Multi-objective evolutionary algorithms for a class of
sequencing problems in manufacturing environments

Carlo Meloni, David Naso, and Biagio Turchiano
Dipartimento di Elettrotecnica ed Elettronica
Politecnico di Bari, Bari, Italy
Phone: +39-080-5963 851 Fax: +39-080-55¢3 410

E-mail: {meloni, naso, turchiano }{@deemail.poliba.it

Abstract - This paper describes a multi-objective
evolutionary algorithm for a typical serial production
problem, in which two or more consecutive departments
must schedule their intermal work, each taking into
account the requirements of the other departments. There
are various single-objective heuristics to deal with this
problem, while the multi-objective formulation calls for
innovative approaches. To this aim, we devise a novel
evolutionary algorithm, and compare it with two other
state-of-art genetic optimizers used in similar contexts.
The results obtained on both small-size problems with
known Pareto-sets, and larger problems derived from
“industrial production of furniture confirm the
effectiveness of the proposed approach.

Keywords: Multi-Objective Evolutionary Algorithms,-

Scheduling, Sequencing, Manufacturing systems

1 Introduction

The set-up coordination of processing operations is a
“typical problems of multi-stage serial manufacturing or
supply chains [1]. In such environments, usually two or
more consecutive departments have to schedule their
internal work, each taking into account the requirements
of the other stages. The models and instances considered
in this paper derive from the industrial environment
described in [1,9]. Namely, in different departments of the
plant, items are grouped according to different attributes.
In the first department, parts are grouped according to
their first characteristic; and in the subsequent departments
parts are grouped according to their second and
subsequent attributes. Often, the unavailability of
interstage buffering between two consecutive departments
forces the processing sequences in the two stages to be
coordinated. In this case, the two departments must follow
the same processing sequence, leading to a considerably
complex optimization problem with partially conflicting
objectives, since each department aims to minimize its
own total changeover cost. Clearly, also the global cost,

* 0-7803-7952-7/03/$17.00 © 2003 IEEE.

i.e. the sum of the costs of each department, must be
accounted in optimization process,

Some efficient heuristic algorithms are available in
literature to solve the sequencing problem considering
only a single objective, e.g. the sum of all costs, or the
maximum of the costs of each department [1,9], while the
multi-objective formulation is an extremely complex
problem calling for innovative approaches. In particular,
as for many manufacturing problems [3] the nature of the
problem seems to be particularly suitable for Evolutionary
Computation (EC) tools.

Evolutionary Algorithms (EA) are a class of heuristic
search techniques inspired to the principles of survival-of-
the-fittest in natural evolution and genetics. In single-
objective optimization problems, the search is guided by a
scalar merit function describing the fitness of the specific
solution with Ttespect to problem objectives and
constraints. In recent years, interesting and successful
extensions of EC methods to multi-objective optimization
problems have been developed. In these Multi-Objective
EA (MOEA) the search goals are not expressed or
aggregated in a single scalar index of quality, but rather
considered separately so that each particular solution is
associated to a vector of values expressing the satisfaction
of each of the different objective functions.

Technical literature describes many efficient MOEA
searching for the Pareto Set [2,4,58], and some
comparative - analyses [11] have also.-recently been
performed. We overview the recent research in the
considered context in the next section. In this paper, we
describe a new evolutionary algorithm specifically devised
for the considered multi-objective problem. After
describing the main assumptions of our problem
formulation in Section 3, we illustrate the main
peculiarities of our algorithm in Section 4. To evaluate the
effectiveness of the proposed EA, we compare it with two
other MOEA selected among the state-of-the art of this
research area. Section 5 summarizes the results of the
comparison on small size problems with known Parcto
Set, and realistic size problems derived from industrial
data. Final remarks in Section 6 conclude the paper.

