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Abstract. We analyze here some properties of the maximin fitness func-
tion, which has been used by several researchers, as an alternative to
Pareto optimality, for solving multi-objective optimization problems. As
part of this analysis, we identify some disadvantages of the maximin fit-
ness function and then propose mechanisms to overcome them. This leads
to several selection operators for multi-objective evolutionary algorithms
which are further analyzed. We incorporate them into an evolutionary al-
gorithm, giving rise to the so-called Maximin-Clustering Multi-Objective
Evolutionary Algorithm (MC-MOEA) approach. Our proposed approach
is validated using standard test problems taken from the specialized lit-
erature, having from two to eight objectives. Our preliminary results
indicate that our proposed approach is a good alternative to solve multi-
objective optimization problems having both low dimensionality (two or
three) and high dimensionality (more than three) in objective function
space.


1 Introduction


The use of evolutionary algorithms for solving multi-objective optimization prob-
lems (MOPs) has become very popular in the last few years [7]. When designing
multi-objective evolutionary algorithms (MOEAs), there are two main types of
approaches that are normally used as selection mechanism: (i) those that incor-
porate the concept of Pareto optimality, and (ii) those that do not use Pareto
dominance to select individuals.


In this work, we are interested in the maximin fitness function [2] (belonging
to the type (ii)). This technique assigns a fitness to each individual in the pop-
ulation. Such fitness value encompasses Pareto dominance (we can know which
individuals are non-dominated), distance to the non-dominated individuals, and
clustering between individuals (it penalizes individuals that are too close from
each other). This scheme has the advantage of requiring very simple operations
to calculate the fitness and is, thus, computationally efficient (its complexity is
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linear with respect to the number of objectives). A preliminary study allowed us
to design some selection operators based on the maximin fitness function which
are incorporated into a MOEA that uses a simulated binary crossover (SBX) and
a polynomial mutation operator (PM), giving rise to the main proposal of this
paper, which is called: Maximin-Clustering Multi-Objective Evolutionary Algo-
rithm (MC-MOEA). The proposed approach is validated with several standard
test problems using the hypervolume and the additive epsilon-indicator. Our pro-
posed MC-MOEA approach is compared with respect to the NSGA-II (which is
a very competitive Pareto-based MOEA), with respect to SMS-EMOA (which
is a hypervolume-based MOEA), and with respect to a version of SMS-EMOA
that uses Monte Carlo simulation to approximate the exact hypervolume (we
called it APP-SMS-EMOA) 1. Our preliminary results indicate that our pro-
posed approach is a viable alternative, particularly when dealing with a high
number of objectives, since it produces results that are similar in quality to
those obtained with SMS-EMOA (low dimensionality) and APP-SMS-EMOA
(high dimensionality), but at a very low computational cost.


The remainder of this paper is organized as follows. The maximin fitness
function is described and studied in Section 2. Section 3 presents the proposed
mechanisms to improve the maximin fitness function and describes in detail
three selection operators based on it. In Section 4 we present a full description
of our proposed MC-MOEA approach. Our experiments and the results obtained
are shown in Section 5. Finally, we provide our conclusions and future work in
Section 6.


2 Maximin Fitness Function


The maximin fitness function was proposed by Richard Balling and Scott Wilson
in [2],[4] and, it works as follows. Let’s consider a MOP with K objectives and
an evolutionary algorithm whose population size is P . Let f i


k be the normalized
value of the kth objective for the ith individual in a particular generation. Assum-
ing minimization problems, we have that the jth individual weakly dominates
the ith individual if:


mink(f i
k − f j


k) ≥ 0 (1)


The ith individual, in a particular generation, will be weakly dominated by
another individual, in the generation, if:


maxj 6=i(mink(f i
k − f j


k)) ≥ 0 (2)


Then, the maximin fitness function of individual i is defined as:


fitnessi = maxj 6=i(mink(f i
k − f j


k)) (3)


1 We approximate the hypervolume using the approach proposed in HyPE [1].
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where the min is taken over all the objectives from 1 to K, and the max is
taken over all the individuals in the population from 1 to P , except for the same
individual i. From eq. (3), we can say the following:


1. Any individual whose maximin fitness is greater than zero is a dominated
individual,


2. Any individual whose maximin fitness is less than zero is a non-dominated
individual.


3. Finally, any individual whose maximin fitness is equal to zero is a weakly-
dominated individual.


2.1 Reviewing the properties of the maximin fitness function


Let’s review the properties of the maximin fitness function as presented in [3]:


1. The maximin fitness function penalizes clustering of non-dominated individ-
uals. In the limit, the maximin fitness of duplicate non-dominated individuals
is zero. See Figure 1.


2. The maximin fitness function rewards individuals at the middle of convex
non-dominated fronts, see Figure 2. Also, it rewards individuals at the ex-
tremes of concave non-dominated fronts, see Figure 3. The maximin fitness
function is a continuous function of objective values.


3. The maximin fitness of dominated individuals is a metric of the distance to
the non-dominated front. See Figure 4.


4. The max function in the maximin fitness of a dominated individual is always
controlled by a non-dominated individual and is indifferent to clustering. The
max function in the maximin fitness of a non-dominated individual may be
controlled by a dominated or a non-dominated individual. See Figure 4.


