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Abstract—In this paper, we propose a new selection
mechanism based on the hypervolume indicator and on its
“locality property”, which is incorporated into the SMS-
EMOA, giving rise to the so-called improved SMS-EMOA
(ISMS-EMOA). Our proposed selection mechanism is validat
using standard test functions taken from the specialized
literature, having three to six objective functions. ISMSEMOA
is compared with respect to its predecessor SMS-EMOA and
with respect to another version of SMS-EMOA that uses
the approximation of the hypervolume indicator, instead of
its exact calculation. Our preliminary results indicate that
our proposed selection mechanism outperforms the selectio
mechanisms based on the hypervolume indicator that have
been proposed in recent years, since it significantly reduse
the computational time required by the algorithm without
sacrificing quality in the approximation generated.

I. INTRODUCTION

Many optimization problems arising in the real worl

involve multiple objective functions which must be satidfie

simultaneously. They are generically calledultiobjective

optimization problems (MOP<snd usually their objectives
are in conflict with each other. In MOPs, the notion o
optimality refers to the best possible trade-offs among t

objectives. Consequently, there are several solutioresgoh
called Pareto optimal setvhose image is called theareto

front). The use of evolutionary algorithms for solving MOP
has become very popular and they have two main goals [

Sﬂn interesting property of the hypervolumecality.
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In recent years, MOEAs based on the hypervolume indi-
cator have become relatively popular. This is because the us
of Pareto-based selection has several limitations. Framth
its poor scalability regarding the number of objectives of a
MORP is, perhaps, the most remarkable. The quick increase
in the number of nondominated solutions as we increase
the number of objective functions, rapidly dilutes the effe
of the selection mechanism of a MOEA [5]. However, the
hypervolume indicator has one important disadvantage: its
high computational cost (the running time for calculating
Iy is exponential in the number of objective functions).
Because of this, MOEAs based on hypervolume normally
become impractical when we want to solve MOPs with many
objectives. Recently, several proposals have been madk to a
dress this problem. For example, some authors have proposed
to reduce the dimensionality of the MOP [6], others have
proposed improvements to the calculation of the contrdouti

dof each individual in the population to the hypervolume

indicator [7], [8], as well as mechanisms to approximate
the contribution of each individual in the population to the
hypervolume [9], [10], [11]. In this work, we propose a hew

fselection mechanism based on the hypervolume indicator.
htgur selection mechanism significantly reduces the compu-

ational time required by the MOEA that incorporates it,
without sacrificing the quality of the approximation thatbu
an algorithm generates. The proposed mechanism is based on

(i) to find solutions that are, as close as possible, to the tru  The remainder of this paper is organized as follows.
Pareto front and, (ii) to produce solutions that are spreaection Il states the problem of our interest. The previous

along the Pareto front as uniformly as possible.

There are different indicators to assess the quality
the approximation of the Pareto-optimal set generated
a multi-objective evolutionary algorithm (MOEAHowever,
the hypervolume indicator/y is the only unary indicator
which is “Pareto compliant” [2]5 was originally proposed

by Zitzler and Thiele in [3], and it’s defined as the size of the I

space covered by the Pareto optimal solutiohgs.rewards

related work is discussed in Section Ill. Section IV desesib

fe hypervolume indicator. Our proposal is discussed in Sec

n V. Our experimental validation and the results obtdine
re shown in Section VI. Finally, we provide our conclusions
and some possible paths for future work in Section VII.
PROBLEM STATEMENT

We are interested in the generalltiobjective optimiza-

convergence towards the Pareto front as well as the maximuyfgn problem (MOP) which is defined as follows: Find

spread of the solutions obtained. Fleischer proved in [d,th 7« — [5* 23

given a finite search space and a reference poiakimizing

the hypervolume indicator is equivalent to finding the Raret

optimal set
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..,x5]T which optimizes

F(@) = [[1(@), f2(2), ..., fu(@)]" 1)

such thatt* € Q, whereQ2 C R™ defines the feasible region
of the problem. Assuming minimization problems, we have
the following definitions.



