous decision about
the importance of objectives relative to others, since this
may not even be known. Ultimately it places the decision
process in the hands of a human decision maker, which is
desirable in many real engineering problems.


Evolution-based design algorithms naturally lend them-
selves to such techniques since they are population based.
The non-dominated solutions can exist simultaneously and
through the processes of mutation, recombination, breeding
and selection an accurate representation of the Pareto set of
that problem can be formed. The most important issue in
the design of multiobjective optimisation algorithms is the
convergence to and quality of the non-dominated set, which
should ultimately be very close to the true Pareto set associ-
ated with that particular design problem.


All current Evolutionary Algorithms, both single and
multi-objective mainly differ in the choices of mutation and
selection operators. The main focus of current research on
improving multiobjective algorithms resides in the selection
operator. Some recent papers have examined different mu-
tation schemes, but it is still in very early stages.


Our initial work on photonic design focused on the de-
sign of an optical fibre using a single objective Evolution-
ary Strategy algorithm [1]. The expansion to a multiobjec-
tive algorithm was straightforward, where only the selec-
tion operators had to be included in the pre-exisiting Object


Oriented framework. The adaptive mutation operators, as
discussed in [6] were not altered.


3.1 Mutation operator


The adaptive mutation operator functions on the premise
that the optimal mutation strategy is not known for each
particular optimisation problem. Apart from the usual gene
vector, two other vectors are introduced - strategy variables
and correlation variables.


The strategy variables refer to the standard deviation σ of
the normally distributed random mutations applied to each
individual gene, and control the distribution of the search
along the design parameter axes. The correlation variables
α generalise these search directions. It is unclear at this
stage how this adaptive mutation operator affects conver-
gence and the quality of the multiobjective algorithm, and
is expected to be the basis of further research.


For a more detailed overview of adaptive mutation, we
refer the reader to [6].


3.2 Selection Operator


During the selection process we want to reduce a population
of size Nparents + Nchildren → Nparents. In this paper two
types of selection operators were used.


The first used was the crowding distance approach
as used in the NSGA-II (Non Dominated Sorted Genetic
Algorithm-II) [7]. Firstly, the non-dominated set (size
Ndom) is extracted from the whole population. If Ndom ≤
Nparents, only the non-dominated set is used to produce
children. If Ndom > Nparents, some individuals need to
be culled. Relative to each objective, all individuals are
sorted in order in turn. We then step through this list and
each individual is assigned a crowding distance which is
equal to the average distance between its two closest neigh-
bours. These individuals are then sorted from greatest dis-
tance (most sparse) to least distant (most densely packed in
objective space), and the top Nparents are chosen. Individ-
uals are thus sorted on the basis of closeness to each other.
By default, the individuals which lie in the extreme corners
of the objective space are chosen. These corner individuals
will generally have excellent performance in one objective,
but poor performance in all other objectives.


The other approach used to reduce the population is a
clustering technique. This has been previously used in the
SPEA (Strength Pareto Evolutionary Algorithm) [8]. Here
the non-dominated set is chosen, but we also use the remain-
ing non-dominated levels to fill up the parent population if
required. If Ndom > Nparents, the population is reduced us-
ing clustering. The clustering algorithm used here is known
as hierarchical conglomeration. Initially, every single indi-
vidual forms a cluster. Through multiple iterations, clusters
are joined together by comparing their Euclidian distances







Objective Target trait value Objective
Peak separation (A) 10Ghz (0.08nm) min |A − 0.08|


Average depth (B) <-30dB min(B)


Peak width (C) 0.8pm min |C − 0.8|


Total bandwidth (D) 1nm min |D − 1.0|


Table 1: Outline of the four objectives used (see Figure 2). The
target trait values for the initial design specifi cation are shown,
along with the conversion to the target objective values which are
to be minimised.


in the objective space. In the cases where there is more than
one individual in a cluster, a centroid (average cluster posi-
tion) is used to measure the objective distance.


Often in practice, when dealing with nobj > 2, there will
be more than Nparents on the first non-dominated front. The
clustering (or whichever reduction technique we choose) is
then only applied to this set of individuals, which all have
an equal breeding probability. Constant population sizes of
100 are often used in multiobjective algorithms. We expect
that as the dimensionality of objectives increase, more indi-
viduals are required to give a good representation of this
non-dominated front, in the order of 10n where n is the
number of objectives.