2 Related literature

The purpose of MOEA s to optimize simultaneously a set
of two or more objectives (see e.g. [4] for an introduction).
With the exception of aggregative approaches that
artificially combine multiple indices in a single fitness, all
MOEA work iteratively searching in a population of
solutions the set of non-dominated individuals. Ranking
solutions with multi-objective fitness to assign higher
probabilities of reproduction to better solutions is not as
straightforward as in the case of scalar fitness (see
[2.4,5,8], to mention some recent contributions).

Recent literature on MOEA focuses on specific
strategies to cope with some critical limitations of this
class of optimizers. It must be remarked that only few
recently proposed MOEA can be easily applied to our
sequencing problem. In particular, distance-based niching
techniques that are frequently used in MOEA to
continuously preserve the population diversity cannot be
employed in our context due to the lack of a proper metric
to effectively measure the distance between two solutions
of our problem. Nevertheless, some of the most recent
evolutionary approaches for multi-objective optimization
can be easily employed in our context. For instance, the
Pareto Archived Evolution Strategy (PAES) [8] proposes a
simple (1+1) evolutionary strategies that effectively
overcomes the difficulty of maintaining a population of
non-dominated individuals. Namely, this approach
maintains an archive of the non-dominated solutions
progressively found during the search. The size of the
archive is limited removing individuals according to the
degree of crowding of their neighborhood. The high
computational complexity of non-dominated sorting is
also tackled in [2] with an improved version of the Non
Dominated Sorting GA (NSGA-II). The algorithm uses an
improved multi-objective sorting method that needs a
significantly smaller number of comparisons (O(NM)
with respect of the O(Nﬁf) of conventional nondominated
sorting, where M is the number of objectives, and N the
population size). NSGA-II also uses a crowding strategy
always selecting the solutions in the less crowded areas of
the cumrently-known Pareto front. Another interesting
approach in the context of multi-objective scheduling is
the Multi-Objective GA with Local Search (MOGALS)
algorithms described in [5]. The authors propose a
technique to maintain a population of non-dominated
solutions using a randomized ranking. Namely, in a
problem with » objectives, at each time two individuals
must be compared, n random weights are extracted, and
the weighted aggregation of the » fitness values of each
individual are used for ranking. The randomization of the
aggregation weights produces a selective pressure with an
always changing direction, and consequently the
population is progressively lead toward the Pareto set. The
authors also equip their EA with a local search algorithm
that cyclically explores a number of neighborhood
solutions (obtained with random shifts of a job in other

positions of the sequence) to achieve local improvements.
The contribution of local search to the overall convergence
is enhanced in subsequent versions of the algorithm [6]
replacing the random mechanism selecting the dlrectxon of
local search with an heuristic criterion.

The algorithm proposed in the next sections shares some
basic ideas with all the mentioned approaches. In
particular, since in [2] the NSGA-II provided higher
performances than PAES in a wide range of typical
benchmarks for multi-objective optimization, the NSGA-IL
and the MOGALS are used as a terms of comparisons for
our research.

3 General assumptions

We focus on the coordination issues between the first two
stages of the furniture production chain introduced in
Section 1, and therefore consider only two attributes,
called hereinafter shape and color. In both departments, a
changeover occurs when the attribute of a new part
changes. If a part must be cut having a different shape
from the previous ome, cutting machinery must be
reconfigured. Similarly, when a new color is used, the
painting station must be cleaned in order to eliminate the
residuals of the previous color. In both cases costs are
incurred in terms of time and manpower. Other important
issues make the sequencing problem an extremely difficult
task. For example, setups have different costs. In the
painting department, set-up operation takes less time to
switch from a lighter to a darker color than vice-versa. In
some cases, there are precedence constraints that limit the
set of feasible sequences in the two departments. Hence,
the total number of changeovers can be considered in
these cases 2 meaningful index of performance.

