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Abstract—In this paper, we propose a new selection operator
(based on a maximin scheme and a clustering tecnique), which
is incorporated into a differential evolution algorithm to solve
multi-objective optimization problems. The resulting algorithm
is called Maximin-Clustering Differential Evolution (MCD E)
and, is validated using standard test problems and performance
measures taken from the specialized literature. Our preliminary
results indicate that MCDE is able to outperform NSGA-II and
that is competitive with a hypervolume-based approach (SMS-
EMOA), but at a significantly lower computational cost.

I. I NTRODUCTION

Many optimization problems arising in the real world
involve multiple objective functions which must be satisfied
simultaneously. They are generically calledmultiobjective
optimization problems (MOPs)and usually their objectives
are in conflict. In MOPs, the notion of optimality refers to the
best possible trade-offs among the objectives. Consequently,
no single solution exists, but several (the so-calledPareto
optimal setwhose image is called thePareto front). When ap-
plying evolutionary algorithms to solve MOPs, we normally
have two main goals [1]: (i) to find solutions that are, as
close as possible, to the true Pareto front and, (ii) to produce
solutions that are spread along the Pareto front as uniformly
as possible.

When studying multi-objective evolutionary algorithms
(MOEAs), we find two main types of approaches: (i) those
that incorporate the concept of Pareto optimality in their
selection mechanism, and (ii) those that do not use Pareto
dominance to select individuals.

Although the use of Pareto-based selection (mainly
through the use of some Pareto ranking scheme [1]) has
been the most popular choice within the specialized literature
for the last 15 years, such type of approach has several
limitations. From them, its poor scalability (when increasing
the number of objectives) is, perhaps, the most remarkable.
The quick increase in the number of nondominated solutions
as we increase the number of objectives, rapidly dilutes the
effect of the selection mechanism of a MOEA [2]. This has
triggered an important amount of research on the so-called
“many-objective optimization”, which refers to the study of
problems having four or more objective functions.
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In the current literature, we can identify three main ap-
proaches to cope with many-objectives problems, namely: (i)
to adopt or propose a preference relation that induces a finer
grain order on the solutions than that induced by the Pareto
dominance relation [3], [4], [5], [6], (ii) to reduce the number
of objectives of the problem during the search process [7]
or, a posteriori, during the decision making process [8], [9],
and, (iii) to adopt a selection scheme that does not rely
on Pareto optimality (e.g., using compromise functions [10],
alternative ranking schemes [11] or a selection mechanism
based on a performance measure (from which hypervolume1

has been a popular choice, in spite of its considerably high
computational cost [13], [14]). Here, we study an approach
from the third class, using differential evolution as our search
engine. The main motivation of this work is to propose
an alternative selection mechanism for MOEAs that can
properly deal with many-objective optimization problems at
a reasonably low computational cost.

The focus of our study is themaximin fitness function
[15]. This technique assigns a fitness to each individual in
the population without using the concept of Pareto optimality.
This scheme encompasses a guidance mechanism based on
very simple (and computationally efficient) operations. Our
preliminary study of this approach has indicated its suitability
as a selection operator in a MOEA whose search engine
adopts differential evolution [16], even in the presence ofa
high number of objectives. However, its lack of an appropri-
ate diversity maintenance mechanism makes it inappropriate
with respect to state-of-the-art MOEAs, which led us to
propose the incorporation of a clustering technique. The
proposed approach, called Maximin-Clustering Differential
Evolution (MCDE) is validated with several standard test
problems and performance measures. As will be seen later
on, our proposed MCDE is able to outperform NSGA-II [17]
and is competitive with a state-of-the-art hypervolume-based
MOEA (SMS-EMOA) [14], but requiring a much lower
computational cost.

The remainder of this paper is organized as follows.
Section II states the problem of our interest. The maximin
fitness function is briefly described in Section III. SectionIV
describes in detail the selection operator that we propose and
in Section V we present a full description of our approach.
The experiments performed and the results obtained are
shown in Section VI. Finally, we provide our conclusions
and some possible paths for future work in Section VII.