Definition 1: We say that a vectofi = [u1,...,u,]T All the above approaches have an important disadvantage.

dominates vectoi = [vy,...,v,]|T, denoted byi <, v, if It is well known that the computation of the hypervolume
and only if f;(@) < fi(¥) for all i € {1,...,k} and there indicator has a high computational cost. When all the in-
exists ani € {1,...,k} such thatf;(@) < fi(?). dividuals are nondominated, all the above approaches need

to calculate|P| + 1 times the hypervolume indicator in
order to obtain the contribution of each individual in the
population and the contribution of the new individual. This
Definition 3: For a given MOP/(Z), the Pareto optimal :\l/llg‘; the_tshe appro?;:hetg |n]1pra<t:_t|cal ‘I’Vhe” \{[\;e Wzir][t to d3°|Ve
; : « _ 12 P s 7= s with many objective functions. In an attempt to reduce
setis defined asp™ = {7 € Q|~3y € 0 f(y) < f(7)}, the computational cost, Bradstreet [7] proposed a method
Definition 4: Let f(f) be a given MOP andP* the to calculate the contribution to the hypervolume indicator
Pareto optimal set. Then, the Pareto Front is defined & each solution in a fast way without calculating the
PF* ={f(Z) | % e P*}. hypervolume for each solution. The main idea is as follows:
when we eliminate one solution of the population not all the
contributions of the other solutions are affected. Emnfreric
and Fonseca [8] propose a dimension sweep algorithm for
During the last 10 years, there have been several prop@®mputing all hypervolume contributions in three dimensio
als to incorporate the hypervolume indicator into a MOEAwith a time complexity equal t@(nlogn). Also, they show
Knowles and Corne [12] used a bounded archive to savkat for d > 3 (more than three objective functions), the
the nondominated solutions found at each generation. Whéme complexity is bounded below Ky(n logn). Bader and
the archive was full and Pareto dominance could no long&itzler [10] proposed to assign a fitness to each individual
discard solutions then, they proposed to use the hypervolusing an approximation of the hypervolume based on the
men indicator as follows: calculate the contribution ofteacidea that is not necessary to know the exact contribution
solution to the hypervolume indicator; if the contributioh to the hypervolume of each solution, since we only aim to
the new solution is better than the contribution of the soiut obtain a good ranking of the solutions in the population.
with the worst contribution, then the new solution wouldBringmann and Friedrich [11] also proposed to use the
replace it; otherwise, the archive would remain the same. approximation of the hypervolume indicator as a selection
ncriterion in archiving algorithms.

Definition 2: A point 7* € Q is Pareto optimal if and
only if for all ¥ € Q we have thatt* <, ¥ wherez* # 7.

IIl. PREVIOUS RELATED WORK

Zitzler and Kiinzli [13] proposed a general selectio
mechanism based on a performance indicator. The general
algorithm was called "IBEA", and it assigns the fitness of
each individual using#(#) = > ;c p\ (2 —e THTHT /K| The hypervolume indicatorl{;) was originally proposed
where P is the population,#,7 € P and k is a scalar by Zitzler and Thiele in [3], and it's defined as the size of the
fitness factor. When the worst individual is eliminated, BBE space covered by the Pareto optimal solutions\ denotes
updates the fitness of all other individuals with(Z) = the Lebesgue measurgy is defined as:
F(&)4e T TN/k wheref is the eliminated individual.

