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Abstract: Manufacturing Cell Design problem has been a research areain the celular
manufacturing context since 1970’s. Prior to the 1990’s, the problem had been
examined basically with respect to only a single criterion, e.g.. minimizing
intercellular parts movements, maximizing similarity among the parts and/or
machines in the cells, minimizing imbalance of the work load among the cells. In the
1990’s and after, a number of papers have been published that model the cell design
problem as a Multi-Criterion Decison Making (MCDM) problem, in particular as a
Multiobjective Optimization Problem (MOP).

In this thesis a new multiobjective model has been developed to deal with the
exceptional elements in the design of a Cellular Manufacturing System. The set of
objectives include: minimizing intercellular part movements, minimizing sum of
machine duplication and part subcontracting cost, minimizing machinery
underutilization and minimizing imbalance of the cells workloads. Due to the
conflicts among the objectives, attaining an ideal solution, i.e. a solution that
simultaneously optimizes all of the objectives, is impossible. However a set of non-
dominated (or Pareto Optimal) solutions could be sought from which the decision
maker will be able to select based on his or her priorities. To this end, a multiobjective
genetic agorithm caled XGA was developed and coded in Visua C++. The
algorithm makes use of the non-dominated sorting idea to rank individuals in the
population. An extension of Reminder Sochastic Sampling Without Replacement
(RSSWP) is developed wherein a novel probabilistic scheme of elitism is applied.
Niching is employed to keep diversity among the individuals in the elite set. Stopping
criteria of the agorithm is devised so that takes into account convergence of the
agorithm to the Pareto-Optimal frontier along with the maximum number of
generations.

A number of cell design problems taken from the literature were solved by the XGA
and also by three reference agorithms, namely: VEGA, NPGA and NSGA. The
results obtained by the XGA show promising improvements in three dimensions, i.e.
quality, diversity and CPU time compared with the reference algorithms.
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/*
XGA : A Multi-Objective Genetic Algorithm for Cell Design
by: S.A.Mansouri
Department of Industrial Engineering
Amirkabir University of Technology
e
/*

R RS RS RS SRR R EEEEEEEEEEEEEEEEEEEEES

* Declaration of the variables *
LR R SRS RS SR SRS R R RS R R SRS EREREEEEEEEEE]

*/
#define random (num) (rand () % (num) )
#define randomize () srand((unsigned)time (NULL))

#define POPULATION_SIZE 150

#define PCROSS 0.5

#define PMUT 0.03

#define MAX GEN 250

#define SuccessiveFronts 15

#define SigmaShare 0.6

#define UpperBoundSharedFitness 1.01

#define EliteSet Size 50

#define InitialTransferProbability 0.1

#define DegradingFactor 0.8

#define EpsilonNiche 0.3

#define P _Elitism 1.0

#define P Inversion 0.0

#define Max_ PartTypes 50

#define Max MachineTypes 50

#define Max Cells 20//10

#define CHROM_LENGTH 15

char InputFile[] = {"Bur69 In.txt"}; // The problem to be solved
char UpdatingFile[] = {"Bur69 Ag FoundFront.out"};
char ReferenceFile[] = {"Bur69 TE 4obj.out"};
#define NondominatedFront Size 221

char Reference ND File[] = {"Bur69 TE 4obj.out"};
time t StartTime, FinishTime;

double ElapsedTime;

float Sub[Max PartTypes]; // (S3)

int Dem[Max PartTypesl; // (Dj)

int Mch[Max MachineTypes]; // (Mi)

int PM[Max PartTypes] [Max_ MachineTypes]; // PMji's
float t[Max_MachineTypes] [Max PartTypesl; // tij's
int CM[Max MachineTypes]; // CMi's

int CS[Max Cells]; // CSk's

int MCS; // Maximum Cell Size

int PartTypes, MachineTypes, Cells;

int ExPartIndex[Max_ PartTypes]; // X variables

int ExMachineIndex[Max MachineTypes]; // i index in the Y variables
int ExCellIndex[Max_Cells]; // k index in indices for the Y variables
int NofXs; // number of the X variables

int NofYs; // Number of the Y variables

class CPopulation

public:
CPopulation(); // Constructor
double value;
unsigned char String[CHROM_ LENGTH] ;
unsigned char 0ldString[CHROM_LENGTH] ;
bool Nondominated;
bool IgnoredTemporary;
float DummyFitness;
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float SharedFitness;

int NondominatedFront;

i

float TransferProbability;

bool SelectedForEliteSet;

bool SuitableForMatingSet;

unsigned char SourceAlgorithm;

bool Feasibility;

float fitnessF1;

float fitnessF2;

float fitnessF3;

float fitnessF4;

unsigned char* ptoX[Max PartTypes];

unsigned char* ptoY[Max MachineTypes] [Max Cells];

float OU;
float UC[Max_Cells];
~CPopulation(); // Destructor

CPopulation: :CPopulation() // Constructor

}

CPopulation: :~CPopulation() // Destructor

}

class CExceptionalPart

{

public:

i

CExceptionalPart (); // constructor
int PartIndex;

int EM IndexArray [Max MachineTypes] ;
int EM Size;

~CExceptionalPart (); // destructor

CExceptionalPart: :CExceptionalPart ()

}

CExceptionalPart: :~CExceptionalPart () // constructor

}

class CCell

public:

CCell::

ccell(); //constructor

int BM[Max MachineTypes] ;

int BM_Size;

int MC[Max MachineTypes] ;

int MC_Size;

int HF [Max PartTypes];

int HF_Size;

int GF [Max_ PartTypes] ;

int GF_Size;

CExceptionalPart EP[Max_ PartTypes];

CExceptionalPart* ptoEP[Max_ PartTypes];

int EP_Size;

int EP_IndexArray [Max PartTypes];

bool MembershipCheck (int, int*, int);
int FindRelevantIndexForEP (int) ;
~CCell(); // destructor

Cccell() // constructor

for (int j=0; j<Max_PartTypes; Jj++)
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ptoEP[j] = &EPI[j];

}

bool CCell: :MembershipCheck (int mem, int *ptoArray, int ArraySize)

{

for (int 1=0; i<ArraySize; 1++)

if (mem == *ptoArray)
return (true) ;
else
ptoArray++;

return (false) ;

}

int CCell::FindRelevantIndexForEP (int index)
for (int j=0; j<Max_ PartTypes; Jj++)

if (index == EP[j] .PartIndex)
return (j);

return (-1);

}

CCell::~CCell() // destructor

struct SIndividual //for storing individuals in the non-dominated front

unsigned char String[CHROM LENGTH] ;
int value;

i

CPopulation CPool [POPULATION SIZE]; // objects for the current pool
CPopulation* ptoCPool = CPool; // pointer to the CPool
CPopulation CNewPool [POPULATION SIZE]; // objects for the new pool
CPopulation CEliteSet [EliteSet Size];// objects for the Elite Set
CPopulation* ptoCEliteSet = CEliteSet; //pointer to the Elite Set
CPopulation C NDFrontBaseAlgorithm [POPULATION SIZE]; //used in computing
//relative performance for large problems
CPopulation* ptoC _NDFrontBaseAlgorithm = C_NDFrontBaseAlgorithm;
#define MaxAntNDFrontSize 10*POPULATION SIZE //max anticipated size for nondominated
front
CPopulation C NDFrontPreviousRun[MaxAntNDFrontSize]; //used in updating //nondominated
front of previous run
CPopulation* ptoC_NDFrontPreviousRun = C_NDFrontPreviousRun;
CPopulation C NDFrontReferenceAlgorithm[MaxAntNDFrontSizel; //used in //computing
relative performance for large problems
CPopulation* ptoC _NDFrontReferenceAlgorithm = C NDFrontBaseAlgorithm;
CPopulation C NDFrontCurrentRun [POPULATION SIZE]; //used in updating //nondominated front
of previous run
CPopulation* ptoC NDFrontCurrentRun = C_NDFrontCurrentRun;
/* Objects for the prvious generations */
CPopulation C 0th 0OldPool [POPULATION SIZE]; // Oth old generation
CPopulation C 1st 0OldPool [POPULATION SIZE]; // 1lst old generation
CPopulation C 2nd OldPool [POPULATION SIZE]; // 2nd old generation
CPopulation C 3rd OldPool [POPULATION SIZE]; // 3rd old generation
CPopulation C 4th OldPool [POPULATION SIZE]; // 4th old generation
/* pointers to the objects of the previous generations */
CPopulation* ptoCOldPool[] = {C_Oth 0ldPool, C 1st OldPool,