1Thehypervolume (also known as theS metric or the Lebesgue Measure)
of a set of solutions measures the size of the portion of objective space that
is dominated by those solutions collectively [12].



II. PROBLEM STATEMENT

The problem of our interest is the general multi-objective
optimization problem (MOP) which is defined as follows:

Find ~x∗ = [x∗
1, x

∗
2, . . . , x

∗
n]T which optimizes

~f(~x) = [f1(~x), f2(~x), . . . , fk(~x)]T (1)

such that~x∗ ∈ Ω, whereΩ ⊂ Rn defines the feasible
region of the problem. Assuming minimization problems, we
have the following definitions.

Definition 1: We say that a vector~u = [u1, . . . , un]T

dominates to vector~v = [v1, . . . , vn]T , denoted by~u ≤p ~v,
if and only if fi(~u) ≤ fi(~v) for all i ∈ {1, ..., k} and there
exists ani ∈ {1, . . . , k} such thatfi(~u) < fi(~v).

Definition 2: A point ~x∗ ∈ Ω is Pareto optimal if and only
if for all ~x ∈ Ω we have that~x∗ ≤p ~x where~x∗ 6= ~x.

Definition 3: For a given MOP,~f(~x), the Pareto optimal
set is defined as:P∗ = {~x ∈ Ω|¬∃~y ∈ Ω : ~f(~y) ≤p

~f(~x)}.
Definition 4: Let ~f(~x) be a given MOP andP∗ the Pareto

optimal set. Then the Pareto Front is defined as:PF∗ =
{~f(~x) | ~x ∈ P∗}.

III. M AXIMIN FITNESS FUNCTION

The maximin fitness function presented in [15] is derived
from the Definition 1 and, we can use it to solve MOPs.
Let’s consider a MOP withK objectives and let’s assume
that each objective is normalized. Let’s consider an evolu-
tionary algorithm whose population size isP . Let f i

k be the
normalized value of thekth objective for theith individual
in a particular generation. Assuming minimization, thejth

individual dominates theith individual if:

f j
k ≤ f i

k ∀k ∈ {1, . . . , K} and (2)

∃k ∈ {1, . . . , K} | f j
k < f i

k

Eq. (2) is equivalent to:

mink(f i
k − f j

k) ≥ 0 (3)

The ith individual in a particular generation will be
dominated by another individual in the generation if:

maxj 6=i(mink(f i
k − f j

k)) > 0 (4)

Then, the maximin fitness function of individuali is
defined as:

fitnessi = maxj 6=i(mink(f i
k − f j

k)) (5)

In eq. (5), themin is taken over all the objectives from
1 to K, and themax is taken over all the individuals in the
population from1 to P , except for the same individuali.
From eq. (5), we know that any individual whose maximin
fitness is greater than zero is a dominated solution and
that, any individual whose maximin fitness is less than zero
is a non-dominated solution. Finally, any individual whose
maximin fitness is equal to zero is either a dominated solution
or a duplicate non-dominated solution.

The algorithm to calculate the fitness of each individual of
the population is shown in Algorithm 1. The complexity of
this algorithm isO(KP 2), whereK is the number of objec-
tive fuctions andP is the population size. In Algorithm 1,
we multiply the fitness of each individual by−1 in order
to obtain a higher fitness for the individuals which are non-
dominated and a lower fitness for the individuals which are
dominated.

Algorithm 1: MaximinFitnessFunction
Input : X (Current population with their normalized

objective values),P (population size) and,K
(number of objectives).

Output : X (Current population with the fitness updated
of each individual).