Emmerich et al. [14] proposed an algorithm based on In(Ayrer) = A [ (U 14 <Y < res} 2)
NSGA-II and the archived strategies proposed by Knowles, yeA
Corne and Fleisher. They called it “SMS-EMOA". SMS- h R denot f int that should b
EMOA creates an initial population and in the following, it" er_eyre(fj E I r(]eno esare e_renlce point that should be
generates only one solution by iteration using the opesatoqommate y all the Pareto optimal points.
(crossover and mutation) of the NSGA-II. After that, it Auger et al. [18] did a study about the optimat
applies Pareto ranking. When the last front has more thalistributions and the choice of the reference point in the
one solution, SMS-EMOA uses the contribution to the hypeirypervolume indicator. In this work, they mentioned one
volume indicator to decide which solution will be removedinteresting property of this indicator whe#i = 2 (two
Beume et al. [15] proposed not to use the contribution to thebjective functions), calletbcality which says:given three
hypervolume indicator when in the Pareto ranking we obtaiconsecutive points on the Pareto front, moving the middle
more than one front. In that case, they proposed to use tpeint will only affect the hypervolume contribution that is
number of solutions which dominate to one solution (thgolely dedicated to this point, but the joint hypervolume
solution that is dominated by more solutions is removedontribution remains fixedAlso, Auger et al. did a similar
The authors argue that the motivation to use the hypervolurseudy ford = 3 in [19] and they mentioned that the optimal
indicator is to improve the distribution in the true Paretant  placement of a single solution is not determined by only two
and then it is not necessary in fronts different of the truaeighbors, anymore, as it is the case dot 2.
Pareto front.

IV. HYPERVOLUME INDICATOR

Igel et al. [16] used an evolution strategy with Pareto V. OUR PROPOSED APPROACH

ranking as a primary criterion selection and crowding or As we saw in Section Ill, the main disadvantage of the
hypervolume as a second selection criterion. This approasklection mechanisms based on the hypervolume indicator
operates in a way similar to SMS-EMOA. Mostaghim [17]that have been proposed so far is that they require caloglati
designed a MOEA based on particle swarm optimizatiothe contribution to the hypervolume indicator of each solu-
in which the hypervolume indicator was used in the leaddion in the population and this is a computationally expen-
selection mechanism. sive process, particularly when dealing with many-objecti



problems. Here, we propose a new selection mechanism that ' : e
exploits the locality property of the hypervolume indigato '
as follows. Let's assume that at each iteration of a MOEA,
only one solutionz,.,, is created. After that, we calculate
the Euclidean distance of the new solution to each solution
in the current population:

dist; = ||#; — Znew|| such that@; € P ©) " \

and, we choose the nearest solution:

fnear such thadiStnear = min dist; (4)

where P is the current population andl = {1,--- ,|P|}. BN
These two solutions (the new solutior,.,,, and its nearest ) ”‘\
neighbor, Z,,..,) compete to survive. The core idea is to
move a solution within its neighborhood with the aim of

improving its contribution to the hypervolume.

To validate our selection mechanism, we decided to 12

incorporate it into SMS-EMOA. In Figures 1.(a) and 1.(c), e TR

we can see the results obtained by our selection mechanism (bS

in the WFG1 and WFGA4 test problems [20], with two ob-

jective functions and twenty-four decision variables. Hos b

experiment, we used 100 individuals and 500 generations " ‘

In these figures, we can see that the modified SMS-EMOA is

able to generate a good approximation of the Pareto optimal L

front. However, for the WFG1 test problem, this approach : ;

can only produce a portion of the Pareto optimal front and

in the WFG4 test problem, some solutions are dominated

and the nondominated solutions are not well-distributate O

important thing that we must consider is the case in which the .

new solution is located in an unexplored region (a regioh wit (c)

few solutions). In this case, it is not a good idea to remove “- e

the new solution or its nearest neighbor. To address this T,

problem, we propose to choose randomly another solution; * T,

this solution will also compete with the other twe,(,, and ",

ZTnear)- IN Figures 1.(b) and 1.(d), we can see the results s \\

using the random individual. In these figures, we can note " ',

that if we use only one random solution, the distribution .

of the solutions on the Pareto front significantly improves. o

Therefore, if we use our proposed selection mechanism, we R :

can significantly improve the computational time requirgd b (ds

our approach, since we would need to compute the hyper-

volume only three times for each iteration (regardless ef thrig. 1. Pareto fronts obtained with the modified SMS-EMOA algorithim the

population size) unlike SMS-EMOA which, in the worst casdVFG1 and WFC%4 test problems with two objective functions addariables. In (a)
. and (c), we didn’t use random solutions. In (b) and (d), wedusee random solution.

needs to computeP| + 1 times the hypervolume. Because

of this, this proposed approach is calledproved SMS- - - .