C_2nd_0OldPool, C_3rd OldPool,

C 4th 0ldpool};

CPopulation* selected[POPULATION SIZE];
CCell MyCell [Max_Cells]; // aray of objects of class CCell
CCell* ptoMyCell = MyCell; // pointer to the first element of the aray
struct SIndividual NondominatedIndividual [NondominatedFront Size];
SIndividual* ptoNondominatedIndividual= NondominatedIndividual;
// pointer to the array NondominatedIndividual []
float ExpectedNumber [POPULATION SIZE];//Used in Rem. Stoch. Samp....
float Distance[POPULATION_SIZE][POPULATION_SIZE]; // Distances
float Sharedvalue[POPULATION_SIZE][POPULATION_SIZE];// Shared Values
int generations;
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FILE *out_ stream;

int parentl;

int parent2;

int childl ;

int child2;

int index;

float PI;

int Number ND Solutions;

LR R R R R RS S SRR SRR SRR R SRR SRR R R R R R SRR R R EEEEEEEEEEEEEEEEEEEEEEEE S

* Some of the Functions of the XGA Genetic Algorithm *
LR R R SRR S S S E S S SR SRR RS SR RS SRR R SRR R R R R SRR EEEEEEEEEEEEEEEEEEEEE S
*/
/*

<<<<<<<<c<c<<<<<<<<<<F -F -F >>>>>>>>>>>>>>>>>>>>>>
Min F : Intercellular movements

With fitness function: NorFactor/ (NorFactor+f )

float evaluateF (int x)

{

RelateStringtoVariables (x) ;

int k, j, 1i;
float £ = ;

int NorFactor = ;

for (k= ; k<Cells; k++) // For Xj's
{
for (j=; j<=PartTypes; Jj++)
{

if ((ptoMyCell + k)->MembershipCheck (j, (ptoMyCell + k)->EP_IndexArray,
(ptoMyCell + k)->EP_Size)==true)

int IndexForEP = (ptoMyCell + k)->FindRelevantIndexForEP (7j);
// determines the relevant index for the EParray
for (i= ; i<=MachineTypes; 1i++)

{

//1if (ptoEM [k]->MemberCheck (i,

ptoEM [k] ->iArray) ==true)

if ((ptoMyCell + k) ->MembershipCheck

(1,

(ptoMyCell + k)->ptoEP[IndexForEP]->EM IndexArray, (ptoMyCell + k)->

ptoEP [IndexForEP] ->EM_Size) == true)

f1 += (1-*CPool [x] .ptoX[j-1])* (1-*CPool [x].ptoY[i-1] [k])*PM[j-1][i-1];
// [i- 1 refers to the place

} // end of the i loop

} // end of if
}// end of the j loop

} // end of the k loop

return (NorFactor/ (NorFactor+f )) ;
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/*
<<<<<<<LL<<<L<<<<<<<K<F2-F2-F2>>5>>>>>>>>>>>>>>>>>>>>
Min F : Cost

With fitness function: NorFactor/ (NorFactor+f )

float evaluateF (int x)
{

RelateStringtoVariables (x) ;
int k, j, 1i;
float £ = ;

int NorFactor = ;

/* Calculations based on the exceptional parts (Xj's) */

for (k= ; k<Cells; k++) // For Xj's

{

for (j=; j<=PartTypes; Jj++)
{

//if (ptoEP [k]->MemberCheck (j, ptoEP[k]->iArray)==true)
if ((ptoMyCell + k)->MembershipCheck (j,

(ptoMyCell + k)->EP_IndexArray,

(ptoMyCell + k)->EP_Size)==true)

f 4= *CPool [x] .ptoX[j- ]*Dem[j- ]*Subl[j-1; // j-

referrs to the place

int IndexForEP = (ptoMyCell + k)->FindRelevantIndexForEP
(3)
// determines the relevant index for the EP array
for (i= ; i<=MachineTypes; 1i++)

if ((ptoMyCell + k)->MembershipCheck (i, (ptoMyCell + k)->
ptoEP [IndexForEP] ->EM_IndexArray,
(ptoMyCell + k)->ptoEP[IndexForEP]->EM Size) == true)
f += *CPool [x] .ptoY[i-
1 [k]*Mch[i-1; // [i- ] refers to the place
} // end of the i loop

} // end of if

} // end of the j loop

} // end of the k loop

return (NorFactor/ (NorFactor+f )) ;

/*

<<<<L<<<<<<<<<<<<<<<F -F -F >>>>>>>>>>>>>>>>>>>>>>
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Min F : Underutilisation

With fitness function: NorFactor/ (NorFactor+f )

float evaluateF (int x)

{

|RelateStringtoVariables (x) ;
int k, j, 1i;

float £ = ;

float Nominator ;

float Denominator ;

float Nominator ;

float Denominator ;

int NorFactor = ;

/* Calculating utilisation of cells (UCk's) */
for (k= ; k<Cells; k++)

{

Nominator = ;
Denominator = ;
// Calculation for the nominator of UCk
for (i= ; i<=MachineTypes; 1i++)
//1if (ptoMC [k]->MemberCheck (i, ptoMC[k]->iArray) == true)

if ((ptoMyCell + k)->MembershipCheck (i,
(ptoMyCell + k)->MC,
(ptoMyCell + k)->MC_Size)==true)

for (j=; j<=PartTypes; Jj++)

{

//if (ptoHF [k]->MemberCheck (j, ptoHF [k]-
>iArray)==true)

if ((ptoMyCell + k)->MembershipCheck (j,

(ptoMyCell + k)->HF,
(ptoMyCell + k)->HF Size)==true)

Nominator += Dem[j- ]1*t[i-][]-1;
} // end of the st j loop
for (j=; j<=PartTypes; j++)

//if (ptoEP [k]->MemberCheck (j, ptoEP[k]-
>iArray)==true)

if ((ptoMyCell + k)->MembershipCheck (j,
(ptoMyCell + k)->EP_IndexArray,
(ptoMyCell + k)->EP_Size)==true)
Nominator -= *CPool [x].ptoXI[j-

]*Dem[j- 1*t[i- 13- 1;

} // end of the nd j loop

for (j=; j<=PartTypes; j++)
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}/if (ptoGF [k] ->MemberCheck (j, ptoGF [k]-
>iArray)==true)

if ((ptoMyCell + k)->MembershipCheck (j,
(ptoMyCell + k) ->GF,

(ptoMyCell + k)->GF_Size)==true)
Nominator += ( -*CPool [x].ptoX[j-

1) *Dem[j- 1*t[i- 1 [j-1;

} // End of the rd j loop
} // end of the i's if loop

// Calculation for the denominator of UCk
//if (ptoMC [k]->MemberCheck (i, ptoMC[k]->iArray)==true)
if ((ptoMyCell + k)->MembershipCheck (i,
(ptoMyCell + k)->MC,
(ptoMyCell + k)->MC _Size)==true)

Denominator += CM[i- ];

//if (ptoBM[k]->MemberCheck (i, ptoBM[k]->iArray)==true)
if ((ptoMyCell + k)->MembershipCheck (i,
(ptoMyCell + k)->BM,
(ptoMyCell + k)->BM Size)==true)

Denominator += *CPool [x] .ptoY[i- ] [k]*CM[1i-
1;

} // end of the i loop

CPool [x] .UC[k] = Nominator /Denominator ; // Utilisation of cells

} // end of the k loop

/* Calculating total utilisation */
Nominator = ;

Denominator = ;

for (k= ; k<Cells; k++)

{

Nominator += CPool [x].UCI[k]*CS[k];

for (i= ; i<=MachineTypes; 1i++)

{

if ((ptoMyCell + k)->MembershipCheck (i,
(ptoMyCell + k)->BM,
(ptoMyCell + k)->BM Size)==true)

Nominator +=

CPool [x] .UC [k] **CPool [x] .ptoY [i- ] [k];
} // end of the i loop for Nominator

Denominator += CS[k];
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for (i= ; i<=MachineTypes; 1i++)

//if (ptoBM[k]->MemberCheck (i, ptoBM[k]->iArray)==true)
if ((ptoMyCell + k)->MembershipCheck (i,
(ptoMyCell + k)->BM,

| (ptoMyCell + k)->BM Size)==true)

