
A New Selection Mechanism Based on
Hypervolume and its Locality Property

Adriana Menchaca-Mendez
CINVESTAV-IPN,

Departamento de Computación
Av. IPN 2508. San Pedro Zacatenco
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Abstract—In this paper, we propose a new selection
mechanism based on the hypervolume indicator and on its
“locality property”, which is incorporated into the SMS-
EMOA, giving rise to the so-called improved SMS-EMOA
(iSMS-EMOA). Our proposed selection mechanism is validated
using standard test functions taken from the specialized
literature, having three to six objective functions. iSMS-EMOA
is compared with respect to its predecessor SMS-EMOA and
with respect to another version of SMS-EMOA that uses
the approximation of the hypervolume indicator, instead of
its exact calculation. Our preliminary results indicate that
our proposed selection mechanism outperforms the selection
mechanisms based on the hypervolume indicator that have
been proposed in recent years, since it significantly reduces
the computational time required by the algorithm without
sacrificing quality in the approximation generated.

I. I NTRODUCTION

Many optimization problems arising in the real world
involve multiple objective functions which must be satisfied
simultaneously. They are generically calledmultiobjective
optimization problems (MOPs)and usually their objectives
are in conflict with each other. In MOPs, the notion of
optimality refers to the best possible trade-offs among the
objectives. Consequently, there are several solutions (the so-
called Pareto optimal setwhose image is called thePareto
front). The use of evolutionary algorithms for solving MOPs
has become very popular and they have two main goals [1]:
(i) to find solutions that are, as close as possible, to the true
Pareto front and, (ii) to produce solutions that are spread
along the Pareto front as uniformly as possible.

There are different indicators to assess the quality of
the approximation of the Pareto-optimal set generated by
a multi-objective evolutionary algorithm (MOEA). However,
the hypervolume indicatorIH is the only unary indicator
which is “Pareto compliant” [2].IH was originally proposed
by Zitzler and Thiele in [3], and it’s defined as the size of the
space covered by the Pareto optimal solutions.IH rewards
convergence towards the Pareto front as well as the maximum
spread of the solutions obtained. Fleischer proved in [4] that,
given a finite search space and a reference point,maximizing
the hypervolume indicator is equivalent to finding the Pareto
optimal set.
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In recent years, MOEAs based on the hypervolume indi-
cator have become relatively popular. This is because the use
of Pareto-based selection has several limitations. From them,
its poor scalability regarding the number of objectives of a
MOP is, perhaps, the most remarkable. The quick increase
in the number of nondominated solutions as we increase
the number of objective functions, rapidly dilutes the effect
of the selection mechanism of a MOEA [5]. However, the
hypervolume indicator has one important disadvantage: its
high computational cost (the running time for calculating
IH is exponential in the number of objective functions).
Because of this, MOEAs based on hypervolume normally
become impractical when we want to solve MOPs with many
objectives. Recently, several proposals have been made to ad-
dress this problem. For example, some authors have proposed
to reduce the dimensionality of the MOP [6], others have
proposed improvements to the calculation of the contribution
of each individual in the population to the hypervolume
indicator [7], [8], as well as mechanisms to approximate
the contribution of each individual in the population to the
hypervolume [9], [10], [11]. In this work, we propose a new
selection mechanism based on the hypervolume indicator.
Our selection mechanism significantly reduces the compu-
tational time required by the MOEA that incorporates it,
without sacrificing the quality of the approximation that such
an algorithm generates. The proposed mechanism is based on
an interesting property of the hypervolume:locality.

The remainder of this paper is organized as follows.
Section II states the problem of our interest. The previous
related work is discussed in Section III. Section IV describes
the hypervolume indicator. Our proposal is discussed in Sec-
tion V. Our experimental validation and the results obtained
are shown in Section VI. Finally, we provide our conclusions
and some possible paths for future work in Section VII.

II. PROBLEM STATEMENT

We are interested in the generalmultiobjective optimiza-
tion problem (MOP), which is defined as follows: Find
~x∗ = [x∗

1, x
∗
2, . . . , x

∗
n]T which optimizes

~f(~x) = [f1(~x), f2(~x), . . . , fk(~x)]T (1)

such that~x∗ ∈ Ω, whereΩ ⊂ Rn defines the feasible region
of the problem. Assuming minimization problems, we have
the following definitions.