EMOA (iSMg-E?\/IOA). ApIFg);orithm 1 showFs) the complete Algorithm 1. New selection mechanism based on the

selection mechanism that we propose. We can note that w&YPervolume indicator and its locality property.

leave open the option to use more than one random solution. Input : Current population®;), the new solution

However, in all the experiments reported here, we only used (Znew) and the number of random individuals

one random solution. Also, in Algorithm 1, we can observe that we will use @random)

that our selection mechanism is only based on the hypervolz E = () (candidate solutions to be eliminated);

ume indicator (Pareto dominance is not used at any time). 2 Add to E the nearest solution t,..,,

E = EU{Z,cqr}, Using Euclidean distance:

Znear | distpeqr = mindist;, where

dist; = ||fl — fnew” | Z; € Py

We studied the behavior of our selection mechanism withs Add to F, n,qndom SOlutions chosen randomly;

respect to the random solution. Specifically, we wanted to4 E = E'U Zpeq;

know: how many times is the random solution eliminated?s Calculate the contribution to the hypervolume

indicator of each solution it and remove the

1Each time we generate 100 individuals, this is consideredorss solution with the minimum contribution.
generation.

A. Study of our proposed selection mechanism
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Fig. 2. Mean of 30 independent runs corresponding to the percerghgienes in which the random solution was eliminated. We @ered problems DTLZ1, DTLZ2,
DTLZ6, WFG1, WFG3 and WFG4, all of them with three objectivmdtions.

For this, we performed 30 independent runs for the test For our experiments, we used seven problems with 3,
problems: DTLZ1, DTLZ2 and DTLZ6 [21] with three- 4, 5 and 6 objective functions taken from the Deb-Thiele-
objective functions, seven decision variables for DTLZ# anLaumanns-Zitzler (DTLZ) test suite [21]. We uskd= 5 for
DTLZ6 and twelve decision variables for DTLZ2. Also, weDTLZ1, DTLZ3 and DTLZ6 andt = 10 for the remaining
used WFG1, WFG3 and WFG4 [20] with three-objectivaest problems. Also, we used six problems with 3, 4, 5 and
functions and twenty-four decision variables. Per run, wé objective functions, taken from the WFG toolkit [20], with
calculate at each generation the number of times in whic¥ decision variables. For each test problem, we performed
the random solution is eliminated. Figure 2 shows that the0 independent runs. For all algorithms, we adopted the
random solutions are eliminated at the begining of the $earparameters suggested by the authors of NSGAxll:= 0.9
process. And, as the search process progresses, the ifemssover probability)p,, = 1/n (mutation probability),
solution or its nearest neighbor is eliminated more oftdnis T wheren is the number of decision variables. Both for the
is very important because it experimentally illustratest the crossover and mutation operators, we adoptee- 15 and
“locality property” is true ford = 3. Although in [19] it is n,, = 20, respectively. We performed a maximum of 50,000
shown that, for three dimensions, the optimal placement offdaness function evaluations (we used a population size of
single solution is not determined by only two neighbors, w&00 individuals and we iterated for 500 generations). Only
think that this does not mean that the “locality property'ln DTLZ3 we performed 100,000 evaluations (we used a
is false, but only that the neighborhood of the involvegopulation size of 100 individuals and we iterated for 1000
solutions gets larger in this case. Also, it is importantéten generations). Howevewe adopted four hours as our max-
that although the neighborhood size increases, our setectimum running timebecause we know that the computation
mechanism still works well. Therefore, we can claim thef the hypervolume has a very high computational cost. For
following: while the Pareto front is being generated, weexample, SMS-EMOA with exact hypervolume calculation
need of the randomness for exploring the entire Pareto.fromequires more than five hours per run when dealing with 4
Later on, we only need to exploit the “locality property”or more objective functions (in fact, a single run takes @abou
to maximize the hypervolume indicator and improve th@ne month when using seven objective functions).
distribution on the Pareto front.