for i← 1 to P do
maximal← −∞;
for j ← 1 to P do

if j 6= i then
minimal←∞;
for k ← 1 to K do

if X [i].f [k]−X [j].f [k] < minimal
then

minimal← X [i].f [k]−X [j].f [k];
end

end
if minimal > maximal then

maximal← minimal;
end

end
end
X [i].f itness← −1 ∗maximal;

end

IV. SELECTION OPERATOR

When studying the maximin fitness function, we identified
an important disadvantage of this approach when solving
MOPs. If we take a look at the part where we get the mini-
mum of the difference between normalized objective values
of two given solutions, we can notice that if a particular
objective is minimized more quickly than the others, then the
remaining objectives are not considered. Let’s assume thatwe
have a MOP with two objective functions (f1 and f2) and
that the objectivef1 is easier to optimize than objectivef2.
In this case, when the maximin fitness function calculates the
minimum, it will often obtain the component of objectivef1,
without regardingf2. Thus, if the maximin fitness function is
incorporated into an evolutionary algorithm, it may occur that
we only obtain solutions that minimizef1, instead of finding
the best possible trade-offs among the objectives, which is
our aim. Evidently, we cannot assume that the objectives
can be optimized separately, since that assumption would
only be reasonable when the objectives have no conflict
among themselves, which makes employing a multi-objective



approach unnecessary (a single-objective optimizer wouldbe
sufficient in that case).

In order to address this problem, we propose to check
if the individual that we want to select is similar in at
least one objective to another (selected) individual. The
process to verify similarity between individuals is shown
in Algorithm 2. As can be seen, we need the parameter
min dif which indicates the minimum difference that must
separate the two selected individuals in objective function
space (this is similar to the niche radius adopted with fitness
sharing [18]).

The complexity of Algorithm 2 isO(KP ), whereK is
the number of objectives andP is the population size. The
full selection process based on a maximin fitness function is
shown in Algorithm 3 and its complexity isO(KP 2).

Algorithm 2: IsSimilarToAny
Input : min dif (Minimum difference),x

(individual), Y (population),P (population
size),K (number of objectives).

Output : Returns1, if the individualx is similar to any
individual in the populationY ; otherwise,
returns0.

for i← 1 to P do
for k← 1 to K do

if |x.f [k]− Y [i].f [k]| < min dif then
Returns 1;

end
end

end
Returns 0;

As indicated before, the search engine of a MOEA has two
main goals: (i) to find solutions which are as close as possible
to the true Pareto front and, (ii) to produce solutions that are
spread along the Pareto front as uniformly as possible.

The first of these goals is achieved by the mechanism
described in Algorithm 3. However, we need one more
mechanism, so that we can fulfill the second objective. Here,
we propose to use the clustering technique described in
Algorithm 4.

V. M AXIMIN -CLUSTERING DIFFERENTIAL EVOLUTION

The approach that we propose here is called Maximin-
Clustering Differential Evolution (MCDE) and is described
next.

MCDE adopts the operators of differential evolution to
create new individuals but the selection process is modified
as follows: If the size of the population isP , MCDE creates
P new individuals. After that, it combines the population of
parents and offspring to obtain a population of size2P . Then,
MCDE uses Algorithms 3 and 4 to choose theP individuals
that will take part of the following generation.

In order to speed up convergence, we also propose to mod-
ify the process in which parents are selected to participate
in the process of mutation and crossover as follows. Instead

Algorithm 3: MaximinSelection
Input : Xsorted (Sorted population from high to low,

according to the fitness values),P (population
size),K (number of objectives) andS (the
number of individuals to choose).

Output : Y (individuals selected)
s← 1;
i← 1;
/*Before selecting individuals, verify

that there is not a similar one */
while s ≤ S AND i ≤ P do

while IsSimilarToAny(Xsorted[i], Y ) = 1 AND
i ≤ P do

i← i + 1;
end
if i ≤ P then

Y [s]← Xsorted[i];
s← s + 1;

end
end
/*Select only according to fitness */
i← 1;
while s ≤ S do

if Xsorted[i] has not been selectedthen
Y [s]← Xsorted[i];
s← s + 1;

end
i← i + 1;

end
ReturnsY ;

of randomly selecting three individuals for becoming parents
(as normally done in the DE algorithm), we use a binary tour-
nament selection for choosing the three individuals needed.
At each tournament, two individuals are randomly selected
and the one with the higher fitness value is chosen. Finally,
Algorithm 5 shows the full algorithm of our proposed MCDE
approach.