1 2


1


2 A(−1)


B(−0.5)


C(−0.5)


f1


f2


D(−0.5)


Fig. 1. We can see that the maximin fitness function penalizes individuals B, C and D because
they are close from each other. It also rewards individual A, because it is far away from the other
individuals.


Analyzing Property 1, we can see that although the maximin fitness function
penalizes the clustering between individuals, it has the following disadvantage.
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In Figure 1, we can observe that individuals B, C and D have the same maximin
fitness. Then, if we use the maximin fitness function, we can not know which of
the three is the best individual to form part of the next generation.
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C(−0.5) C(0) D(−0.5)


Fig. 2. In all cases, we can see that the maximin fitness function rewards individuals at the middle
of convex non-dominated fronts. In (c), individual A has a maximin fitness equal to zero because it
is a weakly dominated solution, and individual E has a positive maximin fitness equal to 0.5 because
it is a dominated solution.
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Fig. 3. In all cases, we can see that the maximin fitness function rewards individuals at the extremes
of concave non-dominated fronts. In (c), individual A has a maximin fitness equal to zero because it
is a weakly dominated solution, and individual E has a positive maximin fitness equal to 0.5 because
it is a dominated solution.


To review Property 4, let’s see Figure 4. In this case, we can see that the
fitness of the non-dominated individual B is affected by the dominated individ-
ual D. Then, the maximin fitness function penalizes non-dominated individuals
if they are close to another individual (no matter whether or not it is a domi-
nated solution). The author of the maximin fitness function proposed in [4] the
following modified maximin fitness function:


fitnessi = maxj 6=i,j∈P (mink(f i
k − f j


k)) (4)
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Fig. 4. In (b), we can see that the fitness of individuals D, E and F is controlled by the non-
dominated individual B, and the value of their fitness is a metric of the distance to the individual
B. Also, we can see that the fitness of B is affected by the dominated individual D.


 2


 2.5


 3


 3.5


 4


 4.5


 5


 5.5


 6


 6.5


 7


-1 -0.5  0  0.5  1


f2


f1


ZDT2


 0


 0.1


 0.2


 0.3


 0.4


 0.5


 0.6


 0.7


 0.8


 0.9


 1


 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1


f2


f1


ZDT2


(a) (b)


 0


 0.1


 0.2


 0.3


 0.4


 0.5


 0.6


 0.7


 0.8


 0.9


 1


 1.1


 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1


f2


f1


ZDT2


(c)


Fig. 5. In all cases, we use an evolutionary algorithm based on Differential Evolution coupled to
any of the 3 selection mechanisms proposed here. In (a), we use only the maximin fitness to select
individuals. In case (b), we use the maximin fitness and the constraint that prevents us from selecting
similar individuals (in objective function space). Finally, in (c) we use the full selection operator
proposed in this work.
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where P is the set of non-dominated individuals. Using eq. (4) to assign
the fitness of each individual, we guarantee that the fitness of a non-dominated
individual is controlled only by non-dominated individuals and then we only
penalize clustering between non-dominated individuals.


On the other hand, it is important to analyze if it is better to prefer weakly
dominated individuals than dominated individuals. In the study that we will
include next, we show that it is not good to prefer weakly dominated individuals
or individuals which are close to being weakly dominated (even if they are weakly
dominated by any dominated individual). For example, in Figure 2 (c), solution
A is a weakly dominated individual and solution E is a dominated individual.
To guarantee convergence to the Pareto optimal set, we must choose individual
E. Otherwise, it is possible that the evolutionary algorithm converges to a weak
Pareto optimal solution. Problem ZDT2 is an example of this:


f1(x) = x1


f2(x) = g(x)
(


1 − (x1/g(x))2
)


g(x) = 1 +
9


n − 1


n
∑


i=2


xi) (5)


where xi ∈ [0, 1], and the problem has 30 decision variables. If we set the fitness
of each individual with the maximin fitness function, into an evolutionary algo-
rithm, and after sorting the individuals with respect to their fitness, we perform
selection. Then, at the end of the generations, we obtain only weakly Pareto
points, see Figure 5 (a). This happens because f1 is easier to optimize than f2


and then, we quickly obtain weakly dominated solutions in this extreme of the
Pareto front.


3 Selection operators based on the maximin fitness


function


Considering the properties of the maximin fitness function and its disadvantages,
we propose here three possibles selection operators.


3.1 Operator I


In order to deal with the problem of the weakly dominated individuals, we
proposed in [10] the following constraint: Any individual that we want to select
must not be similar (in objective space) to another (selected) individual. The
process to verify similarity between individuals is shown in Algorithm 1 and the
full selection process is shown in Algorithm 2. So, we avoid selecting solutions
that are weakly dominated by non-dominated solutions (see individual A in
Figure 2 (c)) or solutions which are weakly dominated by dominated solutions
(see individual F in Figure 4 (b)). In Figure 5 (b), we can observe that by
imposing this constraint, we can find the true Pareto front of the ZDT2 function.
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Input : min dif (Minimum difference), x (individual), Y (population), P (population
size), K (number of objectives).