Definition 1: We say that a vector~u = [u1, . . . , un]T

dominates vector~v = [v1, . . . , vn]T , denoted by~u ≤p ~v, if
and only if fi(~u) ≤ fi(~v) for all i ∈ {1, ..., k} and there
exists ani ∈ {1, . . . , k} such thatfi(~u) < fi(~v).

Definition 2: A point ~x∗ ∈ Ω is Pareto optimal if and
only if for all ~x ∈ Ω we have that~x∗ ≤p ~x where~x∗ 6= ~x.

Definition 3: For a given MOP,~f(~x), the Pareto optimal
set is defined as:P∗ = {~x ∈ Ω|¬∃~y ∈ Ω : ~f(~y) ≤p

~f(~x)}.

Definition 4: Let ~f(~x) be a given MOP andP∗ the
Pareto optimal set. Then, the Pareto Front is defined as:
PF∗ = {~f(~x) | ~x ∈ P∗}.

III. PREVIOUS RELATED WORK

During the last 10 years, there have been several propos-
als to incorporate the hypervolume indicator into a MOEA.
Knowles and Corne [12] used a bounded archive to save
the nondominated solutions found at each generation. When
the archive was full and Pareto dominance could no longer
discard solutions then, they proposed to use the hypervolu-
men indicator as follows: calculate the contribution of each
solution to the hypervolume indicator; if the contributionof
the new solution is better than the contribution of the solution
with the worst contribution, then the new solution would
replace it; otherwise, the archive would remain the same.

Zitzler and Künzli [13] proposed a general selection
mechanism based on a performance indicator. The general
algorithm was called ”IBEA“, and it assigns the fitness of
each individual using:F (~x) =

∑

~y∈P\{~x} −e−I({~y},{~x})/k,
where P is the population,~x, ~y ∈ P and k is a scalar
fitness factor. When the worst individual is eliminated, IBEA
updates the fitness of all other individuals with:F (~x) =
F (~x)+e−I({~x′},{~x})/k, where~x′ is the eliminated individual.

Emmerich et al. [14] proposed an algorithm based on
NSGA-II and the archived strategies proposed by Knowles,
Corne and Fleisher. They called it “SMS-EMOA”. SMS-
EMOA creates an initial population and in the following, it
generates only one solution by iteration using the operators
(crossover and mutation) of the NSGA-II. After that, it
applies Pareto ranking. When the last front has more than
one solution, SMS-EMOA uses the contribution to the hyper-
volume indicator to decide which solution will be removed.
Beume et al. [15] proposed not to use the contribution to the
hypervolume indicator when in the Pareto ranking we obtain
more than one front. In that case, they proposed to use the
number of solutions which dominate to one solution (the
solution that is dominated by more solutions is removed).
The authors argue that the motivation to use the hypervolume
indicator is to improve the distribution in the true Pareto front
and then it is not necessary in fronts different of the true
Pareto front.

Igel et al. [16] used an evolution strategy with Pareto
ranking as a primary criterion selection and crowding or
hypervolume as a second selection criterion. This approach
operates in a way similar to SMS-EMOA. Mostaghim [17]
designed a MOEA based on particle swarm optimization
in which the hypervolume indicator was used in the leader
selection mechanism.

All the above approaches have an important disadvantage.
It is well known that the computation of the hypervolume
indicator has a high computational cost. When all the in-
dividuals are nondominated, all the above approaches need
to calculate |P | + 1 times the hypervolume indicator in
order to obtain the contribution of each individual in the
population and the contribution of the new individual. This
turns these approaches impractical when we want to solve
MOPs with many objective functions. In an attempt to reduce
the computational cost, Bradstreet [7] proposed a method
to calculate the contribution to the hypervolume indicator
of each solution in a fast way without calculating the
hypervolume for each solution. The main idea is as follows:
when we eliminate one solution of the population not all the
contributions of the other solutions are affected. Emmerich
and Fonseca [8] propose a dimension sweep algorithm for
computing all hypervolume contributions in three dimensions
with a time complexity equal toO(n log n). Also, they show
that for d > 3 (more than three objective functions), the
time complexity is bounded below byΩ(n log n). Bader and
Zitzler [10] proposed to assign a fitness to each individual
using an approximation of the hypervolume based on the
idea that is not necessary to know the exact contribution
to the hypervolume of each solution, since we only aim to
obtain a good ranking of the solutions in the population.
Bringmann and Friedrich [11] also proposed to use the
approximation of the hypervolume indicator as a selection
criterion in archiving algorithms.