Denominator += *CPool [x] .ptoY[i- ] [k];
} // end of the i loop for Denominator

} // end of the k loop

CPool [x] .OU = (Nominator /Denominator ); // Overall utilisation
f = -CPool[x].0U; // Overall Underutilisation

return (NorFactor / (NorFactor + f ));

/*

<<<<<<<<<c<<<<<<<<<<F -F -F >>>>>>>>>>>>>>>>>>>>>>
Min F : Load unbalance

With fitness function: NorFactor/ (NorFactor+f )

float evaluateF (int x)
{

RelateStringtoVariables (x) ;

int k;
float Nominator = ;

float f ;

int NorFactor = ;
for (k=0; k<Cells; k++) //

Nominator += (float) pow((CPool [x].UC[k] - CPool[x].OU), );
f = (Nominator/(Cells - ));

return (NorFactor/ (NorFactor + f ));

DoNondominatedSorting
performs nondominated sorting untill all the
individuals have been assigned shared fitness values

*/
void DoNondominatedSorting()

{

int Condition = 1; // for execution of the (do...while) loop
int Front = 1; // refers to the nondominated front
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PrintGenerationNumber (out stream); /* prints generation number in the file
MOCDx_Gen.out */

SetInitialvalues() ;

do
Condition = 1;
MarkDominatedSolutions () ;

PrintCurrentFront (out stream, Front);

AssignDummyFitness () ;
CalculateHammingDistances () ;
CalculateSharingValues () ;
CalculateSharedFitnessValues () ;
IgnoreCurrentNondominatedFront () ;
ReviveDominatedIndividuals () ;

for (int i=0; i<POPULATION_SIZE; 14+)
// to verify if there is any individual need to be checked

if ((ptoCPool + 1i)->IgnoredTemporary == false)
Condition = 0;

}

Front++;

}

while (Condition == 0);
/* continues untill all of the individuals
have been marked as IgnoredTemporary */

/*

DominatedCheck
investigates either i or j (or none of them) is dominated
/e

char DominatedCheck (int i, CPopulation* ptoGl, int j, CPopulation* ptoG2)

CPopulation* ptoi = ptoGl + i; // pointer to the CPool[i] in generation G1
CPopulation* ptoj = ptoG2 + j; // pointer to the CPool[j] in generation G2

float Fli = ptoi->fitnessF1l;
float F2i = ptoi->fitnessF2;
float F3i = ptoi->fitnessF3;
float F4i = ptoi->fitnessF4;

float F1j = ptoj->fitnessF1l;
float F2j = ptoj->fitnessF2;
float F3j = ptoj->fitnessF3;
float F4j = ptoj->fitnessF4;

if ((Fli> F1j && F2i> F2j && F3i> F3j && F4i>=F4j) ||

(Fl1i> F1j && F2i»> sz && F3i==F3j && F4i>=F4j
Fli> F1j j
F11> Flj

)
&& F3i> F3j && F4i>=F47)
&& F3i==F3j && F4i>=F47)
&& F3i> F3j && F4i>=F47)
&& F3i==F3j && F4i>=F47)
&& F3i> F3j && F4i>=F47)
Fli==F1j && F2i==F2j && F3i==F3j && F4i> F4j)

(
(
(
(
(
( )

return ('S'); // j is dominated, 'S' stands for "SecondElement"
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) 1]

else if ((Fli==F1j && F2i= && F3i==F3j && F4i< F4j
(F1i ' i | && F3i< F3j && F4i<=F4j

=F27

i==F1j && F2i==F2j )
| && F2i< F2j && F3i==F37 && F4i<=F47)

&& F2i< F23 && F3i< F3j && F4i<=F47j)
&& F21i==F27 && F3i==F3j && F4i<=F47j)
&& F2i==F27 && F3i< F3j && F4i<=F47j)
&& F2i< F23 && F3i==F3j && F4i<=F47j)
)

&& F2i< F2j && F3i< F3j && F4i<=F473))

return ('F'); // 1 is dominated, 'F' stands for the "FirstElement"

return ('N');

AssignDummyFitness
assigns dummy fitness values to individuals
in the nondominated front

*/

void AssignDummyFitness ()

for (int i=0; i<POPULATION SIZE; i++)
{
if (((ptoCPool + 1i)->IgnoredTemporary == false) &&
((ptoCPool + 1i)->Nondominated == true))

(ptoCPool + 1)->DummyFitness =
float (MinSharedFitness() * 0.99);
// (MinSharedFitness()) ;
/* multiplier 0.99 is for keeping the dummy fitness value
less than the minimum shared fitness so far */

/*
CalculateSharedFitnessValues
calculates shared fitness values
in the current nondominated front
/T

void CalculateSharedFitnessValues ()
{
for (int i=0; i<POPULATION_SIZE; 14+)
{
if (((ptoCPool + 1i)->IgnoredTemporary == false) &&
((ptoCPool + 1i)->Nondominated == true))
/* which means i is in the current nondominated front */
(ptoCPool + 1)->SharedFitness =
((ptoCPool + i) ->DummyFitness) / NicheCount (i) ;

CalculateNicheCount
calculates niche count of a given individual
in the current nondominated front

*/
float NicheCount (int 1)

float Counter = 0;

for (int j=0; j<POPULATION SIZE; j++)
{
if (((ptoCPool + j)->IgnoredTemporary == false) &&
((ptoCPool + j)->Nondominated == true))
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/* which means j is in the current nondominated front */
Counter += Sharedvaluel[i] []j];

}

return (Counter) ;

UpdateEliteSet
updates reference set by adding nondominated
solutions of the current generation

*/
void UpdateEliteSet (int GenerationNumber, FILE* Streaml)

int i, j, k, t;

int MatingSetIndex = 0; // to be used as the index for individuals in the
MatingSet

char DominatedIndividual = 'N'; // stands for "None"

bool AllIndividualsHaveBeenSelected; // to exit the loop after all individuals
have been selected

CPopulation *ptoMatingSet = new CPopulation [POPULATION SIZE + EliteSet Size + 1];
if (GenerationNumber == 1)

int TempIndex = 0; // temporary index for the members of EliteSet
for (int i=0; i<POPULATION_SIZE; 14+)

{

if ((ptoCPool+i) ->NondominatedFront == 1 &&
(ptoCPool+1i) ->Feasibility == true)

{
* (ptoCEliteSet + TempIndex) = CPool[i];
TempIndex++;

}

for (i=0; i<POPULATION SIZE; i++)

{

if (((ptoCPool+i) ->NondominatedFront == 1) &&
((ptoCPool+i) ->SuitableForMatingSet != false) &&
((ptoCPool+i) ->Feasibility == true))

{
j=0;

bool i IsNondominated = true; // to check if 'i' is nondominated

while ((i_IsNondominated) && j<EliteSet Size)

{

if ((ptoCEliteSet + j)->Nondominated == true); // to ignore

{

checking domimated j's

DominatedIndividual = DominatedCheck (i, ptoCPool, 7,

ptoCEliteSet) ;
switch (DominatedIndividual)
{
case 'F': // First element (i) is dominated
(ptoCPool + 1)->SuitableForMatingSet
= false;
i IsNondominated = false;
!
case 'S': // Second element (j) is dominated
(ptoCEliteSet + j)->Nondominated =
false;

break;
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1
J++i

} // end of the 'while' loop

} // end of the 'if' loop
} // end of the 'i' loop
/* copying nondominated solutions of the previous Elite Set */
for (j=0; j<EliteSet Size; j++)

if ((ptoCEliteSet + j)->NondominatedFront == 1 &&
((ptoCEliteSet + j)->Nondominated != false))
{

//MatingSet [MatingSetIndex] = CEliteSet[]j];
* (ptoMatingSet + MatingSetIndex) = CEliteSet|[j];
MatingSetIndex++;

/* copying nondominated solutions of the current generation */
for (i=0; i<POPULATION SIZE; i++)

{

if (((ptoCPool + 1i)->NondominatedFront == 1) &&
((ptoCPool + 1i)->SuitableForMatingSet == true) &&
((ptoCPool + 1i)->Feasibility == true))

* (ptoMatingSet + MatingSetIndex) = CPool[i];
MatingSetIndex++;
for (j=0; j<(POPULATION SIZE + EliteSet Size); j++)

//if ((ptoMatingSet + j)->NondominatedFront == 1) // to ensure that empty
records are skipped

/74

//for (k=(j+1); k< (POPULATION SIZE + EliteSet Size); k++)
k=(j+1);
while (k < (POPULATION_ SIZE + EliteSet Size))