Output: Returns 1, if the individual x is similar to any individual in the population Y ;
otherwise, returns 0.


for i← 1 to P do


for k← 1 to K do


if |x.f [k]− Y [i].f [k]| < min dif then


return 1;
end


end


end


return 0;


Algorithm 1: IsSimilarToAny


In order to deal with the disadvantage of Property 1, we proposed in [10] a
technique based on maximin fitness and clustering. Such a technique works as
follows. If we want to select S individuals from a population of size P , then,
we choose the best S individuals with respect to their maximin fitness, and use
them as centers of their clusters. Then, we proceed to place each individual in
the nearest cluster. Finally, for each of the resulting clusters, we recompute the
center, and choose the individual closest to it. It is important to note that we
don’t iterate many times to improve the distribution of the centers, we only
execute one time the correction. This procedure is shown in Algorithm 3.


Input : X (Population), P (population size), K (number of objectives), S (the number of
individuals to choose) and min dif (minimum difference between objectives).


Output: Y (Selected individuals).
s← 1, i← 1;
/*Sorting with respect the maximin fitness of each individual */


Xsorted ← Sort(X);
/*Fill up the new population with the best copies according to maximin fitness,
verifying that there is not a similar one */


while s ≤ S AND i ≤ P do


while IsSimilarToAny(min dif , Xsorted[i], Y , s, K) = 1 AND i ≤ P do


i← i + 1;
end


if i ≤ P then


Y [s]← Xsorted[i];
s← s + 1;


end


end


/*Fill up the new population with the best copies according to maximin fitness */


i← 1;
while s ≤ S do


if Xsorted[i] has not been selected then


Y [s]← Xsorted[i];
s← s + 1;


end


i← i + 1;


end


return Y ;


Algorithm 2: Maximin-Selection
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Input : X (Population), NonDom (number of non-dominated individuals), K (number of
objectives) and S (number of individuals to choose).


Output: Y (individuals selected).
/*Choose the best S individuals, according to maximin fitness, as centers of the
clusters C */


Xsorted ← Sort(X), Cj = {Xsorted [j]};
/*Do one iteration of clustering */
for i← S + 1 to NonDom do


if Xsorted[i] is closer to Cj then


Cj ← Cj ∪Xsorted[i];
end


end


/*Obtain the new centers of the clusters */
for j ← 1 to S do


µj ←
1


|Cj |


P


X[i]∈Cj


X[i];


end


/*Select to individuals who are closest to the centers of the clusters */


for j ← 1 to S do


if X[i] | X[i] ∈ Cj is the nearest to the center µj then


Y [j]← X[i];
end


end


Returns Y ;


Algorithm 3: Maximin-Clustering Selection


With the maximin-clustering technique, if we return to Figure 1 and assume
that we want to choose two individuals, we can see that regardless of the indi-
vidual (B, C or D) that we choose as an initial center of the cluster, we always
obtain two clusters: one of them contains individual A, and the other one con-
tains individuals B, C and D. After applying this procedure, we always choose
individuals A and C. It is important to note that the above technique, which
is used to improve the distribution of the selected individuals, is only effective
in cases when all individuals are non-dominated. For example, if we analyze
Figure 4 (b), and we want to select three individuals, our technique selects in-
dividuals A, D and C, penalizing individual B. This is clearly not good because
individual B dominates individual D. In Figure 5 (c), we can see that if we use
the maximin-clustering technique, we obtain a better distribution of solutions.
In Algorithm 4, we describe the full selection operator.


Input : X (Current population), P (population size), K (number of objectives) and S


(number of individuals to choose).
Output: Y (individuals selected).
MaximinFitnessFunction(X, P, K);
if The number of nondominated individuals is greater to S then


Y ← Maximin-Clustering Selection(Xsorted, P , K, S);
else


Y ← MaximinSelection(Xsorted, P , K, S);
end


Returns Y ;


Algorithm 4: Operator I
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3.2 Operator II


The clustering technique, that we propose to address the disadvantage of Prop-
erty 1, makes the correction of the centers only once. Then, if we choose more
efficiently the initial centers, we hope to obtain a better distribution of solutions
along the Pareto front. Considering Property 4, we believe that it is a good idea
to use the maximin fitness function at the beginning of the search and use the
modified fitness function when we have many non-dominated individuals 2 be-
cause in this part of the search process, we are interested in obtaining a better
distribution between non-dominated individuals and, the modified maximin fit-
ness guarantees to penalize clustering only between non-dominated individuals.
We show the full selection operator in Algorithm 5.


Input : X (Current population), P (population size), K (number of objectives) and S
(number of individuals to choose).


Output: Y (individuals selected).
if The number of nondominated individuals is greater to S then


ModifiedMaximinFitnessFunction(X, P, K);
Y ← Maximin-Clustering Selection(Xsorted, P , K, S);


else


MaximinFitnessFunction(X, P, K);
Y ← MaximinSelection(Xsorted, P , K, S);


end


Returns Y ;


Algorithm 5: Operator II


3.3 Operator III


For the last operator, we decided to apply the modified maximin fitness func-
tion only when we use our clustering technique, because at the beginning of the
search process we need to penalize the clustering between individuals regardless
of their dominance. This is because we want to explore all the search space and,
therefore, we decided to use the original maximin fitness function at the begin-
ning of the evolutionary process. However, in the third operator, we propose to
use the modified maximin fitness function since the beginning of the search in
order to analyze the behavior of the operator when we use the modified maximin
fitness all the time. The third operator is described in Algorithm 6.