This paper addresses the problem in its basic version,
i.e. when all the setup operations in each department and
across departments have the same cost, and changes of the
processing sequence between the two stages are not
allowed. The sequencing optimization is formulated as a
multi-objective problem, in which an optimal tradeoff
between local and global indices of performance has to be
found. Each item to be produced is characterized by its
own shape and color. All the items having the same shape
and color form a single batch. In the first (second)
department, a changeover is paid when the new batch has
a different shape (color) from the previous one. Otherwise,
no changeover is incurred. Note that since we want to
minimize the number of changeovers, the actual
cardinality of each batch is of no interest at all. Each given
sequence of the batches results in a cost of changeovers to
be paid by each department. Thus, the three objectives that
should be simultaneously optimized are minimization of
the total cost of changeovers in the two departments,
minimization of the maximum cost of changeovers paid by
either department, and minimization of the overail
frequency of setups. While the first objective corresponds
to the maximization of overall utility, the second captures

mote realistically the need to balance the changeover costs
between the two departments. The third one is clearly
related to technical and organizational constraints. Note
that the last objective function requires information about
the number of parts contained in each batch.

The problem we consider can be formulated as follows.
Let A be a set of batches to be produced. The batches must
be processed by two departments of the plant, called Dy
and D, in the same order. Each batch is characterized by
two attributes, say shape and color. Let § and C denote the
sets of all possible shapes and colors respectively. We
denote the shapes as s;, i=1,...,/S/ and the colors as ¢
Jj=1,....{C]. Each batch is therefore defined by a pair (5;¢;).
If batch (5, ¢y is processed immediately after batch (55,¢p),
a changeover is paid in department Ds if s,#s;, and a
changeover is paid in department D¢ if gz, We can
represent the input of the problem as a list B of batches.
The problem is to sequence the batches in a profitable way
from the viewpoint of the number of changeovers. This
means that we must find an ordering o of the elements of
B. If two consecutive batches B,={s;¢;) and B)=(s),¢3) in &
have no attribute in commoen, this means that both
departments have to pay one changeover when switching
from batch B, to batch B,. We refer to this as a global
changeover. On the other hand, if i=h (j=k), only
department D¢ (D) pays a changeover. This is called local
changeover. For a given sequence o, we can therefore

“easily compute the number of changeovers incurred by
each depariment, call them Ny(g) and Nc(g) respectively.
In fact, let &; be equal to 1 if /%1 and 0 otherwise, and let
s(o7q)) denote the shape of the ¢-th batch in the sequence
o, and let ¢(o1g)) indicate its color.

Hence, the expression of N5 and N is the following:

18[-1 18]-1
Ns(o) = i‘ss(cr(q».s(a(qn» i Nelo) = i‘fc(a(q».c(awnn :
g=1 g=1
Then the objective functions used in our preliminary
campaign of computational experiments can be formulated
- as follows: ’
a} minimize Ng(c;
b) minimize Nc(oj;
¢) minimize max{Ng(0),Nc(c)};
d) minimize (Ng(a)+N(a).

4 The proposed EA

For brevity, we will refer to our algorithm as EFGA

(Elitist Front GA). Similarly to PAES algorithm, EFGA

stores the non-dominated solutions found during the

iterations of the GA in a distinct archive. Our algorithm
works on four sets of solutions, called Popii), Pool(i),

Front(iy and Seeds, where i is the iteration index.

e The set Seeds simply encompasses the a-priori known
initial solutions, which can be profitably used to speed-
up the initial exploration. Typically, some good seeds
can be easily obtained with efficient heuristics for the
single-objective case. The algorithm can also startup

10

with an empty Seeds set if such information is not
available.

s Similarly to all the EAs, Pop represents the set of p
individuals progressively evolved by the search
strategy.

e The Pool is another set of variable size that is primarily
used for offspring selection with a mechanism that will
be described later.

o The Front is the set of variable size containing the
currently known Pareto-set.

At the beginning of the search, all the sets (with the

possible exception of Seeds} are empty. If non-empty,

Seeds is copied into Pop(0). The rest of Pop(0) is

generated randomly, and the fitness of each individual is

evaluated. Then, nondominated solutions are determined,
and copied into Front(0) and Pool(0). Dominated
solutions can also enter the Pool(0) if they lie inside a pre-
specified neighborhood band around Front(0), as depicted
in Fig,1 (more details will be discussed later en). Once the

Pool(0) is completed, Pop(l) is created in the following

way: two solutions in Pool(}) are selected randomly for

crossover, and the two resulting individuals are placed into

Pop(l). This operation 1is repeated »n,, times.