{
//if ((ptoMatingSet + k)->NondominatedFront == 1) // to ensure that
empty records are skipped

if (((ptoMatingSet + j)->value == (ptoMatingSet + k)->value) &&
((ptoMatingSet + k)->NondominatedFront == 1))
{

for (t=k; t<(POPULATION_SIZE + EliteSet_Size); t++)
* (ptoMatingSet + t) = *(ptoMatingSet + (t+1));
// to pull all individuals one position up

MatingSetIndex--;
k--;

} // end of the 'if' loop
//}// end of the inner 'if' loop
k++;
} // end of the 'k' loop
//} // end of the outer'if' loop

} // end of the 'j' loop

if (MatingSetIndex < EliteSet Size) // number of individuals doesn't exeed
EliteSet Size

for (j=0; j<EliteSet Size; j++)

//CEliteSet [j] = MatingSet[j];
CEliteSet[j] = *(ptoMatingSet + j);

else
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/* Initialization of the Mating Set*/
for (k=0; k< (POPULATION SIZE + EliteSet_Size); k++)

{
(ptoMatingSet + k)->SelectedForEliteSet
(ptoMatingSet + k)->TransferProbability
(InitialTransferProbability) ;

false;
float

int EliteSetIndex = 0; // Index of individuals in the Reference Set

do

{ .
/* to exit the loop after all individuals have been selected */
AllIndividualsHaveBeenSelected = true;

for (i=0; i< (MatingSetIndex - 1); i++)

{

if ((ptoMatingSet + i)->SelectedForEliteSet == false)
AllIndividualsHaveBeenSelected = false;
if (flip ((ptoMatingSet + i)->TransferProbability))

CEliteSet [EliteSetIndex] = * (ptoMatingSet +
i);

(ptoMatingSet + 1i)->SelectedForEliteSet =
true;

DegradeTransferProbabilities (1,
MatingSetIndex, ptoMatingSet) ;

EliteSetIndex++;

// end of the inner 'if' loop
} // end of the outer 'if' loop

} // end of the 'i' loop
} // end of the 'do...while' loop

while (AllIndividualsHaveBeenSelected == false) ;
//while (EliteSetIndex < EliteSet Size);

} // end of 'else' loop
delete [] ptoMatingSet;
fprintf (Streaml, "\n\n*** Reference Set in Generation [%d] ***",
GenerationNumber) ;
fprintf (Streaml, "\n\nDecoded Individuals") ;
fprintf (Streaml, "\n------------------- "

for (j=0; j<EliteSet Size; j++)

{

if ((ptoCEliteSet + j)->NondominatedFront == 1) // to ensure that the
empty members are not printed
fprintf (Streaml, "\n %$20.0f", (ptoCEliteSet + j)->value);

}

DegradeTransferProbabilities
degrades transfer probabilities of individuals
in the Mating Set

void DegradeTransferProbabilities (int Ind Center, int SizeOfArray, CPopulation *ptoArray)
for (int k=0; (k<SizeOfArray && k!=Ind Center); k++)
if (AreNeighbours (Ind_Center, k, ptoArray))

(ptoArray + k)->TransferProbability =
float ((ptoArray + k)->TransferProbability * DegradingFactor) ;
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Select RemStochSampWithoutReplUsingElitism()
Selects Strings for reproduction based on a mixture of
the Reminder Stochastic Sampling Without Replacement
and a novel Elitism scheme

*/
void Select RemStochSampWithoutReplUsingElitism(float TotalFitness)

{

int PopIndex = ;

/* Calculating Expected Number of individuals to be selected*/
‘ for (int i= ; i<POPULATION_SIZE; 14+)

ExpectedNumber [i] = POPULATION_SIZE *
((ptoCPool + i)->SharedFitness / TotalFitness);

/* Selection based on the Integer part of the EcpectedNumber */
for (int k= ; k<POPULATION SIZE; k++)

{

for (int j= ; Jj<int (ExpectedNumber [k]); Jj++)

//selected[PopIndex] = k;
selected[PopIndex] = (ptoCPool + k);
PopIndex++;

}
}
/* Selection based on the Fractional part of the EcpectedNumber */

/* Initializing Transfer Probabilities */
for (int kk= ; (kk<EliteSet Size &&

(ptoCEliteSet+kk) ->NondominatedFront== )); kk++)

(
{ . .
(ptoCEliteSet + kk)->TransferProbability = float
(InitialTransferProbability) ;

}

while (PopIndex < POPULATION SIZE)

for (int jj= ; (jj<POPULATION SIZE && PopIndex<POPULATION SIZE); jj++)

{

if (flip(ExpectedNumber[jj] - int (ExpectedNumber[jj])))
if (flip(P_Elitism)) // Apply Elitism

int Candidate = SelectFromEliteSet () ;

selected[PopIndex] = (ptoCEliteSet + Candidate) ;
else

selected[PopIndex] = (ptoCPool + jj);
PopIndex++;

// 'for' loop ends here
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SelectFromEliteSet ()
selects an individual for elitism from the Reference Set

*/
int SelectFromEliteSet ()

{

int SelectedInd = - ;

int 1i;
while (SelectedInd == - )

{

for (i=; (i<EliteSet Size &&
((ptoCEliteSet+1) ->NondominatedFront== ) &&
(SelectedInd == - )); 1i++)

{

if (flip ((ptoCEliteSet+1)->TransferProbability))
SelectedInd = i;

}

DegradeTransferProbabilities (SelectedInd, EliteSet Size, ptoCEliteSet);

return (SelectedInd) ;

crossover
Swaps sub_Strings

*/

//void crossover (int parent , int parent , int child , int child )

void crossover (CPopulation* parent , CPopulation* parent , int child , int child )
Eo

int 1, site;

if (f£lip (PCROSS))
site = random(CHROM LENGTH) ;

else
site = CHROM_LENGTH - ;

for (i= ; i1i<CHROM_ LENGTH; i++)

if ((i <= site) || (site == ))

{

//CNewPool [child ] .String[i] = CPool [parent ].String[i];
//CNewPool [child ] .String[i] = CPool [parent ].String[i];
CNewPool [child ] .String[i] = (parent )->Stringl[i];
CNewPool [child ] .String[i] = (parent )->Stringl[i];

lelse

//CNewPool [child ] .String[i] = CPool [parent ].String[i];
//CNewPool [child ] .String[i] = CPool [parent ].String[i];
CNewPool [child ] .String[i] = (parent )->Stringl[i];
CNewPool [child ] .String[i] = (parent )->Stringl[i];
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mutation
Changes the values of String position
/T
void mutation (void)
Lo
int 1, J;
for (i= ; i1i<POPULATION SIZE; i++)
{
for (j= ; j<CHROM LENGTH; j++)
if (flip (PMUT) )
‘ (ptoCPool + 1)->String[j] = ~CNewPool[i].String[j] & x ;
else
(ptoCPool + 1)->Stringl[j] = CNewPool[i] .Stringl[j] & x ;
/*

Inversion
Performs Inversion Operator

*/
void Inversion/()

{

unsigned char CutSection[CHROM LENGTH] ;
int A, B, Site , Site_;

for (int i= ; i<POPULATION_ SIZE; i++)

{

if (flip(P_Inversion))

// selection of two cut points along the chromosome length

A = random (CHROM LENGTH) ;
B = random (CHROM_ LENGTH) ;

1

while (A == B);

if (A < B)

{

Site_ = A;

Site_ = B;

else

{

Site_ = B;

Site_ = A;

}

/* copying the cut section elements into the
temporary array CutSection */
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for (int j=Site_; j<=Site_; Jj++)
CutSection[j] = CNewPool[i].Stringl[j];

for (int k= ; k<=(Site_ - Site_); k++)
CNewPool [i1] .String[Site  + k] = CutSection[Site - k];
/*

TempBit = CNewPool[i] .Stringl[site_ ];
CNewPool [i1] .String[site ] = CNewPool[i].Stringl[site_ ];
CNewPool [i1] .String[site ] = TempBit;

*/

UpdateNonDominatedFrontOfPreviousRun ()
updates file of the found front of previous run
and replaces all dominated solutions