4 Maximin-Clustering Multi-Objective Evolutionary


Algorithm


In order to compare the three operators based on the maximin fitness function,
we designed a multi-objective evolutionary algorithm using a simulated binary


2 Considering a (µ + µ) selection scheme, we say that we have many non-dominated
individuasl if more than µ individuals are non-dominated.
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Input : X (Current population), P (population size), K (number of objectives) and S


(number of individuals to choose).
Output: Y (individuals selected).
ModifiedMaximinFitnessFunction(X, P, K);
if The number of nondominated individuals is greater to S then


Y ← Maximin-Clustering Selection(Xsorted, P , K, S);
else


Y ← MaximinSelection(Xsorted, P , K, S);
end


Returns Y ;


Algorithm 6: Operator III


crossover (SBX) and a polynomial mutation operator (PM) to create new indi-
viduals combined with the previously described selection operators as follows: If
the size of the population is P , then we create P new individuals. The parents
are selected as follows: We use a binary tournament. At each tournament, two
individuals are randomly selected and the one with the higher fitness value is
chosen. After that, we combine the population of parents and offspring to obtain
a population of size 2P . Then, we use one of the selection operators to choose
the P individuals that will take part of the following generation.


5 Experimental results


Aiming to validate the selection mechanism of our proposed approach with re-
spect to other types of mechanisms, we chose the following MOEAs: NSGA-II [8]
(based on Pareto dominance) and (SMS-EMOA) [5] (based on the hypervolume
performance measure [12] combined with the non-dominated sorting procedure
adopted in NSGA-II). Due to the high computational cost required to calcu-
late the hypervolume, we decided to use also an approximate calculation of the
hypervolume. For this sake, we used the source code of HyPE available in the
public domain [1] adopting 103 as our number of samples.


5.1 Experiments


For all our experiments, we used the two following sets of problems: The first con-
sists of five bi-objective test problems taken from the Zitzler-Deb-Thiele (ZDT)
test suite [13]. The second consisted of seven problems having three or more
objectives, taken from the Deb-Thiele-Laumanns-Zitzler (DTLZ) suite [9]. For
the DTLZ test problems, we used k = 5 for DTLZ1 and DTLZ6 and k = 10 for
the remaining test problems and, three, four, five, six, seven and eight objetive
functions (i.e., M = 3, 4, 5, 6, 7 and 8). For each test problem, we performed
30 independent runs. For all algorithms, we adopted the parameters suggested
by the authors of NSGA-II: crossover probability pc = 0.9, mutation probability
pm = 1/n, where n is the number of decision variables. Both for the crossover
and mutation operators, we adopted ηc = 15 and ηm = 20, respectively. For
our proposed selection operators we used min dif = 0.0001 in all cases. All ap-
proaches performed the same number of objective function evaluations. For the
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ZDT test problems, we performed 20,000 evaluations (we used a population of
100 individuals and we iterated for 200 generations). For the DTLZ test prob-
lems we performed 125,000 evaluations (we used a population of 250 individuals
and we iterated for 500 generations). In the case of SMS-EMOA, we adopted
five hours as our maximum computation time (SMS-EMOA requires more than
five hours when dealing with 4 or more objectives).


In order to assess performance, we adopted the hypervolume indicator (ϕ). 3


and the additive ǫ-indicator 4 because these two indicators are Pareto compliant
and SMS-EMOA is based in ϕ and our MC-MOEA approach is based on the
maximin fitness function, which can be considered as the binary ǫ-indicator of a
solution with respect to a reference set defined by the remaining non-dominated
solutions of the population. To compute ϕ, we used the following reference points:
For the ZDT test problems, we used yref = [1.1, 1.1]. For DTLZ1, we used yref =
[y1, . . . , yM ] | yi = 0.7. For DTLZ(2-6), we used yref = [y1, . . . , yM ] | yi = 1.1.
For DTLZ7, we used yref = [y1, . . . , yM ] yM = 6.1 and yi6=M = 1.1.


5.2 Results


In Table 1, we present the results with respect to the hypervolume indicator and
we can see that our MC-MOEAs obtained competitive results with respect to
SMS-EMOA and APP-SMS-EMOA. One important thing is that our proposed
MC-MOEAs presented a consistent behavior when we increased the number
of objecives unlike NSGA-II. To validate the results in our experiments, we
performed a statistical analysis using Wilcoxon’s rank sum on our MC-MOEAs
with respect to SMS-EMOA and APP-SMS-EMOA and, we obtained that only
in the problems DTLZ3 (with 3, 5, 6, and 7 objectives) and DTLZ6 (with 4
and 5 objectives) the null hypothesis (“medians are equal”) can be rejected at
the 5% level. If we check these problems in Table 1, we can see that our MC-
MOEAs obtained better results than SMS-EMOA and APP-SMS-EMOA. This
means that in these problems our MC-MEOAs significantly outperformed both
SMS-EMOA and APP-SMS-EMOA. Note, however, that we could not include
the table with the results of the Wilcoxon’s rank sum due to space limitations.