VI. EXPERIMENTAL RESULTS

We compared our proposed MCDE with respect to two
MOEAs representative of the state-of-the-art in the area:

• The Nondominated Sorting Genetic Algorithm II
(NSGA-II) [17], which is a well-known MOEA whose
selection mechanism is based on Pareto dominance.
NSGA-II also incorporates a crowded comparison op-
erator to produce well-distributed solutions along the
Pareto front. This MOEA was chosen because is perhaps
the most representative of the Pareto-based MOEAs.

• The S Metric Selection-Evolutionary Multiobjective Op-
timization Algorithm (SMS-EMOA) [14], which bases
its selection mechanism on the hypervolume perfor-
mance measure [12] combined with the non-dominated
sorting procedure adopted in NSGA-II. This approach



Algorithm 4: ClusteringSelection
Input : Xsorted (Sorted population from high to low,

according to fitness),P (population size),K
(number of objectives) andS (number of
individuals to choose).

Output : Y (individuals selected).
/*Choose the first S individuals as
centers of the clusters C */

Cj = {Xsorted[j]};
/*Do clustering */
for i← S + 1 to P do

if Xsorted[i] is closer toCj then
Cj ← Cj ∪Xsorted[i];

end
end
/*Obtain the new centers of the
clusters */

for j ← 1 to S do
µj ←

1
|Cj|

∑

X[i]∈Cj

X [i];

end
/*Select to individuals who are
closest to the centers of the
clusters */

for j ← 1 to S do
if X [i] | X [i] ∈ Cj is the nearest to the centerµj

then
Y [j]← X [i];

end
end
ReturnsY ;

was chosen because is a state-of-the-art hypervolume-
based MOEA.

It is important to emphasize that we chose these algorithms
because our aim was to validate the selection mechanism of
our proposed approach. Although there are several MOEAs
based on DE (see for example [19], [20], [21], [22]), most
of them adopt a Pareto-based selection mechanism and,
therefore, were not considered for our comparative study (we
decided to adopt NSGA-II instead, because of its widespread
use and availability (its source code is available in the public
domain)). We believe that it would be more interesting to
compare results with respect to an scalarization method such
as MOEA/D (there is a version based on DE) [23], but this
was not done here because of time constraints.

We performed 30 independent runs for each test problem.
The parameters adopted for our proposed MCDE are shown
in Table I (these values were empirically derived after numer-
ous experiments). For both NSGA-II and SMS-EMOA, we
adopted the parameters suggested by the authors of NSGA-
II: crossover probabilitypc = 0.9, mutation probability
pm = 1/n, wheren is the number of decision variables,
for crossover and mutation operators,ηc = 15 andηm = 20,
respectively. Finally, we used the same population size and

Algorithm 5: Maximin-Clustering Differential Evolution
Input : P (population size),gmax (maximum number

of generations),N (number of decision
variables),K (number of objective functions)
Cr (crossover probability) andmin dif
(minimum difference between objectives).

Output : Last population.
contGen← 0;
Create a random initial population;
repeat

for i← 1 to P do
Select three parents (X [i1], X [i2] andX [i3]) ;
Obtain the new individual (Xnew[i]) from DE’s
mutation and crossover operators;

end
Y ← X ∪Xnew;
Ysorted ← SortCurrentPopulation(X);
if The number of nondominated individuals is
greater toS then

X ← ClusteringSelection(Ysorted, P , K, S);
else

X ← MaximinSelection(Ysorted, P , K, S);
end
contGen← contGen + 1;

until contGen < gmax;

the same value for the maximum number of generations
with the three algorithms compared. All three algorithms
performed the same number of objective function evalua-
tions (for the ZDT test problems they performed 10,000
evaluations, and for the DTLZ test problems they performed
20,000 evaluations, except for ZDT4 and DTLZ3 in which
they performed 36,000 and 25,000 evaluations, respectively).