*/

void UpdateNonDominatedFrontOfPreviousRun ()

int 1, j, k, t;
int NDSolutionsCurrentRun = ; // number of nondominated solutions found by the

base algorithm
int NDSolutionsPreviousRun = ; // number of nondominated solutions found by the

reference algorithm
int UpperLimitCurrentRun = ;

int UpperLimitPreviousRun = ;

char DominatedIndividual = 'N'; // stands for "None"
int DominatedSolutions CurrentRun = ; // number of dominated solutions in the

front of the base algorithm
int DominatedSolutions PreviousRun = ; // number of dominated solutions in the

front of the algorithm

FILE* pFront; // to print out final aggregate front
for (i= ; i<POPULATION SIZE; i++)

{

if ((ptoCPool+i)->NondominatedFront == )

* (ptoC_NDFrontCurrentRun + NDSolutionsCurrentRun) = * (ptoCPool +
i);

// (ptoC_NDFrontCurrentRun + 1)->SourceAlgorithm= ; // the base algorithm
(ptoC_NDFrontCurrentRun + 1i)->Nondominated = true ; // just for

initialization in the base algorithm
NDSolutionsCurrentRun++;

UpperLimitCurrentRun = NDSolutionsCurrentRun;
for (j=; j<(UpperLimitCurrentRun - ); Jj++)

{
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k=(3+);
while (k < UpperLimitCurrentRun)

if ((ptoC_NDFrontCurrentRun + j)->value == (ptoC NDFrontCurrentRun
+ k) ->value)

for (t=k; t<UpperLimitCurrentRun; t++)
* (ptoC_NDFrontCurrentRun + t) =
* (ptoC_NDFrontCurrentRun + (t+));

// to pull all individuals one position up

NDSolutionsCurrentRun--;
UpperLimitCurrentRun--;

7

} // end of the 'if' loop
k++;
} // end of the 'k' loop

} // end of the 'j' loop
pFront = fopen (UpdatingFile, "r"); // opens output file of the previous run
|NDSolutionsPreviousRun = ReadFrontOneOfPreviousRun (pFront) ;

fclose (pFront);
UpperLimitPreviousRun = NDSolutionsPreviousRun;

for (j=; j<UpperLimitPreviousRun; j++)

{

k=(3+);
while (k < MaxAntNDFrontSize)

if ((ptoC_NDFrontPreviousRun + j)->value ==
(ptoC_NDFrontPreviousRun + k)->value)

for (t=k; t<(MaxAntNDFrontSize - ); t++)
* (ptoC_NDFrontPreviousRun + t) =
* (ptoC_NDFrontPreviousRun + (t+));

// to pull all individuals one position up

NDSolutionsPreviousRun--;
UpperLimitPreviousRun--;
} // end of the 'if' loop
k++;

} // end of the 'k' loop

} // end of the 'j' loop

for (i= ; i<NDSolutionsCurrentRun; i++)

{ . .

if ((ptoC_NDFrontCurrentRun + 1i)->Nondominated == true)
{

for (j=; j<NDSolutionsPreviousRun; j++)

{ . . .

if ((ptoC_NDFrontPreviousRun + j)->Nondominated == true)
DominatedIndividual = DominatedCheck (i,

ptoC_NDFrontCurrentRun, j, ptoC_NDFrontPreviousRun) ;

if (DominatedIndividual == 'F') // First element is dominated

// if the element has not been marked as
dominated

if ((ptoC_NDFrontCurrentRun + 1i)-
>Nondominated == true)

{




XGA

(ptoC_NDFrontCurrentRun + 1i)-
>sNondominated = false;
//DominatedSolutions CurrentRun++;

else if (DominatedIndividual == 'S') // Second
element is dominated

// if the element has not been marked as

dominated
if ((ptoC_NDFrontPreviousRun + j) -
>Nondominated == true)

(ptoC_NDFrontPreviousRun + j) -
>Nondominated = false;
//DominatedSolutions PreviousRun++;

|//RPI_CurrentRun = float (NDSolutionsCurrentRun - DominatedSolutions CurrentRun) /
(NDSolutionsCurrentRun) ; //

//RPI_PreviousRun = float (NDSolutionsPreviousRun -
DominatedSolutions PreviousRun) /
(NDSolutionsPreviousRun) ; //

/* nondominated individuals from the current run */
pFront = fopen (UpdatingFile, "w"); // replaces output file of the previous run

int RowNumber = ;

for (i= ; i1i<NDSolutionsCurrentRun; i++)
if ((ptoC_NDFrontCurrentRun + 1i)->Nondominated == true)
RowNumber++ ;

fprintf (pFront, "\n[ d]*", RowNumber) ;

fprintf (pFront, "\t , f£\t", (ptoC NDFrontCurrentRun + 1)->value);

for (int j= ; j<CHROM LENGTH; j++)

fprintf (pFront, "%d", (ptoC_NDFrontCurrentRun + 1i)-
>01dString([j]); // string before crossover and mutation

fprintf (pFront, "\t\t , £ , £ , £ , E\t",
(ptoC_NDFrontCurrentRun + i)->fitnessF ,
(ptoC_NDFrontCurrentRun + i)->fitnessF ,
(ptoC_NDFrontCurrentRun + i)->fitnessF ,

(ptoC_NDFrontCurrentRun + i)->fitnessF );

}
}

/* nondominated individuals from the previous run */
for (k= ; k<NDSolutionsPreviousRun; k++)

{

if ((ptoC_NDFrontPreviousRun + k)->Nondominated == true)

{

RowNumber++;
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fprintf (pFront, "\n[ d]*", RowNumber) ;

fprintf (pFront, "\t% , £\t", (ptoC NDFrontPreviousRun + k) -
svalue) ;

for (int j= ; j<CHROM LENGTH; j++)

fprintf (pFront, "%d", (ptoC_NDFrontPreviousRun + k) -
>01dString([j]); // string before crossover and mutation
fprintf (pFront, "\t\t , £ , £ , £ , E\t",

(ptoC_NDFrontPreviousRun + k)->fitnessF ,
(ptoC_NDFrontPreviousRun + k)->fitnessF ,
(ptoC_NDFrontPreviousRun + k)->fitnessF ,

(ptoC_NDFrontPreviousRun + k)->fitnessF );

fclose (pFront) ;
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A review of the modern approaches to multi-criteria cell design

S. A. MANSOURI+, S. M. MOATTAR HUSSEINI+ and
S. T. NEWMANi*

The purpose of this paper is to provide a review and comparison of the
approaches to multi-criteria decision-making (MCDM) in the design of manu-
facturing cells. A brief description of existing classifications is provided, together
with an overview on the MCDM. Selected papers are reviewed and a structured
scheme is outlined which allows comparison of inputs, criteria, solution
approaches and outputs across selected models. Finally the models are discussed
and directions for new avenues of work are identified.

1. Introduction

Cellular manufacturing (CM) is an important application of group technology
(GT) in which sets (families) of parts are produced in manufacturing cells or a group
of various machines, which are physically close together and can entirely process a
family of parts. The identification of part families and machine groups in the design
of cellular manufacturing systems is commonly referred to as cell design/formation.
There have been many efforts towards the design of manufacturing cells based on the
selection of part families and machine groups, considering only a single criterion
such as minimising inter-cell movement of parts. There has been pressure on the
manufacturing industries in the world market competition to improve their perform-
ances with regard to such measures as shorter delivery lead-times, wider range of
products, shorter set-up times, and of course lower prices. These pressures provide a
number of conflicting criteria on which performance is evaluated. Thus the design of
the manufacturing area is critical to the efficient performance of the business.

From a system designer’s point of view it is very desirable to achieve an optimal
solution with respect to all the criteria considered individually by researchers, but
this is impossible because of the conflicts between various criteria. For example,
minimising inter-cell movement of parts by means of machine duplication/part sub-
contracting deteriorates the objectives of maximising machine utilisation and mini-
mising total cost. In fact, based on Keen (1977), optimisation in the traditional
mathematical sense is impossible if multiple criteria are involved. Problems such
as trade-off analysis between machine duplication, part subcontracting, and inter-
cellular material handling costs should be addressed and presented as a decision
model to the decision-maker (Offodile et al. 1994).

The purpose of this paper is to review those papers, which consider the cell design
problem as a multi criteria decision-making problem. The initial section of the paper
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provides a brief description of the previous reviews on cell design models. The major
part of the paper outlines an overview on the multi criteria decision making, together
with the classification scheme used in the current survey. The final section provides a
comparative discussion on the approaches used to deal with various criteria in the
selected papers, a discussion on the gaps in the research area and future trends of
new works.

2. A review on the previous work

Many models and solution approaches have been developed to deal with the
problem of manufacturing cell design/formation since 1970s. The most common
criteria considered for the design of manufacturing cells and a selection of research
from the current decade is given in table 1.