Subsequently, an individual from either Pool(0) or Pop(l)

is selected randomly for mutation, and the resulting

individual is placed in the population. This operation is
repeated n,, times, so that 2a.,*n,.~p. After the
recombination phase, the fitness of each solution on

Pop(!) in the population is evaluated, Initially, Pool(l)

and Fronmt(l) inherit the individuals in Pool®) and

Front(0), respectively. Then, individuals in Pop(I) are

compared with those in Front(l), to incrementally update

the two sets as follows. For each individual in Pop:

e If the individual dominates other individuals in the
Front, the dominated solutions are discarded from
Front, and the new individual is inserted in both Pool
and Front.

¢ If the individual is dominated by some elements of
Front, but still lies inside a predefined neighborhood
of some dominant solution, it is inserted only in Pool.

¢ If the individual has exactly the same fitmess of a
solution in Front, a local search procedure is applied.

From this point on, the algorithm can be iterated until a

predefined stopping condition.

A significant peculiarity of our approach is to replace the

nondominated sorting used in most MOEA to select the

mating pool, with a threshold condition testing the
distance of a solution from the current front. In other
words, only the dominated solutions laying inside the band

delimited by the current front and its projection at a

predefined distance dist are allowed to enter the mating

Pool. For simplicity and due to the similarity between the

multiple objectives considered in our problem, we choose

the same distance for all the objectives, even though
different choices are also possible to emphasize the
selective pressure in specific directions. The parameter
dist is cyclically modified during the evolutionary search.

In particular, dist is changed to dist-Ay;, at every ngy
iterations. When dist becomes zero, it is reset to a large
value dist,.,. Also in this case, the reduction mechanism is
purely heuristic, but able to provide significant
mmprovements according to our empirical observations. In
particular, this cyclical enlargement-restricion of the
threshold condition for the selection provides a
satisfactory tradeoff between selective pressure and
population diversity. However, since the number of
elements in the Pool set may occasionally become
excessively high, at every n,, iterations, the Pool is
emptied and reinitialized with the solutions in the current
Front.

As previously mentioned, at every time two or more
{distinct) individuals with the same fitness are found in the
Pool, a local search procedure is initialized. Similarly to
many crowding indices conventionally used in MOEA
(see e.g. [2]), this condition aims to find a single improved
solution that dominates (and hence excludes from the
Pool) the two or more individuals sharing the same fitness
vector. We must also remark that the proposed triggering
condition is explicitly tailored for the considered problem
(based on integer-valued fitness vectors), but can be easily
generalized by substituting the exact matching with a less
specific condition (e.g. when a norm of the difference of
the fitness vectors of two individuals is lower than a
threshold).

To describe the local search mechanism, let us suppose
that s; and s; indicate two solutions in the Poo! with the
same fitness. Let us also suppose that these solutions are
found at iteration k. The first stage of the local search
consists in launching another EA with a reduced
population, and initialized with either s; or 5, and two
other solutions randomly picked from Front(k) as initial
Seeds. Furthermore, the EA uses a subset of randomly
selected individuals from Pop(k} as initial population, and
works exactly in the same way as the main EA until a
predefined maximum number of fitness evaluations is
exceeded. In other words, the first stage of the local search
is performed using the same main EA but with a reduced
population and running for a limited number of iterations.
This mechanism is inspired by recent research confirming
on the effectiveness of microgenetic algorithms (i.e. GA
with small populations and few iterations) [7] as local
hillclimber. At the end of the local EA, the resulting
(local) Fromt is used to update the Froni(k} of the main
algorithm. If two or more solutions with identical fitness
are still found at this point (e.g. 5, and s;"), the second
stage of the local search is executed. In this case, a single-
objective is selected randomly and a problem-specific,
single-objective heuristic is applied. This heuristic
compares s;” and s;” and searches for the largest common
subsequence of jobs shared between the two solutions.
Then, the heuristic constructs a new solution by adding the
remaining jobs on either the lefi-hand or the right-hand
side of the shared subsequence with a heuristic procedure

1

that guarantees a good satisfaction of the selected single
objective [9].