F Prcr min dif P G

ZDT1 0.5 0.9 0.00001 100 100
ZDT2 0.5 0.9 0.001 100 100
ZDT3 0.5 0.9 0.00001 100 100
ZDT4 0.5 0.23 0.001 120 300
ZDT6 0.5 0.9 0.001 100 100
DTLZ1 0.5 0.0001 0.0001 100 200
DTLZ2 0.5 0.01 0.001 100 200
DTLZ3 0.5 0.00001 0.001 100 250
DTLZ4 0.5 0.00001 0.001 100 200
DTLZ5 0.5 0.5 0.00001 100 200
DTLZ6 0.5 0.3 0.00001 100 200
DTLZ7 0.5 0.1 0.00001 100 200

TABLE I
PARAMETERS ADOPTED BY OUR PROPOSEDMCDE ALGORITHM . F AND

Prcr ARE PARAMETERS USED BY THEDE ALGORITHM ; min dif IS

USED BY OUR PROPOSED SELECTION OPERATOR; P IS THE POPULATION
SIZE AND G IS THE MAXIMUM NUMBER OF GENERATIONS.

A. Test problems

To validate our proposed MCDE, we adopted two sets of
problems. The first consists of five bi-objective test problems
taken from the Zitzler-Deb-Thiele suite [24]. The second



consists of seven problems having three or more objectives,
taken from the Deb-Thiele-Laumanns-Zitzler (DTLZ) suite
[25]. For the DTLZ test problems, we usedk = 5 and, three,
four and five objetive functions (i.e.,M = 3,4, and 5).

B. Quality indicators

To assess performance, we adopted the following indica-
tors:

1) Generational Distance(GD). This indicator was pro-
posed by Van Veldhuizen in [26] and, it represents how
far a setA is from the Pareto frontP . Formally, it is
defined as:

GD =
1

|A|





|A|
∑

i=1

d2
i





1

2

(6)

wheredi is the Euclidean distance, in objective func-
tion space, betweenai and the nearest member of
P . LowerGD values represent better approximations.
For the calculation of theGD indicator, we used the
following:

• Pareto optimal sets generated by an enumerative
approach for the ZDT test problems [1].

• A set of equations that describe the Pareto fronts
for the DTLZ test problems 1 to 6.

• A value of the functiong for the test problem
DTLZ7.

2) Hypervolume indicator(ϕ). It was originally proposed
by Zitzler and Thiele in [27], and it’s defined as the size
of the space covered by the Pareto optimal solutions.ϕ
rewards convergence towards the Pareto front as well
as the maximum spread of the solutions obtained. If

∧

denotes the Lebesgue measure,ϕ is defined as:

ϕ(A, yref ) =
∧





⋃

y∈A

{y′ | y < y′ < yref}



 (7)

where yref ∈ Rk denotes a reference point that
should be dominated by all the Pareto optimal points.
Fleischer proved in [28] that, given a finite search space
and a reference point,maximizing the hypervolume
indicator is equivalent to finding the Pareto optimal
set. The disadvantage of this indicator is its high
computational cost (the running time for calculating
ϕ is exponential in the number of objective functions).
To computeϕ, we used the following reference points:

• For ZDT functions, we usedyref = [1, 1].
• For function DTLZ1, we used yref =

[y1, . . . , yM ] | yi = 0.7 ∀i = 1, . . . , M .
• For functions DTLZ(2-6), we usedyref =

[y1, . . . , yM ] | yi = 1.1 ∀i = 1, . . . , M .
• For function DTLZ7, we used yref =

[y1, . . . , yM ] yM = 6.1 and yi = 1.1 ∀i =
1, . . . , M − 1.

C. Results

In Table II, we can observe that our proposed MCDE
outperforms both NSGA-II and SMS-EMOA, in most of the
ZDT test problems (the best results are shown inboldface).
As shown in Tables III and V, in the DTLZ test problems
having three and five objective functions, SMS-EMOA is
better than MCDE in four test problems and MCDE is
better than SMS-EMOA in three test problems. As shown
in Table IV, for the test problems having four objective
functions, SMS-EMOA is better than MCDE in five test
problems and MCDE is better than SMS-EMOA only in two.
It is important to note that our proposed MCDE presents a
consistent behavior when increasing the number of objec-
tives, unlike NSGA-II whose performance quickly degrades,
reaching a value of zero for the hypervolume indicator when
solving three of the DTLZ test problems.