IV. H YPERVOLUME INDICATOR

The hypervolume indicator (IH ) was originally proposed
by Zitzler and Thiele in [3], and it’s defined as the size of the
space covered by the Pareto optimal solutions. IfΛ denotes
the Lebesgue measure,IH is defined as:

IH(A, yref ) = Λ





⋃

y∈A

{y′ | y < y′ < yref}



 (2)

whereyref ∈ R
k denotes a reference point that should be

dominated by all the Pareto optimal points.

Auger et al. [18] did a study about the optimalµ-
distributions and the choice of the reference point in the
hypervolume indicator. In this work, they mentioned one
interesting property of this indicator whend = 2 (two
objective functions), calledlocality which says:given three
consecutive points on the Pareto front, moving the middle
point will only affect the hypervolume contribution that is
solely dedicated to this point, but the joint hypervolume
contribution remains fixed. Also, Auger et al. did a similar
study ford = 3 in [19] and they mentioned that the optimal
placement of a single solution is not determined by only two
neighbors, anymore, as it is the case ford = 2.

V. OUR PROPOSED APPROACH

As we saw in Section III, the main disadvantage of the
selection mechanisms based on the hypervolume indicator
that have been proposed so far is that they require calculating
the contribution to the hypervolume indicator of each solu-
tion in the population and this is a computationally expen-
sive process, particularly when dealing with many-objective



problems. Here, we propose a new selection mechanism that
exploits the locality property of the hypervolume indicator
as follows. Let’s assume that at each iteration of a MOEA,
only one solution~xnew is created. After that, we calculate
the Euclidean distance of the new solution to each solution
in the current population:

disti = ‖~xi − ~xnew‖ such that ~xi ∈ P (3)

and, we choose the nearest solution:

~xnear such thatdistnear = min disti (4)

where P is the current population andi = {1, · · · , |P |}.
These two solutions (the new solution,~xnew , and its nearest
neighbor,~xnear) compete to survive. The core idea is to
move a solution within its neighborhood with the aim of
improving its contribution to the hypervolume.

To validate our selection mechanism, we decided to
incorporate it into SMS-EMOA. In Figures 1.(a) and 1.(c),
we can see the results obtained by our selection mechanism
in the WFG1 and WFG4 test problems [20], with two ob-
jective functions and twenty-four decision variables. Forthis
experiment, we used 100 individuals and 500 generations1.
In these figures, we can see that the modified SMS-EMOA is
able to generate a good approximation of the Pareto optimal
front. However, for the WFG1 test problem, this approach
can only produce a portion of the Pareto optimal front and
in the WFG4 test problem, some solutions are dominated
and the nondominated solutions are not well-distributed. One
important thing that we must consider is the case in which the
new solution is located in an unexplored region (a region with
few solutions). In this case, it is not a good idea to remove
the new solution or its nearest neighbor. To address this
problem, we propose to choose randomly another solution;
this solution will also compete with the other two (xnew and
xnear). In Figures 1.(b) and 1.(d), we can see the results
using the random individual. In these figures, we can note
that if we use only one random solution, the distribution
of the solutions on the Pareto front significantly improves.
Therefore, if we use our proposed selection mechanism, we
can significantly improve the computational time required by
our approach, since we would need to compute the hyper-
volume only three times for each iteration (regardless of the
population size) unlike SMS-EMOA which, in the worst case
needs to compute|P | + 1 times the hypervolume. Because
of this, this proposed approach is calledimproved SMS-
EMOA (iSMS-EMOA). Algorithm 1 shows the complete
selection mechanism that we propose. We can note that we
leave open the option to use more than one random solution.
However, in all the experiments reported here, we only used
one random solution. Also, in Algorithm 1, we can observe
that our selection mechanism is only based on the hypervol-
ume indicator (Pareto dominance is not used at any time).

A. Study of our proposed selection mechanism

We studied the behavior of our selection mechanism with
respect to the random solution. Specifically, we wanted to
know: how many times is the random solution eliminated?