A
Cbjective 2
Nelo) H
R fe]
M EE)
- [
X S
LS .
wb Teb] Thag, b b ocists
GO R 2 O N ist=3
oo of
4 — i }1{5{:2
1 >

Figure 1. A graphical interpretation of Front and dis on the
Cartesian plane of the two objectives Ng and N¢

5 Performance comparison

This section describes a preliminary performance
comparison of the proposed EFGA with two other multi-
objective optimizers derived from contemporary state-of-
art of MOEA, namely NSGA-II [2], and MOGALS [5,6].
The comparison is based on two mulii-objective
sequencing problems. The first one is a small-size
problem, consisting in the optimization of a sequence of
only 9 jobs, whose shape and color attributes are
summarized in Table L. In this case the true Pareto front is
determined by exhaustive search or the 9!=362880
possible solutions. The free parameters of EFGA, NSGA2
and MOGALS are summarized in Table 1. In particular,
the parameters for NSGA2 and MOGALS were set to the
suggested values proposed in the respective references
[2,5,6]. All the compared algorithms must simultaneously
optimize the three objectives ab and d described in
Section 3. Each algorithm is tested on runs with different
stopping conditions, respectively 5000, 10000, 20000, and
40000 fitness function evaluations for both NSGA-II and
MOGALS. Each algorithm is launched 10 times to
determine the average results summarized in Table IL It is
evident in the table that the stopping conditions for the
EFGA are slightly different (1250, 2500, 5000, 10000)
since this algorithm is always able to find all the solution
on the true Pareto front within 10000 fitness evaluations.
The obtained results clearly confirm that EFGA is much
faster than both MOGALS and NSGA-I1 in evolving and
maintaining a set of non-dominated solutions that
progressively approach the true Pareto set.

Table I: Skapes (8;) and Colors (C;) for
the first sequencing problem

S 111213

S, 413

S 617 8
S |9

Table II. Comparison of the three algorithms on the first case study

MOGALS testl test2 testd testd tests test6 test? testB testd test10 Average
5000 Found F. 4 6 7 5 4 4 6 7 7 3 5.3
True F. 4 1 1)4 2 0 1 1 2 3 16
10000 NTrue F. & [} 5 7 7 6 4 6 6 5 5.8
True F. 4 6 s 7 5 6 4 3 6 3 4.9
200600 Found F. 7 5 3] 6 6 7 5 5 8 b 6.1
True F. 7 4 5 2 5 5 5 4 5 6 4.8
40000 Found F. 8 [4) 5 8 9 7 6 8 8 8 7.3
True F. 8 4 4 8 g 7 5 8 8 8 69
NSGATI testl - test2 testd testd tests testh test?7 testd testy test10 Average
5000 Found F. 3 2 3 3 6 3 5 2 1 3 33
True F. 3 2 2 3 4 4 1 2 0 2 2,3
10000 Found F. 3 3 3 5 5 6 5 3 8 4 4,5
True F. 3 2 2 4 2 6 4 3 5 3 34
20000 Found F. 3 s 5 6 19 6 6 5 7 3 5.8
True F. 3 4 5 [8 6 6 4 7 5 54
40000 Found F. 6 g 8 9 5 8 5 5 8 9 71
True F. 5 8 8 [5 8 3 5 8 9 63
EFGA test] test2 test3 testd tests test6 test? testd testd testi0 Average
1250 Found F. 8 7 7 7 5 7 6 7 6 9 6.9
True F. 4 2 1 4 2 4 4 5 5 2 33
2500 Found F. 6 9 5 9 7 8 8 8 7 8 7.5
True F. 1) o 4 9 7 8 8 8 5 8 7,2
5000 Found F. 9 9 8 9 9 8 9 9 9 9 38
True F. 9 9 8 9 9 8 9 9 8 9 87
16000 Found F. 9 9 g 9 9 9 9 9 9 9 9
True F. £l 9 g 9 9 9 9 9 9 9 9
Legend: Found F. = number of solutions in the Front at the end of the run.