Table 3 shows the results with respect to the additive epsilon indicator. In
this case, we only compared our MC-MOEAs with respect to APP-SMS-EMOA
because, as noted in Table 1, NSGA-II did not have a consistent behavior when
we increased the number of objectives and SMS-EMOA required a very large
computational time, making the comparison unfair. The results show that our
MC-MOEAs outperformed APP-SMS-EMOA in most cases. For these experi-
ments, we also performed a statistical analysis and we obtained that in the test


3 The hypervolume was originally proposed by Zitzler and Thiele in [14], and it’s de-
fined as the size of the space covered by the Pareto optimal solutions. ϕ rewards
convergence towards the Pareto front as well as the maximum spread of the solu-
tions obtained. The disadvantage of this indicator is its high computational cost (the
running time for calculating ϕ is exponential in the number of objectives).


4 Given two approximate sets, A and B, the ǫ-indicator measures the smallest amount,
ǫ, that must be used to translate the set, A, so that every point in B is covered [7].
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DTLZ1 (4) 0.199714 (0.072810) 0.227113 (0.019905) 0.225110 (0.004836) 0.232710 (0.000636) 0.232832 (0.000753) 0.232626 (0.000641)


DTLZ2 (4) 0.916315 (0.050375) 1.074969 (0.000534) 1.048196 (0.005676) 0.965540 (0.011771) 0.972949 (0.009525) 0.972032 (0.008293)


DTLZ3 (4) 0.000000 (0.000000) 0.000000 (0.000000) 0.000000 (0.000000) 0.940267 (0.027559) 0.945389 (0.021329) 0.937558 (0.028903)


DTLZ4 (4) 0.919121 (0.055369) 1.076531 (0.000323) 1.049698 (0.002584) 0.983616 (0.008471) 0.990356 (0.007794) 0.991357 (0.008939)


DTLZ5 (4) 0.427341 (0.002086) 0.434905 (0.002811) 0.411700 (0.012550) 0.246597 (0.021079) 0.252224 (0.025367) 0.262790 (0.019642)


DTLZ6 (4) 0.082789 (0.025430) 0.005002 (0.003624) 0.017953 (0.015585) 0.188079 (0.018994) 0.245121 (0.013218) 0.245153 (0.013223)


DTLZ7 (4) 0.673851 (0.019135) 0.799224 (0.179936) 0.516516 (0.139265) 0.697724 (0.011902) 0.718840 (0.012895) 0.715425 (0.012490)


DTLZ1 (5) 0.000000 (0.000000) 0.000000 (0.000000) 0.160563 (0.002329) 0.158865 (0.028230) 0.163938 (0.000865) 0.164163 (0.000575)


DTLZ2 (5) 0.607031 (0.362156) 0.810554 (0.081746) 1.292202 (0.005203) 1.129832 (0.016540) 1.137390 (0.016104) 1.138317 (0.014105)


DTLZ3 (5) 0.000000 (0.000000) 0.000000 (0.000000) 0.000000 (0.000000) 1.127122 (0.038275) 1.125465 (0.030709) 1.108675 (0.048260)


DTLZ4 (5) 0.552563 (0.394310) 0.619604 (0.094095) 1.288936 (0.008553) 1.163695 (0.015934) 1.173994 (0.015513) 1.173374 (0.016415)


DTLZ5 (5) 0.418359 (0.004244) 0.253338 (0.015809) 0.419592 (0.012492) 0.190355 (0.025803) 0.193947 (0.022278) 0.201230 (0.020934)


DTLZ6 (5) 0.000000 (0.000000) 0.000000 (0.000000) 0.002493 (0.003237) 0.071664 (0.017627) 0.113595 (0.020441) 0.113595 (0.020441)


DTLZ7 (5) 0.105390 (0.008146) 0.003702 (0.005092) 0.071404 (0.047761) 0.116535 (0.007517) 0.120316 (0.008210) 0.120386 (0.008311)


DTLZ1 (6) 0.000000 (0.000000) - 0.114030 (0.001116) 0.096169 (0.041014) 0.103155 (0.032221) 0.102862 (0.033258)


DTLZ2 (6) 0.014439 (0.028545) - 1.497165 (0.012818) 1.240839 (0.031766) 1.243283 (0.032054) 1.251246 (0.031293)


DTLZ3 (6) 0.000000 (0.000000) - 0.000000 (0.000000) 1.181907 (0.234392) 1.118765 (0.380109) 1.009064 (0.459079)


DTLZ4 (6) 0.015083 (0.033135) - 1.511018 (0.005841) 1.272827 (0.036356) 1.290147 (0.035050) 1.290147 (0.035050)


DTLZ5 (6) 0.402419 (0.022651) - 0.423127 (0.016780) 0.171457 (0.020233) 0.172391 (0.022213) 0.171830 (0.018877)


DTLZ6 (6) 0.000000 (0.000000) - 0.000017 (0.000060) 0.000000 (0.000000) 0.000000 (0.000000) 0.000000 (0.000000)