1Each time we generate 100 individuals, this is considered asone
generation.
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Fig. 1. Pareto fronts obtained with the modified SMS-EMOA algorithm, in the
WFG1 and WFG4 test problems with two objective functions and24 variables. In (a)
and (c), we didn’t use random solutions. In (b) and (d), we used one random solution.

Algorithm 1: New selection mechanism based on the
hypervolume indicator and its locality property.

Input : Current population (Pt), the new solution
(~xnew) and the number of random individuals
that we will use (nrandom)

1 E = ∅ (candidate solutions to be eliminated);
2 Add to E the nearest solution to~xnew ,

E = E ∪ {~xnear}, using Euclidean distance:
~xnear | distnear = min disti, where
disti = ‖~xi − ~xnew‖ | ~xi ∈ Pt;

3 Add to E, nrandom solutions chosen randomly;
4 E = E ∪ ~xnew ;
5 Calculate the contribution to the hypervolume

indicator of each solution inE and remove the
solution with the minimum contribution.
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Fig. 2. Mean of 30 independent runs corresponding to the percentageof times in which the random solution was eliminated. We considered problems DTLZ1, DTLZ2,
DTLZ6, WFG1, WFG3 and WFG4, all of them with three objective functions.

For this, we performed 30 independent runs for the test
problems: DTLZ1, DTLZ2 and DTLZ6 [21] with three-
objective functions, seven decision variables for DTLZ1 and
DTLZ6 and twelve decision variables for DTLZ2. Also, we
used WFG1, WFG3 and WFG4 [20] with three-objective
functions and twenty-four decision variables. Per run, we
calculate at each generation the number of times in which
the random solution is eliminated. Figure 2 shows that the
random solutions are eliminated at the begining of the search
process. And, as the search process progresses, the new
solution or its nearest neighbor is eliminated more often. This
is very important because it experimentally illustrates that the
“locality property” is true ford = 3. Although in [19] it is
shown that, for three dimensions, the optimal placement of a
single solution is not determined by only two neighbors, we
think that this does not mean that the “locality property”
is false, but only that the neighborhood of the involved
solutions gets larger in this case. Also, it is important to note
that although the neighborhood size increases, our selection
mechanism still works well. Therefore, we can claim the
following: while the Pareto front is being generated, we
need of the randomness for exploring the entire Pareto front.
Later on, we only need to exploit the “locality property”
to maximize the hypervolume indicator and improve the
distribution on the Pareto front.

VI. EXPERIMENTAL RESULTS

We validate the proposed selection mechanism comparing
our iSMS-EMOA with respect to the algorithms: SMS-
EMOA [15] and a version of SMS-EMOA that uses Monte
Carlo simulation to approximate the hypervolume (we called
it appSMS-EMOA). For this sake, we used the source code
of HyPE available in the public domain [10] adopting104

as our number of samples2.

2The source code of the three algorithms (appSMS-EMOA, SMS-EMOA
and iSMS-EMOA) can be provided by the first author upon request.

For our experiments, we used seven problems with 3,
4, 5 and 6 objective functions taken from the Deb-Thiele-
Laumanns-Zitzler (DTLZ) test suite [21]. We usedk = 5 for
DTLZ1, DTLZ3 and DTLZ6 andk = 10 for the remaining
test problems. Also, we used six problems with 3, 4, 5 and
6 objective functions, taken from the WFG toolkit [20], with
24 decision variables. For each test problem, we performed
30 independent runs. For all algorithms, we adopted the
parameters suggested by the authors of NSGA-II:pc = 0.9
(crossover probability),pm = 1/n (mutation probability),
wheren is the number of decision variables. Both for the
crossover and mutation operators, we adoptedηc = 15 and
ηm = 20, respectively. We performed a maximum of 50,000
fitness function evaluations (we used a population size of
100 individuals and we iterated for 500 generations). Only
in DTLZ3 we performed 100,000 evaluations (we used a
population size of 100 individuals and we iterated for 1000
generations). However,we adopted four hours as our max-
imum running timebecause we know that the computation
of the hypervolume has a very high computational cost. For
example, SMS-EMOA with exact hypervolume calculation
requires more than five hours per run when dealing with 4
or more objective functions (in fact, a single run takes about
one month when using seven objective functions).