True F.'= number of solutions belonging to the true Pareto Front

-It 1s interesting to note. that in this small-size case the
EFGA is able to find more than 80% of the. Pareto front
already in 2500 function calls, whereas the two terms of
comparison need to explore ten times more solutions
before reaching a comparable result.

Table III: Shapes (8;) and Colors (C;) for
the second sequencing problem

G 6 G G & G coverage of the three algorithm. The first value in each
:' L 2 i < cell indicates the average coverage on all the possible
S' 3 7 3 pairs of solution sets obtained on ten distinct runs of
3 -
S, 9 w1112 each algorithm.
g: = 5 ig 7 Table IV. Relative coverage of the three algorithms
S, 2 | 19 50 in the second case study.
2’ o 2 e Rt > MOGALS | NSGATI EFGA
' > : 0,2160 0,0613
e 26 MOGALS - [0.4754] [0,0886]
. . 0,6075 0,1410
The second comparison is based on a sequence of 26 NSGAII 10.5306] . (0.0506]
batches of product derived from industrial production EFGA 0.93]19 0.9188 _
fi [11

data. In this case, the search space is significantly larger
(26!=4.03*10’%) and the optimal Pareto front is not a
pricri known. In this case, we choose to evaluate the
three algorithms using two recently proposed
comparative metrics for MOEA. The first metric is the
average coverage defined in [11] as follows. Given two
sets of solutions X', X" < X, the function C maps the
ordered pair (X", X") in a number in [0,1] as follows:
|{a"eX";3a'eX’:a' = a"}|
X, XM=
x|

12

where the notation a = > b indicates that a covers b, i.e.
a=+b < axbor f(a)="1(b)
and a > b indicates that a dominates b, In other words, a
solution a covers a solution b if and only if either a
dominates b or a and b have the same fitness vector.
Therefore, the overall coverage obtained with function C
provides a clear indication of the relative quality of the
compared solution sets. Table IV reports the relative

The value in square brackets indicates the coverage
of the overall solution sets obtained as the union of the
ten solutions sets for each algorithm, The values clearly
indicate that, while MOGALS and NSGA-II exhibit
comparable performances, the proposed EFGA always
converges in a better final front. Another metric often
referred in the literature is the Spacing (S). We consider
the definition reported in [10],

1 &~
S= [~ (d-d)
‘{n—l,zﬂ"()
where

d, = min,(|} (x)-£} ()| +[£; G- £)|+ [f - 0])
with d = average (d,), i,j=1,...,n; and n is the number of
points in the known Pareto-front. The metric S indicates
a measure of the spread of points throughout the known
Parcto-front. In particular, the lower is the value for this
metric, the more uniformly spaced will be the points in
the front. A value of zero for S indicates that all
members of the front are equidistantly spaced. Table V
reports the average (on ten runs of the algorithm) number
of solutions belonging in the final front and the relative
average Spacing S. Similarly to table IV, the values in
square brackets in table V indicate the spacing index
computed on the overall solution sets.

Table V. Number of solution in the final front (N) and
Spacing indices (S) for the three algorithms.

N 379 [49]
MOGALS
8 1,247 [1,495]
N 55 [61]
NSGA N
S 1,149 [0.963]
N 658 [79]
EFGA
S 0,859 [0,523]

The algorithm NSGA 1I gives quite low performances in
terms of search repeatability, In fact, for each test, the
algorithm finds 35.5 (avg.) non-dominated solutions,
while the vnion of the non-dominated solutions obtained
in the overal! solution set of the algerithm yields a front
with 61 elements, i.e. about twice of the average value.
Hence, the behavior of NSGA II seems to give a
different non-dominated set at each run. From this point
of view, the algorithms MOGALS and EFGA present
quite better performances. Note that, the Spacing S
increases with respect to the average value for MOGALS
(14949 Vs 1.2466), while for EFGA there is a
decrement of §-(0.5234 Vs 0.8587) that indicates a good
spread of the solutions on the front.