A. Performance Indicators

VI. EXPERIMENTAL RESULTS We adopted only/y to validate our results because it

We validate the proposed selection mechanism comparifgvards .both convergence toward§ the Pareto front as well as
our iSMS-EMOA with respect to the algorithms: SMS-the maximum spread of the sc_>|ut|ons obtained. Also, SMS-
EMOA [15] and a version of SMS-EMOA that uses MonteEMOA, appSMS-EMOA and iSMS-EMOA, have as their
Carlo simulation to approximate the hypervolume (we calle8im to maximize the hypervolume and, therefore, it makes
it appSMS-EMOA). For this sake, we used the source cod€nse to use this |nd|cator_ to assess their performance. To
of HyPE available in the public domain [10] adopting* calculate the hypervolume indicator, we used the following

as our number of samplés reference pointsy,..; = [y1, - ,ym] such thaty; = 0.7
for DTLZY, yref = [y1,--- ,ym] such thaty, = 1.1 for
2The source code of the three algorithms (appSMS-EMOA, sw®E ~ DTLZ(2-6), yrey = [y1,- -+ ,ym] such thatyy, = 6.1 and

and iISMS-EMOA) can be provided by the first author upon regues vizm = 1.1 for DTLZ7. In the case of the WFG test



problems, we generated the reference point using the highes f gppctE EHON I M s MOT IEPHIOE

.. . . . 0.314943 0.317025 0.316981

value found for each objetive function taking into account DTLZ1 (3) (0.000640) (0.000026) (0.000074)
all the outputs of the three algorithms (i.e., SMS-EMOA, DTLZ2 (3) 0.742759 0.758039 0.757902
appSMS-EMOA and iSMS-EMOA). ‘5000000 G89ET2—— 0.70TA7
BTLZ3 () | (0:000000) (0.216365) (0.126774)

. . 0.744330 0.758018 0.757923

B. Discussion of Results DTLZ4 @) | (5001486) (0.000046) (0.000094)
. ) ) DTLZ5 @) 0.438004 0.439373 0.439352
First, we will review the results of the DTLZ test prob- (0.000166) (0.000008) (0.000017)

lems. In Table I, we can observe that our iISMS-EMOA is  priz6 (3) 0.397337 0.418621 0.419454

better than SMS-EMOA and appSMS-EMOA because in — (2;33523(? ‘2‘2?,32;‘2) (gjgégiig)

all cases, it obtained similar results or outperformed the ® (0.333059) (0.271075) (0.185694)

i ; i 0.229200 0.234452 0.234451

other two _algo_rlthms. For example, in DTLZ3 W|th_ 3, 4, DTLZ1 (4) (0.003761) (0.000020) (0.000020)

5 and 6 objectives, and in some problems with 6 objectives, 1007769 1044589 1044208
; L DTLZ2 (4)

our iISMS-EMOA significantly outperformed both appSMS- (0.003697) (0.000065) (0.000160)

0.000000 0.671114 0.999968

EMC_)A and SMS—EMQA. Also, we can observe that_the DTLZ3 (4) (0.000000) (0.314784) (0120025)

quality of the approximated Pareto set decreases if we 1016881 1.044610 1044315
; . DTLZ4 (4)

approximate the hypervolume. Although, in some cases, the (0.003487) (0.000099) (0.000106)