A. Performance Indicators

We adopted onlyIH to validate our results because it
rewards both convergence towards the Pareto front as well as
the maximum spread of the solutions obtained. Also, SMS-
EMOA, appSMS-EMOA and iSMS-EMOA, have as their
aim to maximize the hypervolume and, therefore, it makes
sense to use this indicator to assess their performance. To
calculate the hypervolume indicator, we used the following
reference points:yref = [y1, · · · , yM ] such thatyi = 0.7
for DTLZ1, yref = [y1, · · · , yM ] such thatyi = 1.1 for
DTLZ(2-6), yref = [y1, · · · , yM ] such thatyM = 6.1 and
yi6=M = 1.1 for DTLZ7. In the case of the WFG test



problems, we generated the reference point using the highest
value found for each objetive function taking into account
all the outputs of the three algorithms (i.e., SMS-EMOA,
appSMS-EMOA and iSMS-EMOA).

B. Discussion of Results

First, we will review the results of the DTLZ test prob-
lems. In Table I, we can observe that our iSMS-EMOA is
better than SMS-EMOA and appSMS-EMOA because in
all cases, it obtained similar results or outperformed the
other two algorithms. For example, in DTLZ3 with 3, 4,
5 and 6 objectives, and in some problems with 6 objectives,
our iSMS-EMOA significantly outperformed both appSMS-
EMOA and SMS-EMOA. Also, we can observe that the
quality of the approximated Pareto set decreases if we
approximate the hypervolume. Although, in some cases, the
appSMS-EMOA performed more objective function evalua-
tions than SMS-EMOA and iSMS-EMOA (this algorithm did
not exceed the maximum running time of 4 hours allowed for
the other approaches), it was unable to obtain better results
than any of the other approaches. Regarding the WFG test
problems, in Table II, we can see that our iSMS-EMOA
obtained similar results to those of the SMS-EMOA and
in WFG1 and WFG4 with 5 and 6 objective functions,
our iSMS-EMOA significantly outperformed SMS-EMOA.
Again, we can see in this case, that appSMS-EMOA loses
quality in their approximations in most cases. In Table III,
we can observe the results of a statistical analysis using
Wilcoxon’s rank sum. With these results, we can corrobo-
rate that our iSMS-EMOA can indeed outperform appSMS-
EMOA and SMS-EMOA because only in the problems in
which our iSMS-EMOA obtained better results the null
hypothesis (“medians are equal”) can be rejected. Now, we
will discuss the running time required by each of the three
algorithms. Table IV shows that our iSMS-EMOA signifi-
cantly decreases the running time required by SMS-EMOA.
For example, in the DTLZ test problems with five objective
functions, SMS-EMOA consumes the maximum allowable
time (4 hours) and is unable to converge, whereas our iSMS-
EMOA requires a maximum of 55 minutes to converge in
any of the DTLZ test problems. Additionally, our proposed
approach does not consume the maximum allowable time
in any of the DTLZ test problems with 6 objectives. With
respect to the WFG test problems, we can also see that our
iSMS-EMOA requires less time than SMS-EMOA. However,
it is important to note that in this case, SMS-EMOA doesn’t
consume the maximum allowable time in the problems with
6 objectives. This indicates that the algorithm uses Pareto
ranking most of the time, since otherwise its computational
cost would had been much higher. This is interesting, because
our iSMS-EMOA always uses hypervolume to discard one
individual, but it still requires less running time than SMS-
EMOA in the WFG test problems.

With respect to appSMS-EMOA, we can say that, al-
though it requires a much lower running time than the other
approaches, its results are of poor quality, and it’s unableto
converge in several cases (see the results for DTLZ3 with
3, 4, 5 and 6 objective functions, and for DTLZ6 with 4, 5
and 6 objective functions in Table I). Also, it is important
to consider that although in some problems appSMS-EMOA

~f appSMS-EMOA SMS-EMOA iSMS-EMOA

DTLZ1 (3)
0.314943

(0.000640)
0.317025

(0.000026)
0.316981

(0.000074)

DTLZ2 (3)
0.742759

(0.001515)
0.758039

(0.000034)
0.757902

(0.000110)

DTLZ3 (3)
0.000000

(0.000000)
0.596142

(0.216365)
0.701242

(0.126774)