DTLZ7 (6) 0.010739 (0.002179) - 0.002785 (0.004630) 0.009829 (0.001956) 0.010246 (0.002577) 0.010804 (0.002256)


DTLZ1 (7) 0.000000 (0.000000) - 0.080705 (0.001011) 0.050365 (0.035001) 0.057601 (0.031938) 0.052974 (0.031998)


DTLZ2 (7) 0.002535 (0.007792) - 1.663548 (0.020716) 1.266017 (0.083504) 1.307874 (0.073108) 1.313721 (0.050521)


DTLZ3 (7) 0.000000 (0.000000) - 0.000000 (0.000000) 0.666609 (0.658681) 0.841286 (0.642597) 0.901860 (0.597147)


DTLZ4 (7) 0.000049 (0.000228) - 1.721242 (0.010973) 1.290180 (0.092052) 1.322271 (0.085731) 1.322271 (0.085731)


DTLZ5 (7) 0.426098 (0.017081) - 0.435360 (0.024210) 0.141655 (0.023779) 0.157740 (0.025355) 0.173623 (0.029061)


DTLZ6 (7) 0.000000 (0.000000) - 0.000000 (0.000000) 0.000000 (0.000000) 0.000000 (0.000000) 0.000000 (0.000000)


DTLZ7 (7) 0.000894 (0.000231) - 0.000000 (0.000000) 0.000416 (0.000230) 0.000372 (0.000232) 0.000360 (0.000220)


DTLZ1 (8) 0.000000 (0.000000) - 0.056576 (0.000741) 0.027953 (0.021725) 0.024212 (0.024790) 0.025604 (0.022569)


DTLZ2 (8) 0.000000 (0.000000) - 1.811587 (0.035750) 1.061160 (0.251401) 1.277504 (0.107501) 1.281810 (0.111406)


DTLZ3 (8) 0.000000 (0.000000) - 0.000000 (0.000000) 0.388426 (0.636684) 0.372327 (0.571584) 0.226089 (0.460711)


DTLZ4 (8) 0.000221 (0.001189) - 1.938835 (0.014867) 0.898659 (0.382592) 1.143849 (0.270982) 1.143849 (0.270982)


DTLZ5 (8) 0.446433 (0.028464) - 0.464482 (0.023309) 0.136816 (0.037378) 0.155077 (0.028200) 0.152089 (0.030343)


DTLZ6 (8) 0.000000 (0.000000) - 0.000000 (0.000000) 0.000000 (0.000000) 0.000000 (0.000000) 0.000000 (0.000000)


DTLZ7 (8) 0.000085 (0.000026) - 0.000000 (0.000000) 0.000015 (0.000019) 0.000016 (0.000013) 0.000016 (0.000013)
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Set of problems Objectives NSGA-II SMS-EMOA App-SMS-EMOA MC-MOEAs


ZDT 2 / 1s 5s − 10s 5s − 10s / 1s


DTLZ 3 2s − 4s 4568s − 8468s 231s − 307s 3s − 9s


DTLZ 4 3s − 4s 14448s − 14650s 378s − 423s 5s − 12s


DTLZ 5 4s − 5s 15423s − 18000s 472s − 499s 9s − 14s


DTLZ 6 5s − 6s - 531s − 584s 8s − 16s


DTLZ 7 5 − 6s - 536s − 583s 9 − 18s


DTLZ 8 5s − 7s - 525s − 583 9s − 16s


Table 2. Running time required per run, s = seconds. All algorithms were implemented in the
C programming language and they were executed on PCs with the same hardware and software
platform.


rejected at the 5% level. An important advantage of our MC-MOEAs is that
computing the maximin fitness function is an inexpensive process, since their
complexities are linear with respect to the number of objectives. In Table 2, we
can see that our MC-MOEAs require much less time than SMS-EMOA and even
much less time than APP-SMS-EMOA. Thus, we argue that our MC-MOEAs
can be a good alternative for dealing with many objective optimization problems.


6 Conclusions and Future Work


In this work, we have studied the maximin fitness function and its properties with
the aim of identifying its advantages and disadvantages. Then, we proposed some
mechanisms to improve it. Our study encompassed three selection operators (one
of them was proposed in [10] and the other two were proposed here). These
operators were incorporated into a MOEA that uses simulated binary crossover
(SBX) and parameter-based mutation (PM), giving rise to the main proposal
of this paper, which is called: Maximin-Clustering Multi-Objective Evolutionary
Algorithm (MC-MOEA). We compared our proposed MC-MOEA with respect to
a Pareto-based MOEA (NSGA-II) and with respect to two hypervolume-based
MOEAs (SMS-EMOA and APP-SMS-EMOA). Our results showed that our MC-
MOEA outperformed NSGA-II in most cases and that it was competitive with
respect to SMS-EMOA and APP-SMS-EMOA with respect to the hypervolume
indicator, but at a much lower computational cost. Also, it was better than APP-
SMS-EMOA in most cases with respect to additive epsilon indicator. Thus, we
believe that our proposed selection operators can be a viable alternative for
dealing (at an affordable computational cost) with many-objective optimization
problems. As part of our future work, we plan to study the behavior of our
selection operators if we allow that the clustering technique iterates for a longer
time. We also plan to incorporate our selection operator into a different approach
(e.g., particle swarm optimization) in order to assess the impact of the search
engine in the results. Finally, we plan to compare our approach with respect
to AGE, which is based on Maximin fitness [6], and with respect to MOEA/D,
which is based on decomposition and is known to be very competitive [11].
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mc-moea(v1) app-sms-emoa