There have also been some comprehensive review papers with different aims and
viewpoints. King and Nakornchai (1982) provide a comprehensive review of the
various approaches to the cell formation problem by the time. They classify all
the models into four subdivisions: similarity coefficient, set theoretic, evaluative,
and other analytical methods. Mosier and Taube (1985) partition the literature
under four subtitles: part identification, grouping, scheduling in the GT shop, and
GT implementation. Wemmerlov and Hyer (1986) review more than 70 papers and
categorise them into four groups. Their classification scheme divides all the methods
into two major groups based on the main data for grouping as either part attributes
or routings. The latter branch is further classified into three divisions, i.e. approaches
that identify firstly the machine groups and then part families, approaches that
identify firstly the part families and then machine groups, and the approaches that
identify part families and machine groups simultaneously. Chu (1989) provides a
comprehensive bibliography of cellular manufacturing and partitions the literature
into design-oriented and production-oriented approaches. The latter group is further
partitioned into array-based, hierarchical, non-hierarchical, mathematical, graph
theoretic, and heuristic approaches. Offodile et al. (1994) employ a taxonomic frame-
work and divide all the methods for identifying machine-part families into three
taxonomic frameworks of: visual methods, parts coding analysis, and production
flow analysis. The models in the latter class up to 1991 are compared based on their
solution approach, decision variables, objectives and constraints.

Criterion Selection references

minimising inter-cell movements Klincewics and Rajan (1994), Joines et al. (1996),
Sofianopoulou (1997), Cheng et al. (1996)

maximising parts and/or machines Kao and Moon (1991), Kaparthi and Suresh (1991),

similarities (or minimising Chu (1993), Boctor (1991), Chen and Srivasata (1994),

dissimilarities ) Askin et al. (1991), Lee and Carcia-Diaz (1993),
Kusiak et al. (1993)

obtaining the block diagonal form Kaparthi and Suresh (1992), Kaparthi et al. (1993),

of the part-machine incidence Suresh and Kaparthi (1994), Mukhopadhyay et al.
matrix (1994), Chen and Irani (1993)
minimising cell load unbalances Venugopal and Narendran (1992 b)

minimising number of exceptional ~Song and Hitomi (1992), Amirahmadi and
elements Choobineh (1996)

Table 1. Some single criterion models for cell design in the 1990s.
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None of the above mentioned reviews considers the number of criteria (single or
multiple) as a measure for classification. The aim of this paper is to establish this
measure as a major classifier on the cell design models and to present a review on the
multi criteria models. It 1s not the intention of this paper to review single criterion
models for cell design; readers are referred to King and Nakornchai (1982), Mosier
and Taube (1985), Wemmerlov and Hyer (1986), Chu (1989), and Offodile et al.
(1994).

3. An overview on the multi-criteria decision-making
Criteria are measures, rules and standards that guide decision-making. As select-

ing or formulating different attributes, objectives or goals conducts decision-making,
all three categories can be referred to as criteria (Zeleny 1982). The multi-criteria
decision-making (MCDM) problems based on the above definitions are categorised
by Zeleny (1982) as: multi-attribute decision-making (MADM ), multi-objective deci-
sion-making (MODM ) and goal programming (GP). The manufacturing cell forma-
tion problem, taking multiple criteria into consideration, becomes compatible with
the MODM and GP problems. For a more detailed comparison of MADM and
MODM problems, readers are referred to Hwang and Yoon (1981).

3.1.  Multi-objective decision-making
In its most general form, the MODM problem can be stated mathematically as
follows:

max [f(x),.. . fi(x)] subject to (1)

gi(x)SO, fori=1 . m, xeX

where X is some subset of R", f; are objective functions and the g; are constraints.
This problem includes n decision variables, m constraints and k objectives. It is
possible that some or all of the functions are nonlinear. The problem (1) is also
known as the vector maximum problem or VMP. A solution to the problem (1) is
defined as non-dominated if no other solution exists which could improve one or
more objectives without detriment to some other objective. A necessary and suffi-
cient condition for a solution to be efficient is described by Hartley (1983) as follows:
a feasible x € X is efficient if and only if there is no feasible to satisfy y € X to satisfy
f(y) > =f(x), where f is the vector-valued function whose i’th component at x is
f:(x) and =, ~ denote, respectively, weak and strict component-wise inequality whilst
~ =denotes ‘= but not =. Two well-known approaches to solve the VMP are the
constraint method and the weighting method. In the constraint method, one of the
objectives is selected for optimisation and the other objectives are added to the set of
constraints in the form of inequalities with a minimum acceptable level. In the
constraint method, problem (1) is reformulated as follows:

max f;(x) subject to
gi(x) <0, fori=1_ _m (2)
filx)>¢g, forl=1_  klI#j xeX

where ¢; denotes the minimum acceptable level for the /th objective.
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In the weighting method, a single objective function, i.e. the weighted sum of the
individual objectives is defined, and in this manner, the multi-objective problem is
changed to a single objective problem as follows:

k
max Z w; - f1(x) subject to )
I=1 3

gix) <0 fori=1_ _ m xeX

The weights assigned to the objectives are usually normalised, i.e.
k
dow =1
I=1

A major drawback of the above methods is the dependency of the solution to the
values of ¢; and w; which are determined subjectively by the decision-maker a priori.
For a comprehensive study of the approaches to the MODM problem, readers are
referred to Hwang and Masud (1978) and Szidarovszky et al. (1986).

3.2.  Goal programming
The notion of goal programming (GP) is the attempt to minimise the set of

deviations from prespecified multiple goals, which are considered simultaneously
but are weighted according to their relative importance. A general GP problem
can be formulated as follows:

m

min Z pi(di + di7) subject to
i=1

(4)

n

docix+di —di =b; fori=1_. .m

j=1
where x; are n decision variables, d;” and d; denote, respectively, negative and
positive deviations from the ith goal (or slack and surplus variables in case an
equation represents an ordinary constraint), b; are m goals or rigid constraining
values, and ¢;; are technological coefficients. p; in the objective function stand for
pre-emptive weights or priority weights determining the hierarchy of goals. Goals of
higher priority levels are satisfied first, and only then are the lower priority goals
considered.

The model (4) could be handled as a single objective minimisation problem by
means of the traditional techniques of linear, non-linear, integer, or mixed integer
programming where appropriate. For a detailed discussion on various approaches to
solve the GP problem, readers are referred to Hillier and Lieberman (1986) and
Zeleny (1982).

4. Review of papers

The design of manufacturing cells with respect to multiple criteria has been an
attractive research topic since 1990. This section presents a review on the main
features of the models developed in this field. The main criterion for the selection
of papers for this study has been the consideration of at least two criteria simul-
taneously in the solution approach of the model. Therefore such research as Vannelli
and Hall (1993) and Hadley (1996), which separate machine group/part family for-
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mation in two stages that consider one independent objective at each stage, are not
included.

Sankaran (1990), to consider multiple goals in the cell formation procedure,
primarily solves a single objective model whose objective function is the sum of
five distinct cost functions. The optimal solution of the single objective model is
then broken down into two cost aspiration levels, 1.e. operating cost and capital
investment cost. These two optimal costs along with five other goals are then com-
bined in an integer linear goal programming model. The set of the goals considered
by the author includes: minimum similarity of parts based on their needed machines
and tools (two goals), available machining capacity, minimum and maximum
number of total parts movement (two goals), the optimal capital investment on
machines, and the optimal operating cost.

Wei and Gaither (1990) develop a four objective cell formation model to mini-
mise the bottleneck cost, maximise the average cell utilisation, minimise intra-cell
load imbalances, and minimise inter-cell load imbalances. The bottleneck cost may
be either the cost difference between making a bottleneck part inside and outside the
cellular system, or the cost incurred by transporting the bottleneck part between
cells. The authors develop a 0-1 programming model for small problems and a
heuristic to solve both small and large problems. Both the optimal model and the
heuristic seek to maximise a weighted additive utility function comprised of the
above four objectives.

Shafer and Rogers (1991) apply goal programming in three unique situations:
setting up an entirely new system and purchasing all new equipment, reorganising
the system using only existing equipment, and reorganising the system using existing
and some new equipment. The latter model, which is more compatible with the rest
of the cell design models, is selected for detailed comparison in the next section. The
criteria considered by the authors include: minimising set-up times (through parts
sequencing ), minimising intercellular movements, minimising the investment in new
equipment, and maintaining an acceptable machine utilisation level. The proposed
goal programming models combine the p-median (for identifying part families) and
the travelling salesman problem (to determine the optimal sequence of parts). The
authors then propose a heuristic to solve realistically sized problems.