It is important to note here than when distances are
measured in objective space, these measures must be nor-
malised. This is often not necessary when test functions are
used since each objective value exists in the same range.
This is not so for real problems such as the FBG one dealt
with here, where the objective values are of different units
and different orders of magnitude, and are not known. To
find the distance between two solutions a, b we use


dnorm =


√


√


√


√


Nobj
∑


m=1


(


am − bm


omax(m) − omin(m)


)2


(10)


where am refers to the mth objective of individual a and
omin(m), omax(m) refer to the minimum and maximum
values of the mth objective in the population.


3.3 Constraint handling


Constraints were included in the design process since var-
ious manufacturing limits exist relating to factors such as
the maximum strength of the grating and maximum manu-
facturable length. The constraints were enforced in a fairly
simple manner at the breeding stage. If individuals did not
conform upon breeding, they were removed. Breeding con-
tinued until enough individuals were created to fill the pop-
ulation.


In future more complicated methods of constraints will
be introduced, such as that outlined in [7]. Here individ-
uals which do not conform are kept in the population and
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Figure 2: Diagram of the type of transmission spectrum we are
optimising for, showing the 4 quantitative values used as extracted
from the spectrum. Objective B is shown twice to indicate that
it was taken as the average of the depth of the two transmission
troughs.


included in the non-dominated selection scheme. The se-
lection then takes place based on (1) their objective values,
and (2) the closeness of conformation to constraints. Such
methods are less artificial than the current method used, and
may be ideal for finding non-dominated solutions which ex-
ist near the constraint boundaries.


3.4 Computational Implementation


One of the many advantages of Evolutionary based algo-
rithms over other more traditional search schemes is the
easy adoption of a parallel scheme for the calculation of
traits. Once the genetic material of a population of individu-
als have been determined, the trait calculations can proceed
independently of one another. Our code was parallelised us-
ing the Message Passing Interface (MPI). Here we used the
freely available MPICH library [9].


The runs of this software are typically very efficient over
11 processors, 10 serving as slave processors with a single
master distributing the workload. The speedup of the algo-
rithm is close to the expected (ncpu − 1)−1 relation, due to
the short MPI communication times relative to the trait cal-
culation times. The use of more than 11 processors does not
give much of an advantage due to incomplete parallelisation
(Ahmdahl’s law). Further details are available at [1].


The C++ Standard Template Library data structures were
used heavily, as they greatly simplify the process of data
storage and data manipulation in algorithm such as the clus-
tering technique described previously.


4 Fibre Bragg Grating design


Four spectral features were chosen for quantitative optimi-
sation.







• Trait A defines the distance between the the two cen-
tral wavelength transmission peaks,


• Trait B refers to the average depth of the two troughs,


• Trait C is the thickness of the peaks at the halfway
transmission point between the two troughs,


• Trait D refers to the bandwidth of the FBG.
For an outline of the resulting objectives refer to Table 1


and Figure 2.
Once the transmission spectrum T (λ) was calculated as


a function of the five gene values, a peak finding routine
based on dT


dλ
was used to extract the four trait features.


Runs of the multiobjective algorithm were conducted us-
ing both the SPEA and NSGA-II selection algorithms. Pop-
ulation sizes of 50 parents and 50 children were generally
used, but runs with 100 to 500 parents and children were
also conducted to ascertain if better coverge of the non-
dominated set could be achieved, given the 4D objective
space. The runs were conducted over 500 generations.


4.1 Results


A behaviour that stood out in all the MOEA runs was that
two main types of solutions would often dominate the pop-
ulation:


• Individuals which were very dominant in objective
B (very deep troughs) but poor in all other objec-
tives (this correlated strongly with large shallow side
peaks),


• Individuals with no distinguishable side peaks (corre-
sponding to objective C = 0).


During the early generations of runs, where the mutation
rates are high, the parent population tended to converge to
these areas of the objective space. This perhaps indicates
that the gene space responsible for features such as the ex-
pression of dual peaks along with deep troughs is quite lim-
ited in scope.