ZDT1 (2) 0.002122 (0.001941) 0.266333 (0.027070)


ZDT2 (2) 0.001022 (0.001199) 0.380433 (0.038094)


ZDT3 (2) 0.002122 (0.002642) 0.290033 (0.042676)


ZDT4 (2) 0.319067 (0.157283) 0.310033 (0.165624)


ZDT6 (2) 0.002811 (0.008674) 0.918600 (0.057853)


DTLZ1 (3) 0.000004 (0.000024) 0.003804 (0.000797)


DTLZ2 (3) 0.000000 (0.000000) 0.080467 (0.002483)


DTLZ3 (3) 0.000400 (0.000238) 0.000391 (0.000119)


DTLZ4 (3) 0.000000 (0.000000) 0.079884 (0.003326)


DTLZ5 (3) 0.000000 (0.000000) 0.047689 (0.002008)


DTLZ6 (3) 0.182560 (0.110139) 0.285391 (0.264605)


DTLZ7 (3) 0.000000 (0.000000) 0.052507 (0.003122)


DTLZ1 (4) 0.000000 (0.000000) 0.008422 (0.000779)


DTLZ2 (4) 0.000000 (0.000000) 0.102338 (0.005304)


DTLZ3 (4) 0.000271 (0.000064) 0.000307 (0.000085)


DTLZ4 (4) 0.000000 (0.000000) 0.110169 (0.004690)


DTLZ5 (4) 0.000053 (0.000065) 0.249071 (0.013026)


DTLZ6 (4) 0.170471 (0.041638) 0.135711 (0.018356)


DTLZ7 (4) 0.000027 (0.000053) 0.087022 (0.013190)


DTLZ1 (5) 0.000000 (0.000000) 0.089964 (0.008869)


DTLZ2 (5) 0.000000 (0.000000) 0.134591 (0.006910)


DTLZ3 (5) 0.000124 (0.000059) 0.000533 (0.000138)


DTLZ4 (5) 0.000000 (0.000000) 0.210578 (0.008651)


DTLZ5 (5) 0.000031 (0.000056) 0.164760 (0.007025)


DTLZ6 (5) 0.094347 (0.034605) 0.042333 (0.009989)


DTLZ7 (5) 0.000000 (0.000000) 0.099422 (0.023848)


DTLZ1 (6) 0.000000 (0.000000) 0.254507 (0.012576)


DTLZ2 (6) 0.000000 (0.000000) 0.218396 (0.017481)


DTLZ3 (6) 0.000178 (0.000173) 0.000067 (0.000096)


DTLZ4 (6) 0.000000 (0.000000) 0.354707 (0.010429)


DTLZ5 (6) 0.000040 (0.000092) 0.150840 (0.006913)


DTLZ6 (6) 0.000000 (0.000000) 0.990302 (0.005175)


DTLZ7 (6) 0.000000 (0.000000) 0.084836 (0.027049)


DTLZ1 (7) 0.000000 (0.000000) 0.552369 (0.027195)


DTLZ2 (7) 0.000000 (0.000000) 0.327400 (0.026559)


DTLZ3 (7) 0.000169 (0.000179) 0.004080 (0.003656)


DTLZ4 (7) 0.000000 (0.000000) 0.525089 (0.015005)


DTLZ5 (7) 0.000009 (0.000033) 0.135000 (0.006122)


DTLZ6 (7) 0.000000 (0.000000) 0.935022 (0.019142)


DTLZ7 (7) 0.000000 (0.000000) 0.042213 (0.019122)


DTLZ1 (8) 0.000000 (0.000000) 0.752924 (0.041588)


DTLZ2 (8) 0.000000 (0.000000) 0.480196 (0.024395)


DTLZ3 (8) 0.000800 (0.000958) 0.007791 (0.006625)


DTLZ4 (8) 0.000000 (0.000000) 0.778618 (0.018189)


DTLZ5 (8) 0.000013 (0.000040) 0.144769 (0.005696)


DTLZ6 (8) 0.000000 (0.000000) 0.831440 (0.040860)


DTLZ7 (8) 0.000000 (0.000000) 0.035400 (0.012263)


mc-moea(v2) app-sms-emoa


0.001478 (0.000885) 0.316856 (0.025420)


0.000467 (0.000452) 0.460300 (0.038666)


0.001022 (0.001229) 0.326000 (0.036908)


0.347045 (0.154540) 0.291311 (0.182824)


0.001633 (0.003862) 0.931322 (0.051950)


0.000004 (0.000024) 0.006236 (0.000774)


0.000000 (0.000000) 0.088733 (0.003025)


0.000373 (0.000116) 0.001600 (0.000391)


0.000000 (0.000000) 0.096458 (0.003444)