Shafer et al. (1992) present a mathematical programming model for dealing with
exceptional elements. They develop an initial solution using any of the cell formation
procedures. Exceptional elements are then primarily eliminated by changing the
design or process plans of the parts. Further elimination of the exceptional elements
is carried out using part subcontracting or machine duplication through an optimi-
sation model. The authors include three cost factors in the form of a single mini-
misation objective function, i.e. cost associated with intercellular transfer, machine
duplication, and part subcontracting. In fact they use a weighting approach to unify
three different objectives with equal weights.

Venugopal and Narendran (1992 a) propose a bi-criteria mathematical model for
the machine-component grouping problem. The authors consider two minimisation
objectives: minimise the volume of inter-cell moves, and minimise the total within
cell load variation. Their solution approach is based on finding satisfactory or com-
promise solutions by means of genetic algorithms.

Dahel and Smith (1993) develop a 0-1 integer model for minimising inter-cell
moves and a multi-objective model to form cells which are both flexible and have
minimum interactions based on the results of the first model. They measure flexibility
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of a cell (routeing flexibility) based on the number of different parts which could be
handled by the cell. A greater degree of routing flexibility can be achieved by assign-
ing a greater variety of machines to a cell, that in turn increases workflow among the
cells and thus deteriorates the objective of minimising inter-cell moves. The authors
use the constraint method (Cohon 1978) to obtain non-dominated solutions for the
multi objective model.

Logendran (1993) develops a model to minimise total inter-cell and intra-cell
movement of parts and to maximise cell machine utilisation. These objectives are
unified through the weighting approach in the form of a single objective. The original
model is formulated as a quadratic binary programming model and then converted
into a linear binary programming model.

Min and Shin (1993) attempt to form both machine cells and human cells simul-
taneously by means of a mixed integer goal programming model. The goals are
concerned with the level of parts similarity, available machine processing times,
machine capabilities/operator skill matching, and the difference between the wages
of the cells operators and the rest of the operators. A heuristic is then developed for
machine cell formation and operators allocation in two subsequent stages.

Sankaran and Kasilingam (1993) develop an integer programming model to
determine cell membership in a GT-based flexible manufacturing system along
with cell size and capacity selection. The developed objective function can be
viewed as the sum of the processing costs, the spatial cost, the annual amortisation
costs, and the inter-cell and intra-cell movement costs. In other words, the weighting
approach is used to deal with multiple objectives. The authors then present a heur-
istic to solve the model.

Gupta et al. (1995) develop a minimisation model that takes into consideration
the weighted sum of both inter-cell and intra-cell moves. The authors use a genetic
algorithm for solving the model. There is attention on the minimum acceptable level
of machine utilisation in the procedure of part assignment to the cells.

Liang and Taboun (1995) in an attempt to achieve a compromise solution
between flow-line efficiency and job-shop flexibility develop a bi-criterion nonlinear
integer programming model. The objectives of the model are to maximise system
flexibility (measured based on the number of part types accommodated into the
focused cells), and to maximise system efficiency (measured based on the degree of
part similarities). The authors assume that no inter-cell movement is allowed and all
exceptional parts should be sub-contracted. They use the weighting approach to
unify the two objectives in the form of a single objective. A heuristic is then proposed
which consists of two phases, i.e. generation of approximate efficient (or non-domi-
nated) solutions, and calculation of the best solution based on the approximate
efficient solution. The constraint method is used to generate approximate efficient
solutions.

Suresh et al. (1995) employ a three-phase hierarchical approach to cell formation.
In phase I of the solution approach, a neural network clustering technique is used to
identify potential part families and their associated machine groups. A mixed integer
goal programming formulation is then used in phase II to assign individual machines
to a specified number of cells. The model of phase II attempts to satisfy the con-
flicting goals of: maximising the cell independence, minimising the purchase of new
equipment and maximising the routing flexibility. Phase III aims to minimise inter-
cell traffic further for families that may still have to be processed in more than one
cell by means of a 0—1 programming model.
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Akturk and Balkose (1996), by means of a coding scheme which includes both
design and manufacturing attributes of parts, calculate the similarity and dissimilar-
ity of parts and makes use of them in a six objective model. The objectives are
concerned with minimising: the dissimilarity of parts based on the design and manu-
facturing attributes, the dissimilarities based on the operation sequences, the total
machine investment cost, the sum of the workload variability in each cell, the work-
load variability of different cells, and the number of skipping which refers to the
number of machines a part skips in its operation sequence. The authors suggest a
multi-objective cluster analysis heuristic to deal with these objectives simultaneously.
The analytic hierarchy process (AHP) is employed to determine priority of the
objectives in order to unify them.

Boctor (1996) develops a number of mixed integer models, of which model P1 is
selected as a multi-objective model for this study. The objective function of the
model P1 is composed of two cost terms, i.e. machine duplication cost and inter-
cell movement cost, which should be totally minimised. These two cost functions do
not move in the same direction in such a way that decreases the second term, i.e. the
cost of inter-cellular movements is achieved partly through machine duplication that
in turn increases the first cost term. The author unified these two conflicting criteria
in the form of a single objective function through a weighting approach with equal
weights assigned to each criterion. Simulated annealing is then used to obtain good
solutions for the optimisation model.

Gupta et al. (1996) present three models for the machine cell-part grouping
problem. Their model 3 is a bi-criteria model that considers simultaneously the
minimisation of total weighted inter-cell and intra-cell movements, and the minimi-
sation of the cell load variations. The authors employ a genetic algorithm to provide
the decision-maker with a set of satisfactory solutions.

Ho and Moodie (1996) assume flexible routeing for parts and have developed a
two-stage solution approach. Part families are formed in stage 1 based on the simi-
larities in their operation sequences by means of a heuristic procedure. Machines in
stage 2 are allocated to the part families through a mixed integer programming
model. The objective function of this stage is composed of three cost functions:
operation cost, machine duplication cost, and a penalty cost for those operations
that need to be performed in cells other than the ones that they have been assigned.
The latter term could be considered as another definition for the inter-cell movement
cost. The authors employ, in stage 2, the weighting approach to unify the three cost
criteria.

Rajamani et al. (1996) develop a mixed integer programming model with the
assumption of flexible process plans for parts. The objective function of the model
is to minimise the sum of investment, process and material handling costs as a
weighted sum of the three different cost functions. To solve the relaxed linear
model the authors make use of a column generation scheme and the branch and
bound technique.

Lee and Chen (1997) employ a weighting approach to combine two criteria, i.e.
minimising inter-cell movement of parts, and maximising workload balance among
duplicated machines. Their solution methodology is a three-phase approach, which
determines machine cells and part families and allows for machine duplication where
necessary. At the beginning, an estimation procedure is developed to determine
workload balances for duplicated machines. In the second phase, machine cells
and part families are constructed by means of a heuristic algorithm. Finally, a
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heuristic procedure is employed to improve the solution quality of the formation
result.

Su and Hsu (1998) consider three objectives in their model. The objectives are:
minimising the total cost of inter-cell transportation, intra-cell transportation and
machine investment; minimising intra-cell machine (in cell) load unbalance; and
minimising inter-cell machine (in plant) load unbalance. The authors then unify
these objectives through weighting, and solve the model by means of parallel simu-
lated annealing. The authors make use of the crossover and mutation functions of a
genetic algorithm to function as the generation mechanism of simulated annealing in
order to cope with its main drawback, i.e. high execution time.

5. Comparison of the models and research direction
The comparison of the multi-criteria cell design models is carried out based on

their inputs, criteria, solution approach and outputs. It should be noted that the

classification scheme used in this study is partially influenced by the work of Offodile
et al. (1994).

5.1.  Comparison based on the inputs

The input data is primarily classified based on the source of the data. It is divided
into four categories: parts data, machines data, constraints, and general data. The
data related to the parts and machines are further classified based on the type of data
such as: quantitative data and cost data. Figure 1 shows the classification of these
inputs.