The objective functions were re-evaluated in an attempt
to divert the search space away from these features. Firstly,
individuals with no discernible central peaks were given a
bad objective value (objective C = 1). Secondly, individ-
uals with an average transmission trough less than -60dB
were given an equal objective value, such that


Bobj = Btrait, Btrait > −60dB


= −60dB, otherwise


This placed the individuals with large negative B on an
equal footing during the selection process. The combination
of these two objective function adjustments successfully im-
proved the diversity of the non-dominated set found, and
typically resulted in the examples shown in Figure 3.


The problem of a large proportion of individuals occur-
ring in the population with large negative troughs still per-
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Figure 3: Transmission spectra typical of those found on the fi nal
non-dominated set of a MOEA run. Generally 20% of individuals
were of this diverse kind. The rest consisted of a single deep trans-
mission trough (strong reflection peak at λ B). Some extremal de-
signs are labelled with the corresponding objective(s) they excel at.
The corresponding traits are A = 0.084nm, B = −21.5dB, C =
0.08nm, D = 0.85nm.







200 400 600


0.02


0.04


0.06


0.08


0.1


0.12


q0 (m1)


L
 (


m
)


200 400 600


2


4


6


q
0
 (m 1)


φ
0


200 400 600


0.02


0.04


0.06


q0 (m 1)


z 0
 (


m
)


200 400 600


2


3


4


q
0
 (m 1)


n


0.04 0.08 0.12


2


4


6


L (m)


φ
0


0.04 0.08 0.12


0.02


0.04


0.06


L (m)


z 0
 (


m
)


0.04 0.08 0.12


2


3


4


L (m)


n


2 4 6


0.02


0.04


0.06


φ
0


z 0
 (


m
)


2 4 6


2


3


4


φ
0


n


0.02 0.04 0.06


2


3


4


z
0
 (m)


n


-
-


-
-


Figure 4: Pairwise plots along the direction of each design
variable of the non-dominated set after 500 generations using
Nparents = 500, Nchildren = 500.
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Figure 5: Pairwise plots along the direction of each objective (as
outlined in Table 1) of the non-dominated set after 500 generations
using Nparents = 500, Nchildren = 500. Most of the population
is concentrated in the region where Peak width (C) ≈ 0.







sisted. Examination of the gene (design) parameters sug-
gested that the population remained quite diverse in the de-
sign space as compared to the objective space (Figures 5 and
4). This suggests that the genetic space which is responsible
for those particular features must be very small since they
are rarely expressed. In an attempt to alleviate this and in-
crease coverage of the non-dominated front, the total size
of the population was increased to 400 and 1000. Although
this did provide more viable solutions, a large proportion of
population members still existed with large negative trans-
missions. An example of the resulting non-dominated set
for a run with Nparents, Nchildren = 500 is shown in Figure
4 (design space) and Figure 5 (objective space).


The crowding and clustering size reduction schemes aim
at maintaining diversity, but it is difficult when the number
of diverse solutions is much less than the parent population
size. So at this point in time, no discernible difference was
found between the use of the crowding based selection op-
erator and the clustering selection operators. It is difficult to
make judgement on this till the non-dominated diversity is
improved.


Two methods which will be implemented in an attempt
to reduce this problem are


• Further reduce the size of the parent population so
that at each generational loop there is a larger propor-
tion of individuals which have better diversity in all
objectives,


• Favour such diverse individuals during the breeding
process.


Other opportunities exist in defining the objectives more
explicitly, such as the flatness of the troughs (which would
be advantageous for wavelength filters). Such changes in
the objective definitions would be ideal, but we must si-
multaneously keep the dimensionality of the objective space
small.


5 Conclusions


A Multi-Objective Evolutionary Algorithm was applied to a
Fibre Bragg Grating design problem where four objectives
were simultaneously optimised for a twin wavelength filter
device. Small sub-groups of diverse non-dominated solu-
tions were successfully found, but the population tended to
converge to particular solution types, limiting diversifica-
tion over time. Future work will involve limiting the num-
ber of selected individuals to more accurately represent non-
dominated members.


The research work in its current state is in early days,
with a large scope present for future work involving the
improvement of the design algorithm to diversify the non-
dominated sets found, and visualisation of these non-
dominated sets to further our understanding of FBG design.
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