0.000000 (0.000000) 0.064009 (0.002219)


0.161787 (0.084851) 0.293862 (0.313067)


0.000004 (0.000024) 0.064120 (0.004345)


0.000000 (0.000000) 0.020658 (0.001978)


0.000000 (0.000000) 0.107911 (0.004461)


0.000329 (0.000136) 0.001991 (0.000666)


0.000000 (0.000000) 0.121022 (0.004768)


0.000031 (0.000056) 0.242676 (0.011803)


0.211160 (0.046797) 0.157236 (0.019663)


0.000035 (0.000059) 0.080956 (0.011480)


0.000000 (0.000000) 0.076747 (0.014855)


0.000000 (0.000000) 0.155960 (0.008473)


0.000124 (0.000059) 0.000462 (0.000082)


0.000000 (0.000000) 0.194676 (0.008037)


0.000027 (0.000063) 0.176467 (0.007686)


0.142182 (0.037791) 0.041249 (0.009875)


0.000000 (0.000000) 0.095249 (0.024001)


0.000000 (0.000000) 0.239484 (0.018511)


0.000000 (0.000000) 0.222662 (0.018911)


0.000240 (0.000240) 0.000604 (0.000315)


0.000000 (0.000000) 0.337271 (0.008929)


0.000018 (0.000045) 0.136347 (0.007308)


0.000000 (0.000000) 0.987258 (0.006683)


0.000000 (0.000000) 0.077058 (0.025112)


0.000000 (0.000000) 0.507302 (0.035147)


0.000000 (0.000000) 0.283538 (0.023866)


0.000227 (0.000176) 0.003151 (0.001397)


0.000000 (0.000000) 0.496098 (0.011994)


0.000035 (0.000059) 0.144400 (0.006197)


0.000000 (0.000000) 0.932467 (0.019074)


0.000000 (0.000000) 0.038800 (0.017292)


0.000000 (0.000000) 0.739569 (0.032785)


0.000000 (0.000000) 0.370102 (0.019897)


0.000755 (0.000825) 0.004436 (0.002156)


0.000000 (0.000000) 0.691338 (0.021952)


0.000004 (0.000024) 0.141418 (0.004752)


0.000000 (0.000000) 0.814929 (0.043509)


0.000000 (0.000000) 0.039831 (0.012084)


mc-moea(v3) app-sms-emoa


0.001500 (0.001088) 0.327322 (0.028306)


0.000556 (0.000482) 0.420622 (0.038305)


0.001467 (0.002229) 0.308822 (0.036630)


0.308167 (0.145411) 0.321345 (0.220199)


0.003433 (0.007189) 0.899189 (0.070228)


0.000000 (0.000000) 0.006609 (0.000824)


0.000000 (0.000000) 0.090404 (0.003393)


0.000365 (0.000091) 0.001276 (0.000299)


0.000000 (0.000000) 0.090964 (0.002840)


0.000000 (0.000000) 0.063933 (0.002449)


0.139133 (0.071011) 0.368169 (0.353202)


0.000009 (0.000033) 0.060058 (0.003881)


0.000004 (0.000024) 0.026813 (0.002857)


0.000000 (0.000000) 0.109924 (0.004891)


0.000325 (0.000095) 0.002360 (0.000945)


0.000000 (0.000000) 0.124916 (0.005537)


0.000027 (0.000053) 0.234964 (0.013292)


0.210382 (0.046157) 0.155605 (0.019630)


0.000018 (0.000045) 0.089262 (0.012833)


0.000000 (0.000000) 0.070053 (0.012736)


0.000000 (0.000000) 0.141640 (0.007720)


0.000124 (0.000048) 0.000458 (0.000149)


0.000000 (0.000000) 0.187938 (0.007237)


0.000027 (0.000072) 0.182858 (0.008700)


0.142182 (0.037791) 0.041249 (0.009875)


0.000004 (0.000024) 0.083547 (0.022144)


0.000000 (0.000000) 0.233298 (0.018348)


0.000000 (0.000000) 0.207076 (0.016790)


0.000151 (0.000178) 0.000973 (0.000239)


0.000000 (0.000000) 0.337271 (0.008929)


0.000000 (0.000000) 0.157738 (0.006627)


0.000000 (0.000000) 0.987258 (0.006683)


0.000000 (0.000000) 0.078431 (0.024091)


0.000000 (0.000000) 0.582867 (0.031450)


0.000000 (0.000000) 0.274733 (0.023531)


0.000253 (0.000177) 0.003169 (0.001462)


0.000000 (0.000000) 0.496098 (0.011994)


0.000013 (0.000040) 0.133316 (0.005925)


0.000000 (0.000000) 0.932467 (0.019074)


0.000000 (0.000000) 0.040049 (0.017645)


0.000000 (0.000000) 0.779698 (0.039500)


0.000000 (0.000000) 0.368333 (0.019622)


0.000711 (0.000816) 0.006440 (0.004454)


0.000000 (0.000000) 0.691338 (0.021952)


0.000018 (0.000045) 0.144693 (0.004958)


0.000000 (0.000000) 0.814929 (0.043509)


0.000000 (0.000000) 0.039831 (0.012084)
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