The input data of the previously discussed models are illustrated and compared
in table 2. In this table the rows represent various inputs considered in the multi-
criteria models. The most common input data of the models are required machines
(by parts), process times, production capacity of machines, maximum cell size, and
parts demand. It could be said that a base cell design model must contain at least
such a set of input data. Other relatively common input sets include the number of
available machines, the predetermined number of cells, the fixed process flow of
parts, the acquisition cost of machines, the inter-cell transportation cost, and the
minimum cell size. Fixed process flow, as it could be traced in table 2, is becoming

Quantitative Data

Parts Data
Cost Data
Quantitative Data
Inputs Machines Data
Cost Data

Constraints

General

Figure 1. Classification of the inputs.
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less important as a major input. That may be due to the increasing importance of
flexibility that provides manufacturing system designers with more alternatives in
process route of the parts. Such inputs as set-up times, the batch size, the direct
production cost, the intra-cell transportation cost, and the minimum acceptable level
of utilisation have been among the less common inputs. There have also been some
inputs which are used in one single model only, e.g. the required tools for parts, the
subcontracting cost, the space requirement of machines, and the operator limita-
tions.

5.1.1.  Future work direction: input data

There is a need to consider some new sets of input data in the cell design process
to incorporate some of the real aspects of the current industrial environment.
Obviously the most common inputs as identified above need to be within all
models. Flexibility of manufacturing is becoming a significant importance in
modern manufacturing, so it would be essential to incorporate such an important
factor in the set of input data by quantifying alternative process routes and flexible
machining processes. It is also important to consider the operation cost of machines
to maximise utilisation of the machines for higher efficiency. The stochastic nature of
demand is another important feature of the manufacturing environment that should
be considered in the design of the manufacturing facility.

Standardisation of the input/output data sets could be another direction for
future work. The models should provide various levels of inputs, with core inputs
going to a master set of outputs, followed by optional inputs which allow secondary
outputs to be provided, and so on. To this end, further research should be done in
order to facilitate the definition of the minimum set of input data to achieve a specific
set of output. Some field studies in various industries might be useful in identifying
these sorts of minimum input/output data sets.

5.2.  Comparison based on the criteria

The criteria used in the cell design have been classified by the authors under
objectives and goals; objectives are classified by the authors, primarily based on
their orientation, as cost-oriented, performance-oriented. Cost-oriented objectives
are in the form of minimisation. Performance-oriented objectives are further divided
into minimisation and maximisation. The goal programming models aim to mini-
mise the deviation from the predetermined goals. The structure of this classification
1s shown in figure 2.

Table 3 gives a comparison of the models based on these criteria. There has been
a vast diversity among the criteria considered by researchers. Minimising the
machine duplication cost, minimising the inter-cell transportation cost, minimising
the number of inter-cell movement of parts, and minimising the cell load unbalance
of machines, have been the most popular criteria. In a lower level of importance,
such criteria as minimising the intra-cell transportation cost and maximising flex-
ibility are also included. There is also a set of unique criteria, especially in the form of
goals, such as minimising deviation from the level of matching between operator
skills and machine capabilities, minimising deviation from a predetermined level of
machine investment cost, and minimising the amount of skipping. In addition to the
diversity of criteria, the models with the same set of criteria were very scarce. In fact
only Ho and Moodie (1996) and Rajamani et al. (1996) select the same set of criteria
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Cost Oriented Cost Minimisation
Objectives
Criteria Minimisation
Performance Oriented
Maximisation
Goals Minimising Deviations

Figure 2. Classification of the criteria.

in their models. Thus it could be concluded that the majority of the multi-criteria cell
design models are unique and cannot be compared with each other.

5.2.1.  Future work direction: criteria.

A vast area of research on cell design could be to develop models with a different
combination of criteria that have not been previously considered simultaneously.
For example, models which consider the total cost minimisation and the flexibility
maximisation, along with a combination of other objectives, have not been reported.
Another possible trend would be to develop more efficient solution approaches for
models with the same set of criteria as an existing model.

A different trend should be research on handling different criteria in the pro-
cedure of cell design. The majority of the models use the weighting approach to unify
the multiple objectives in the form of a single objective. A sophisticated objective
function is an outcome of this approach, besides the fact that the weighting approach
in many cases deals with optimising a senseless objective function. A future possible
trend for the research in this field is to develop more efficient solution tools enabling
system designers to achieve good solutions in a reasonable processing time. To
investigate on the more efficient ways for finding non-dominated solutions is a
good area of research for those models that consider multiple criteria simul-
taneously.

5.3.  Comparison based on the solution approach

The solution approaches are classified based on their solution techniques, into
groups, which are presented in figure 3. Classification of the mathematical program-
ming branch into constraint method, weighting method and goal programming is
carried out based on models 2, 3 and 4 of section 3.1, respectively.

The solution approach of the models is compared in the top section of table 4.
Mathematical programming has been the most common approach, where weighting
method and goal programming have been applied most to the multi-criteria cell
design. Goal programming applications were reported before 1995, and it seems
that the approach lost its attraction in the second half of the 1990s. The constraint
method has been employed in a single article. Due to the NP-complete nature of the
problem, heuristics have been vastly employed to deal with real world problems.
Genetic algorithms and simulated annealing have been the only reported search
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Constraint Method

Mathematical Programming Weighting Method

Goa Programming

Neural Network

Solution Approach Heuristics

AHP

Genetic Algorithms

Search Methods

Simulated Annealing

Figure 3. Classification of the solution approaches.

methods used to solve the models. Neural networks and the analytic hierarchy pro-
cess (AHP) have been separately used as a part of the solution approach, along with
other solution tools.

5.3.1.  Future work direction: solution approaches.

The most common solution approaches in the mathematical programming cate-
gory have been the weighting method and goal programming. These approaches at
most are able to find a single non-dominated solution. If the solution is not good
enough to satisfy the system designer, the model should be resolved with different
parameters. More researches is necessary in applying other multi-objective optimisa-
tion techniques in such a way that a rich subset of true non-dominated solutions is
identified, from which system designers could select. Employing other solution
approaches like the Tabu search or fuzzy clustering are some other potential research
areas. Trying to make use of the optimisation capabilities of genetic algorithms and
neural networks, which have inherent capability of parallel processing in the multi-
objective cell design, are some possible research areas which have not been
researched significantly.

5.4.  Comparison based on the output

Most of the models produce some information in addition to their major objec-
tives. These additional outputs are classified based on their relation to the elements
of grouping as part-related, machine-related, and general information. Figure 4
demonstrates the classification of the outputs.

The outputs of the models, in addition to those directly measured as criteria, are
shown in the bottom section of table 4. Part families and machine groups are of
course the main outputs of each cell design model. Duplicated machines, inter-cell
movement, and machine utilisation have been among the common additional out-
puts. Duplicated machines had not been a major output in the first half of the
decade, but since then have become a major output. There have also been some
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Part Related

Outputs Machine Related

General

Figure 4. Classification of the outputs.

unique outputs such as different process plans, part sequencing and human groups
which were considered for special cases and thus could not be regarded as a major
output of a cell design model.

6. Conclusion

In this paper various approaches to the problem of multi-criteria cell design were
investigated and reviewed. Previous reviews on cell design/formation were discussed
and the need for this review was identified. A brief discussion on multi-criteria
decision-making is given and multi-criteria cell design is categorised as either a
multi-objective problem or a goal programming problem, along with an overview
on these notions.

The reported papers on multi-criteria cell design were discussed and their model-
ling and solution approach were highlighted. Finally the models were compared,
based on their inputs, criteria, solution approach and outputs. This comparison
enables researchers to identify the research gaps in the literature.

Including some real aspects of the manufacturing environment (such as flexibility
of manufacturing facilities as well as process routes, the stochastic nature of demand,
and the standardisation of data sets) have been suggested for additional research
work. Developing the new multi-objective cell design models with different sets of
objectives is another possible research avenue. For example, models that consider
cost minimisation and flexibility maximisation, along with maximising utilisation
have not been reported. Such gaps in the modelling stage can easily be seen in
table 3. Another possible trend could be work on the application of the other sol-
ution tools in the reported models. Minimising inter-cell part movement and max-
imising flexibility by means of multi-objective genetic algorithms, and minimising the
sum of the cost of part subcontracting and inter-cell part movement by means of
neural networks, are some examples of work to be investigated further in this field.

The majority of the works on multi-objective cell design unify the various objec-
tives in the form of a single objective. The final result of such an approach is a
compromise solution, whose non-dominance is not guaranteed. Pareto optimisation
through simultaneous consideration of various objectives, and the ability to provide
the decision-maker with a set of non-dominated solutions in a reasonable computa-
tion time, are other areas which need to be addressed.
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