To validate the results in our experiments, we performed
statistical analysis using Wilcoxon’s rank sum. Table VII
shows the results. With respect to generational distance, we
can say that our algorithm, MCDE, is significantly better than
SMS-EMOA in DTLZ6 and DTLZ7, with three objective
functions, and also in DTLZ7, with four objective functions
because the hypothesis that the medians are equal can be
rejected. In most of the remaining problems, we can say
that SMS-EMOA and MCDE have a similar behavior, except
for ZDT6, DTLZ5, with three objective functions, DTLZ1,
DTLZ3 and DTLZ4, with five objective functions because
the probability that the hypothesis is true is less than 0.5.
Regarding the hypervolume indicator only in DTLZ2 with
five objectives, we can say that SMS-EMOA is significantly
better than MCDE. Finally, we can say that SMS-EMOA
and MCDE have a similar behavior in most of the ZDT and
DTLZ problems with three and five objective functions.

Based on the results shown before, we claim that the
performance of MCDE is competitive with respect to the per-
formance of SMS-EMOA. However, it is important to note
that the computational cost of the SMS-EMOA algorithm is
considerably larger than that of MCDE. Table VI shows the
CPU time, per run, required by each algorithm. In this table,
we can note that MCDE needs only 1 or 2 seconds in any
of the test problems adopted, even for instances having five
objectives. In contrast, SMS-EMOA needs up to 11 hours,
per run, for the test problems having five objectives.

This difference is due to the fact that computing the
maximim fitness function is an inexpensive process (its
complexity is linear with respect to the number of objectives),
whereas the computation of the hypervolume is exponential
with respect to the number of objectives. Thus, we argue
that MCDE can be a good alternative for dealing with many-
objective optimization problems, unless we can afford a very
high computational cost.

VII. C ONCLUSIONS AND FUTURE WORK

We have proposed a new selection operator to solve mul-
tiobjective optimization problems using a single-objective
evolutionary algorithm (differential evolution in our case).



~f I NSGA-II SMS-EMOA MCDE

1
ϕ
gd

0.843798 (0.003867)
0.001896 (0.000259)

0.865892 (0.001641)
0.000449 (0.000053)

0.866497 (0.001268)
0.000161 (0.000063)

2
ϕ
gd

0.477477 (0.067691)
0.002925 (0.000679)

0.528328 (0.002507)
0.000581 (0.000110)

0.529499 (0.002874)
0.000410 (0.000141)

3
ϕ
gd

1.294509 (0.006019)
0.001384 (0.000222)

0.711646 (0.010531)
0.020268 (0.001389)

1.323276 (0.003000)
0.006132 (0.030231)

4
ϕ
gd

0.869855 (0.001417)
0.000496 (0.000058)

0.869862 (0.002264)
0.002413 (0.010458)

0.859478 (0.032763)
0.000894 (0.002144)

6
ϕ
gd

0.233452 (0.031991)
0.022658 (0.003359)

0.230881 (0.035046)
0.021088 (0.003213)

0.501168 (0.001371)
0.000112 (0.000013)

TABLE II
RESULTS OBTAINED IN THEZDT TEST PROBLEMS. WE SHOW AVERAGE VALUES OVER30 INDEPENDENT RUNS. THE VALUES IN PARENTHESES

CORRESPOND TO THE STANDARD DEVIATIONS.

~f I NSGA-II SMS-EMOA MCDE

1
ϕ
gd

0.168104 (0.121049)
0.056767 (0.060737)

0.282027 (0.071556)
0.012122 (0.024779)

0.301742 (0.050681)
0.275396 (0.745076)

2
ϕ
gd

0.695722 (0.007437)
0.000327 (0.000132)

0.757970 (0.000048)
0.000000 (0.000000)

0.721690 (0.011281)
0.000003 (0.000013)

3
ϕ
gd

0.495070 (0.296949)
0.041826 (0.061893)

0.663793 (0.230938)
0.013266 (0.033151)

0.574081 (0.287628)
1.027464 (3.315866)

4
ϕ
gd

0.688702 (0.011839)
0.000361 (0.000179)

0.757973 (0.000044)
0.000000 (0.000000)