6 Conclusions

In this paper we address 2 sequencing problem arising in
a serial production system in the fumiture industry. The
need of a multi-objective formulation results in a
extremely complex combinatorial problem calling for
innovative approach. We tackle the problem with an
evolutionary method. The proposed algorithmic
approach, called Elitist Front Genetic Algorithm

(EFGA), is more general and suitable to be applied to a

wide class of sequencing and scheduling problems.
EFGA is characterized by an archive dedicated to non-
dominated solutions, a particular dynamic mechanism of
individuals selection for mating and a local search.

13

A first campaign of computational experiments
indicates the novel approach as a promising multi-
criteria evolutionary solver. In fact, EFGA seems
perform at least at the same level (but often better) of the
current state-of-the-art algorithms in terms of quality and
quantity of obtained non-dominated solutions.

References

[1] Agnetis, A, P. Detti, C. Meloni, D. Pacciarelli. Set-up
coordination between two stages of a supply chain. Annals
of Operations Research, 107, 15-32, 2001.

[2] Deb, K., Pratap, A, Agarwal, S, Meyarivan, T., A fast
and elitist multiobjective genetic algorithm: NSGA-II, /EEE
Trans. on Evol. Comput., Vol. 6,n. 2, 182 -197, 2002.

[3] C. Dimopoules, and A. M. S. Zalzala, “Recent
developments in Evolutionary computation for
manufacturing optimisation: problems, solutions, and
comparisons,” IEEE Trans. Evol. Comp., vol. 4, no. 2, pp.
93-113, 2000,

[4] C. M. Fonseca, and P. J. Fleming, “Multiobjective
Optimization and Multiple Constraint Handling with
Evolutionary Algorithms-Part I: A Unified Formulation”,
IEEE Transactions on Systems, Man and Cybernetics, Part
A,Vol.28, n. 1, 26-37, 1998,

[5] Ishibuchi, H., Murata, T., “A multi-objective genetic
local search algorithm and its application to flowshop
scheduling, IEEE Tramsactions on Svstems, Man and
Cybernetics, Part C, Vol.28, n. 3, 392 —403, 1998.

[6] Ishibuchi, H., Yoshida, T., Murata, T., Selection of
initial solutions for local search in multiobjective genetic
local search, [EEE CEC '02, Proceedings of the 2002
Congress on Evol, Comput., Vol.1, pp. 950 -955, 2002.

[7] Kazarlis, S.A., Papadakis, S.E., Theocharis, B,
Petridis, V., “Microgenetic algorithms as generalized hill-
climbing operators for GA optimization”, JEEE Trans. on
Evol. Comput, Vol.5, n. 3, pp. 204-217, 2001.

[81 J. Knowles and D. Corne, “The Parcto archived
evolution strategy: A new baseline algoritm for
multiobjective optimization”, JEEE CEC 99, Proceedings
of the 1999 Cong on Ev. Comp., Vol.1, 98-105,1999.

{91 Meloni, C., An Evolutionary Algorithm for the
Sequence Coordination in Furniture Production, Lecture
Notes of Computer Science, vol. 2264, pp. 91-106, 2001,
[10} D.A, Van Veldhuizen, G.B. Lamont, “On Measuring
multiobjective evolutionary algorithm performance”, /EEE
CECO0, Proc. of Congr Evol. Comp., pp. 204-211, 2000.
[11] Zitzler, E., Deb, K., and Thiele, L. “Comparison of

multiobjective evolutionary algorithms: Empirical
results”, Evol. Comput., vol. 8, no.2, 173-195, 2000.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