H H H 0.412361 0.437300 0.437094

appSMS-EMOA performed more objective function evalua- DTLZ5 (4) (0.006446) (0.000215) (0.000328)

tions than SMS-EMOA and iISMS-EMOA (this algorithm did T 0.069490 0.408659 0.403198

not exceed the maximum running time of 4 hours allowed for (0.024654) (0.017136) (0.020206)
the other approaches), it was unable to obtain better gesult  pTLz7 @) |  o317ve0, 0130938 | (018775
than any of the other approaches. Regarding the WFG test F—— 0.160703 0.166703 0.166730
problems, in Table I, we can see that our iSMS-EMOA ® | (0003344) | (0.000020) | (0.000010)
obtained similar results to those of the SMS-EMOA and  DTL22() |  oooeren | @ooooss | (0000190
in WFG1 and WFG4 with 5 and 6 objective functions, bTiZ3 ) 0.015480 0.411990 1.285288
our iISMS-EMOA significantly outperformed SMS-EMOA. (0.041438) (0.455534) (0.031502)
Again, we can see in this case, that appSMS-EMOA loses ' DTLZ4() | ¢ooesrs) | (o002 | (0000179)
quality in their approximations in most cases. In Table IlI, DTLZ5 5) 0.404590 0.445145 0.446236
we can observe the results of a statistical analysis using (g-ggﬁg? (g-gggig? (g-gggggg)
Wilcoxon’s rank sum. With these results, we can corrobo- = DTLZ6 (5) (0.005667) (0.011336) (0.022494)
rate that our iISMS-EMOA can indeed outperform appSMS- bTLZ7 ) 0.087509 0.120929 0.151319
EMOA and SMS-EMOA because only in the problems in (0.073320) (0.074349) (0.063041)
which our iISMS-EMOA obtained better results the null DTLZ1 (6) (8j8332;2) (8;883322) 8:3%332)
hypothesis (“medians are equal”) can be rejected. Now, we DTLZ2 6) 1.447387 1.313996 1.528040
will discuss the running time required by each of the three (0.006637) (0.060301) (0.000250)
algorithms. Table IV shows that our iISMS-EMOA signifi- DTLZ3 (6) 8:8?—,%22) (8_'888888) 5;22322;
cantly decreases the running time required by SMS-EMOA.  — =~/ © 1.468604 1.228692 1.529425
For example, in the DTLZ test problems with five objective (0.006714) (0.070313) (0.000253)
functions, SMS-EMOA consumes the maximum allowable = DTLZ5 (6) (8;3‘1’3522) (8;35332‘2‘) 8:383;32)
time (4 hours) and is unable to converge, whereas our iSMS- — =~ ©) 0.000312 0.000000 0.314153
EMOA requires a maximum of 55 minutes to converge in (0.000839) (0.000000) (0.019712)
any of the DTLZ test problems. Additio_nally, our proposed DTLZ7 (6) (8;815222) (8;882‘8‘23) (8;83381%
approach does not consume the maximum allowable tim@ABLCET.  ResULTS OBTAINED IN THEDTLZ TEST PROBLEMS WE SHOW

in any Of the DTLZ test prob|ems Wlth 6 ObjeCtiveS. W|th AVERAGE VALUES OVER 30 INDEPENDENT RUNS THE VALUES IN PARENTHESES
respect to the WFG test problems, we can also see that our CORRESPOND TO THE STANDARD DEVIATIONS

iISMS-EMOA requires less time than SMS-EMOA. However,

it is important to note that in this case, SMS-EMOA doesn’t

consume the maximum allowable time in the problems witperforms more objective function evaluations than our iISMS
6 objectives. This indicates that the algorithm uses PareEMOA, it cannot outperform iSMS-EMOA.

ranking most of the time, since otherwise its computational _. . :
cost would had been much higher. This is interesting, bcezcaugI Finally, Figure 3 shows the Pareto fronts obtained by

our iISMS-EMOA always uses hypervolume to discard on e three algorithms in their median with respect to the
individual, but it still requires less running time than SMS ypervolume indicator in some of the test problems adopted.