0.707000 (0.014417)
0.000044 (0.000147)

5
ϕ
gd

0.437974 (0.000258)
0.000066 (0.000037)

0.439344 (0.000018)
0.000000 (0.000000)

0.427400 (0.005107)
0.000498 (0.000084)

6
ϕ
gd

0.263933 (0.023633)
0.017425 (0.002951)

0.401663 (0.021284)
0.003793 (0.001723)

0.429099 (0.008223)
0.000000 (0.000000)

7
ϕ
gd

1.871739 (0.143621)
0.727283 (0.123080)

1.824769 (0.346389)
0.850543 (0.087943)

1.956336 (0.012535)
0.000000 (0.000000)

TABLE III
RESULTS OBTAINED IN THEDTLZ TEST PROBLEMS WITH THREE OBJECTIVE FUNCTIONS. WE SHOW AVERAGE VALUES OVER30 INDEPENDENT RUNS.

THE VALUES IN PARENTHESES CORRESPOND TO THE STANDARD DEVIATIONS.

~f I NSGA-II SMS-EMOA MCDE

1
ϕ
gd

0.020431 (0.049314)
0.426400 (0.484402)

0.216245 (0.047649)
0.012505 (0.030799)

0.203586 (0.060700)
0.019485 (0.043234)

2
ϕ
gd

0.864022 (0.019920)
0.000962 (0.000296)

1.044446 (0.000062)
0.000002 (0.000001)

0.957406 (0.019200)
0.000231 (0.000747)

3
ϕ
gd

0.320878 (0.384497)
0.175820 (0.161358)

0.827933 (0.414164)
0.020897 (0.039890)

0.775603 (0.312009)
0.743255 (2.924236)

4
ϕ
gd

0.852950 (0.020846)
0.001021 (0.000273)

1.044515 (0.000087)
0.000001 (0.000001)

0.961788 (0.010907)
0.000166 (0.000679)

5
ϕ
gd

0.429414 (0.002911)
0.021393 (0.004046)

0.439084 (0.000260)
0.045849 (0.003666)

0.277086 (0.029985)
0.057070 (0.002998)

6
ϕ
gd

0.000000 (0.000000)
0.155895 (0.014608)

0.220479 (0.016245)
0.140056 (0.007726)

0.240899 (0.037808)
0.156666 (0.014808)

7
ϕ
gd

0.518986 (0.060112)
0.737255 (0.092109)

0.345574 (0.248708)
0.860942 (0.102134)

0.602277 (0.037409)
0.000000 (0.000000)

TABLE IV
RESULTS OBTAINED IN THEDTLZ TEST PROBLEMS WITH FOUR OBJECTIVE FUNCTIONS. WE SHOW AVERAGE VALUES OVER30 INDEPENDENT RUNS.

THE VALUES IN PARENTHESES CORRESPOND TO THE STANDARD DEVIATIONS.

This operator takes into account the two main objectives
of a MOEA: it uses a maximin technique to find solutions
as close as possible to the true Pareto front and it uses a
clustering technique to provide a good distribution of such
solutions along the Pareto front. We chose these techniques
in order to obtain a selection operator capable of solving
problems of both low dimensionality (with two or three
objective functions) and high dimensionality (more than three
objective functions).

In our experimental study, we compared the performance

of our proposed approach with respect to a state-of-the-art
Pareto-based MOEA (NSGA-II) and with respect to a state-
of-the-art hypervolume-based MOEA (SMS-EMOA) using
standard test problems and performance measures taken from
the specialized literature. Our results show that MCDE out-
performs NSGA-II in all cases (low- and high-dimensionality
test problems) and produces competitive results with respect
to SMS-EMOA, but at a much lower computational cost.