DTLZ4 (3)
0.744330

(0.001486)
0.758018

(0.000046)
0.757923

(0.000094)

DTLZ5 (3)
0.438004

(0.000166)
0.439373

(0.000008)
0.439352

(0.000017)

DTLZ6 (3)
0.397337

(0.032957)
0.418621

(0.013549)
0.419454

(0.016586)

DTLZ7 (3)
1.707290

(0.333059)
1.859562

(0.271075)
1.929149

(0.185694)

DTLZ1 (4)
0.229200

(0.003761)
0.234452

(0.000020)
0.234451

(0.000020)

DTLZ2 (4)
1.007769

(0.003697)
1.044589

(0.000065)
1.044208

(0.000160)

DTLZ3 (4)
0.000000

(0.000000)
0.671114

(0.314784)
0.999968

(0.120025)

DTLZ4 (4)
1.016881

(0.003487)
1.044610

(0.000099)
1.044315

(0.000106)

DTLZ5 (4)
0.412361

(0.006446)
0.437300

(0.000215)
0.437094

(0.000328)

DTLZ6 (4)
0.069490

(0.024654)
0.408659

(0.017136)
0.403198

(0.020206)

DTLZ7 (4)
0.509020

(0.217796)
0.712497

(0.138236)
0.713030

(0.187745)

DTLZ1 (5)
0.160703

(0.003344)
0.166703

(0.000020)
0.166730

(0.000010)

DTLZ2 (5)
1.239057

(0.005161)
1.294242

(0.000284)
1.295762

(0.000140)

DTLZ3 (5)
0.015480

(0.041438)
0.411990

(0.455534)
1.285288

(0.031502)

DTLZ4 (5)
1.248092

(0.005374)
1.295125

(0.000222)
1.295819

(0.000175)

DTLZ5 (5)
0.404590

(0.007489)
0.445145

(0.000692)
0.446236

(0.000570)

DTLZ6 (5)
0.004125

(0.005667)
0.221195

(0.011336)
0.350987

(0.022494)

DTLZ7 (5)
0.087509

(0.073320)
0.120929

(0.074349)
0.151319

(0.063041)

DTLZ1 (6)
0.099675

(0.027426)
0.000008

(0.000036)
0.117299

(0.000006)

DTLZ2 (6)
1.447387

(0.006637)
1.313996

(0.060301)
1.528940

(0.000250)

DTLZ3 (6)
0.020706

(0.052084)
0.000000

(0.000000)
1.028456

(0.669435)

DTLZ4 (6)
1.468604

(0.006714)
1.228692

(0.070313)
1.529425

(0.000253)

DTLZ5 (6)
0.408784

(0.010836)
0.369204

(0.027242)
0.461434

(0.000896)

DTLZ6 (6)
0.000312

(0.000839)
0.000000

(0.000000)
0.314153

(0.019712)

DTLZ7 (6)
0.012383

(0.013826)
0.005464

(0.005830)
0.025679

(0.009017)
TABLE I. RESULTS OBTAINED IN THE DTLZ TEST PROBLEMS. WE SHOW

AVERAGE VALUES OVER 30 INDEPENDENT RUNS. THE VALUES IN PARENTHESES

CORRESPOND TO THE STANDARD DEVIATIONS.

performs more objective function evaluations than our iSMS-
EMOA, it cannot outperform iSMS-EMOA.

Finally, Figure 3 shows the Pareto fronts obtained by
the three algorithms in their median with respect to the
hypervolume indicator in some of the test problems adopted.
Here, we can see again that appSMS-EMOA loses quality in
most cases, unlike our iSMS-EMOA which achieves a good
distribution even in DTLZ3 where both SMS-EMOA and
appSMS-EMOA have difficulties to generate the Pareto front.

VII. C ONCLUSIONS ANDFUTURE WORK

We have proposed a selection mechanism based on the
hypervolume which was found to outperform other selection
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Fig. 3. Pareto fronts obtained by the three algorithms in themedian (with respect to the hypervolume indicator) of theirindependent runs for the test
problems: DTLZ1, DTLZ3, DTLZ6, WFG1, WFG4 and WFG5.



~f appSMS-EMOA SMS-EMOA iSMS-EMOA

WFG1 (3)
19.907439
(1.027382)

21.083857
(0.551874)

21.191940
(0.150189)

WFG2 (3)
0.115931

(0.011099)
0.121293

(0.010681)
0.120384

(0.011041)

WFG3 (3)
0.449310

(0.004032)
0.466021

(0.001275)
0.466647

(0.000635)

WFG4 (3)
22.638354
(0.191186)

24.638858
(0.070075)

24.594651
(0.084218)

WFG5 (3)
8.072040

(0.026285)
8.449360

(0.002789)
8.449718

(0.005162)

WFG6 (3)
0.982610

(0.010233)
1.024750

(0.002973)
1.024599

(0.002291)

WFG1 (4)
73.969092
(1.719960)

86.218895
(0.469877)

85.914358
(0.532377)

WFG2 (4)
0.016697

(0.001397)
0.017826

(0.001371)
0.018185

(0.001116)

WFG3 (4)
0.184779

(0.002217)
0.196333

(0.000854)
0.196211

(0.000880)

WFG4 (4)
269.982519
(2.836349)

302.620739
(0.707563)

301.375978
(1.112941)

WFG5 (4)
18.754249
(0.209889)

20.359809
(0.019662)

20.363936
(0.024180)

WFG6 (4)
0.301178

(0.005629)
0.325112

(0.002245)
0.324303

(0.002332)

WFG1 (5)
86.060111
(1.227076)

91.287290
(1.005588)

104.028046
(0.528738)

WFG2 (5)
0.001986

(0.000169)
0.002113

(0.000177)
0.002180

(0.000183)

WFG3 (5)
0.032774

(0.000767)
0.037038

(0.000336)
0.036662

(0.000391)

WFG4 (5)
3014.723575
(42.408502)

3303.742068
(26.484787)

3469.478161
(18.564929)

WFG5 (5)
20.172967
(0.309907)

23.177534
(0.029596)

23.174481
(0.027510)

WFG6 (5)
0.154873

(0.002405)
0.169363

(0.001220)
0.169207

(0.001146)

WFG1 (6)
14.193726
(0.235245)

8.227708
(0.451872)

16.538709
(0.144086)

WFG2 (6)
0.000418

(0.000036)
0.000447

(0.000037)
0.000444

(0.000033)

WFG3 (6)
0.004292

(0.000157)
0.005211

(0.000069)
0.005176

(0.000094)

WFG4 (6)
40122.027459
(718.269874)

33496.820458
(948.442179)

46450.488116
(278.139580)

WFG5 (6)
14.877233
(0.370266)

17.972798
(0.019577)

17.970919
(0.021764)

WFG6 (6)
0.031139

(0.000644)
0.034996

(0.000433)
0.035027

(0.000475)
TABLE II. RESULTS OBTAINED IN THE WFG TEST PROBLEMS. WE SHOW

AVERAGE VALUES OVER 30 INDEPENDENT RUNS. THE VALUES IN PARENTHESES

CORRESPOND TO THE STANDARD DEVIATIONS.

mechanisms based on this same performance measure in
terms of the quality of the approximation that it generates.
The proposed approach is also significantly less computa-
tionally expensive than the one incorporated in SMS-EMOA
as indicated by our preliminary results. It is also worth
emphasizing that our proposed approach is very simple, and
is based on the sole use of the hypervolume indicator (Pareto
ranking is not adopted, as happens in SMS-EMOA). Our
proposed approach is designed in such a way that it explores
more regions of the Pareto front at the beginning of the search
and exploits the locality property of the hypervolume during
the entire search process.

As part of our future work, we intend to study other
mechanisms to identify the regions in which there are
many solutions, and then use this information to improve
the success of our approach when we choose a random
individual. We also plan to incorporate into our approach
other mechanism to identify the stage of the search at which
the use of a random solution is no longer required. We
believe that this mechanism could improve the convergence