As part of our future work, we plan to incorporate our
selection operator into other evolutionary algorithms in order



~f I NSGA-II SMS-EMOA MCDE

1
ϕ
gd

0.000000 (0.000000)
6.702562 (2.084582)

0.153918 (0.031912)
0.018024 (0.039251)

0.155104 (0.020443)
0.012216 (0.020552)

2
ϕ
gd

0.978240 (0.024770)
0.003487 (0.000808)

1.295810 (0.000108)
0.000007 (0.000002)

1.147529 (0.026441)
0.000976 (0.002029)

3
ϕ
gd

0.000000 (0.000000)
11.347256 (4.076464)

1.245409 (0.231560)
0.004221 (0.018154)

0.826641 (0.421045)
2.353595 (7.336803)

4
ϕ
gd

0.970531 (0.031486)
0.002992 (0.001193)

1.296010 (0.000114)
0.000002 (0.000001)

1.164448 (0.027469)
0.000631 (0.001325)

5
ϕ
gd

0.423968 (0.010354)
0.043428 (0.006622)

0.449985 (0.000421)
0.059179 (0.002101)

0.196839 (0.017682)
0.065526 (0.004445)

6
ϕ
gd

0.000000 (0.000000)
0.272611 (0.024261)

0.156974 (0.016202)
0.165866 (0.012073)

0.166601 (0.053506)
0.161178 (0.015361)

7
ϕ
gd

0.074212 (0.011193)
0.743493 (0.123118)

0.084705 (0.065528)
0.804493 (0.095978)

0.044723 (0.019550)
0.030316 (0.026227)

TABLE V
RESULTS OBTAINED IN THEDTLZ TEST PROBLEMS WITH FIVE OBJECTIVE FUNCTIONS. WE SHOW AVERAGE VALUES OVER30 INDEPENDENT RUNS.

THE VALUES IN PARENTHESES CORRESPOND TO THE STANDARD DEVIATIONS.

Function Objectives SMS-EMOA MCDE
ZDT1 2 ≈ 3s ≈ 1s

ZDT2 2 ≈ 3s ≈ 1s

ZDT3 2 ≈ 4s ≈ 1s

ZDT4 2 ≈ 9s ≈ 1s

ZDT6 2 ≈ 2s ≈ 1s

DTLZ1 3 ≈ 2m ≈ 1s

DTLZ2 3 ≈ 4m ≈ 1s

DTLZ3 3 ≈ 3m ≈ 1s

DTLZ4 3 ≈ 4m ≈ 1s

DTLZ5 3 ≈ 2m ≈ 1s

DTLZ6 3 ≈ 2m ≈ 1s

DTLZ7 3 ≈ 3m ≈ 1s

DTLZ1 4 ≈ 40m ≈ 1s

DTLZ2 4 ≈ 60m ≈ 2s

DTLZ3 4 ≈ 40m ≈ 1s

DTLZ4 4 ≈ 40m ≈ 1s

DTLZ5 4 ≈ 20m ≈ 2s

DTLZ6 4 ≈ 30m ≈ 2s

DTLZ7 4 ≈ 20m ≈ 1s

DTLZ1 5 ≈ 8h ≈ 1s

DTLZ2 5 ≈ 11h ≈ 2s

DTLZ3 5 ≈ 8h ≈ 2s

DTLZ4 5 ≈ 11h ≈ 2s

DTLZ5 5 ≈ 6h ≈ 2s

DTLZ6 5 ≈ 7h ≈ 2s

DTLZ7 5 ≈ 3h ≈ 1s

TABLE VI
T IME REQUIRED BY SMS-EMOAAND MCDE, PER RUN, FOR THE TEST

PROBLEMS ADOPTED. s = SECONDS, m = MINUTES, AND h = HOURS.
BOTH ALGORITHMS WERE IMPLEMENTED IN THEC PROGRAMMING
LANGUAGE AND THEY WERE EXECUTED ONPCS WITH THE SAME

HARDWARE AND SOFTWARE CHARACTERISTICS.

to assess the impact of the search engine in the performance
of our algorithm. We also plan to perform a statistical
analysis of the sensitivity of our proposed approach to its
parameters. Finally, we plan to compare our algorithm with
other algorithms that use techniques not based on Pareto
optimality or the hypervolume indicator, such asMOEA/D
[23] and maximinPSO[29]. It is important to mention,
however, that maximinPSO was tested in [29] only with bi-
objective optimization problems. Its authors also reported a
poor performance of this approach in ZDT2.
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