~f
iSMS-EMOA &
appSMS-EMOA

P (H)

iSMS-EMOA &
SMS-EMOA

P (H)
DTLZ1 (3) 0.597312 (0) 0.442896 (0)
DTLZ2 (3) 0.724692 (0) 0.909853 (0)
DTLZ3 (3) 0.002973 (1) 0.279387 (0)
DTLZ4 (3) 0.074090 (0) 0.705912 (0)
DTLZ5 (3) 0.880027 (0) 0.724682 (0)
DTLZ6 (3) 0.279387 (0) 0.724703 (0)
DTLZ7 (3) 0.247205 (0) 0.949853 (0)
DTLZ1 (4) 0.959873 (0) 0.949846 (0)
DTLZ2 (4) 0.705924 (0) 0.979931 (0)
DTLZ3 (4) 0.007068 (1) 0.782000 (0)
DTLZ4 (4) 0.668882 (0) 0.696553 (0)
DTLZ5 (4) 0.450446 (0) 0.969899 (0)
DTLZ6 (4) 0.392388 (0) 0.687322 (0)
DTLZ7 (4) 0.939843 (0) 0.762752 (0)
DTLZ1 (5) 0.705867 (0) 0.420716 (0)
DTLZ2 (5) 0.268358 (0) 0.497008 (0)
DTLZ3 (5) 0.002531 (1) 0.039134 (1)
DTLZ4 (5) 0.668908 (0) 0.801383 (0)
DTLZ5 (5) 0.392388 (0) 0.899907 (0)
DTLZ6 (5) 0.151591 (0) 0.762752 (0)
DTLZ7 (5) 0.513063 (0) 0.919850 (0)
DTLZ1 (6) 0.959871 (0) 0.007630 (1)
DTLZ2 (6) 0.919850 (0) 0.406460 (0)
DTLZ3 (6) 0.016765 (1) 0.002717 (1)
DTLZ4 (6) 0.579956 (0) 0.979930 (0)
DTLZ5 (6) 0.743649 (0) 0.705924 (0)
DTLZ6 (6) 0.020603 (1) 0.002973 (1)
DTLZ7 (6) 0.151591 (0) 0.860223 (0)
WFG1 (3) 0.182448 (0) 0.919850 (0)
WFG2 (3) 0.450446 (0) 0.782000 (0)
WFG3 (3) 0.899907 (0) 0.939843 (0)
WFG4 (3) 0.247205 (0) 0.801383 (0)
WFG5 (3) 0.899907 (0) 0.840506 (0)
WFG6 (3) 0.450446 (0) 0.687322 (0)
WFG1 (4) 0.919850 (0) 0.840506 (0)
WFG2 (4) 0.899907 (0) 0.959871 (0)
WFG3 (4) 0.420829 (0) 0.724703 (0)
WFG4 (4) 0.290721 (0) 0.435492 (0)
WFG5 (4) 0.227249 (0) 0.217713 (0)
WFG6 (4) 0.959873 (0) 0.919847 (0)
WFG1 (5) 0.705924 (0) 0.880027 (0)
WFG2 (5) 0.743649 (0) 0.939838 (0)
WFG3 (5) 0.959874 (0) 0.668908 (0)
WFG4 (5) 0.579972 (0) 0.687322 (0)
WFG5 (5) 0.939843 (0) 1.000000 (0)
WFG6 (5) 0.959874 (0) 0.860223 (0)
WFG1 (6) 0.579972 (0) 0.137759 (0)
WFG2 (6) 0.919843 (0) 0.919801 (0)
WFG3 (6) 0.650690 (0) 0.959874 (0)
WFG4 (6) 0.724703 (0) 0.860223 (0)
WFG5 (6) 0.113009 (0) 0.959874 (0)
WFG6 (6) 0.919850 (0) 0.860223 (0)

TABLE III. RESULTS OF STATISTICAL ANALYSIS APPLIED TO OUR

EXPERIMENTS. P IS THE PROBABILITY OF OBSERVING THE GIVEN RESULT(THE

NULL HYPOTHESIS IS TRUE). SMALL VALUES OF P CAST DOUBT ON THE VALIDITY

OF THE NULL HYPOTHESIS. H = 0 INDICATES THAT THE NULL HYPOTHESIS

(“ MEDIANS ARE EQUAL”) CANNOT BE REJECTED AT THE5% LEVEL. H = 1
INDICATES THAT THE NULL HYPOTHESIS CAN BE REJECTED AT GHE5% LEVEL.

rate of our approach, while also decreasing the number
of hypervolume computations that it performs. Finally, it
would also be interesting to analyze the behavior of our
selection mechanism when adopting an approximate method
to compute the hypervolume, with the aim of producing high
quality approximations at a very low computational cost.
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