: Here, we can see again that appSMS-EMOA loses quality in
EMOA in the WFG test problems. most cases, unlike our iISMS-EMOA which achieves a good
With respect to appSMS-EMOA, we can say that, aldistribution even in DTLZ3 where both SMS-EMOA and
though it requires a much lower running time than the othexppSMS-EMOA have difficulties to generate the Pareto front.
approaches, its results are of poor quality, and it's unable
converge in several cases (see the results for DTLZ3 with VI
3, 4, 5 and 6 objective functions, and for DTLZ6 with 4, 5 '
and 6 objective functions in Table I). Also, it is important We have proposed a selection mechanism based on the
to consider that although in some problems appSMS-EMORAypervolume which was found to outperform other selection

CONCLUSIONS AND FUTURE WORK
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f appSMS-EMOA SMS-EMOA iSMS-EMOA B iISMS-EMOA & iISMS-EMOA &
WFGL (3 19.907439 21.083857 21.191940 f appSMS-EMOA SMS-EMOA
®) (1.027382) (0.551874) (0.150189) P(H) P(H)
WFG2 (3) 0.115931 0.121293 0.120384 DTLZ1 (3) 0.597312 (0) 0.442896 (0)
(0.011099) (0.010681) (0.011041) DTLZ2 (3) 0.724692 (0) 0.909853 (0)
WFG3 (3) 0.449310 0.466021 0.466647 DTLZ3 (3) 0.002973 (1) 0.279387 (0)
(0.004032) (0.001275) (0.000635) DTLZ4 (3) 0.074090 (0) 0.705912 (0)
WFG4 3) 22.638354 24.638858 24.594651 DTLZ5 (3) 0.880027 (0) 0.724682 (0)
(0.191186) (0.070075) (0.084218) DTLZ6 (3) 0.279387 (0) 0.724703 (0)
WFG5 (3) 8.072040 8.449360 8.449718 DTLZ7 (3) 0.247205 (0) 0.949853 (0)
(0.026285) (0.002789) (0.005162) DTLZI (4) 0.959873 (0) 0.949846 (0)
WFG6 (3) 0.982610 1.024750 1.024599 DTLZ2 (4) 0.705924 (0) 0.979931 (0)
(0.010233) (0.002973) (0.002291) DTLZ3 (4) 0.007068 (1) 0.782000 (0)
WFGL (4) 73.969092 86.218895 85.914358 DTLZ4 (4) 0.668882 (0) 0.696553 (0)
(1.719960) (0.469877) (0.532377) DTLZ5 (4) 0.450446 (0) 0.969899 (0)
WFG2 (4) 0.016697 0.017826 0.018185 DTLZ6 (4) 0.392388 (0) 0.687322 (0)
(0.001397) (0.001371) (0.001116) DTLZ7 (4) 0.939843 (0) 0.762752 (0)
WEG3 (4) 0.184779 0.196333 0.196211 DTLZ1 (5) 0.705867 (0) 0.420716 (0)
(0.002217) (0.000854) (0.000880) DTLZ2 (5) 0.268358 (0) 0.497008 (0)
WEG4 (4) 269.982519 302.620739 301.375978 DTLZ3 (5) 0.002531 (1) 0.039134 (1)
(2.836349) (0.707563) (1.112941) DTLZ4 (5) 0.668908 (0) 0.801383 (0)
WFG5 (4) 18.754249 20.359809 20.363936 DTLZ5 (5) 0.392388 (0) 0.899907 (0)
(0.209889) (0.019662) (0.024180) DTLZ6 (5) 0.151591 (0) 0.762752 (0)
WFG6 (4) (8-38;%;3) (8-8525% (8-83‘2‘322) DTLZ7 (5) 0.513063 (0) 0.919850 (0)
: - : DTLZ1 (6 0.959871 (0 0.007630 (1
WFGL (5) 86.060111 91.287290 104.028046 DTiZ2 §6; 0919850 EO; 0.406460 EO;
(1.227076) (1.005588) (0.528738) BTLZ3 (6) 0.016765 (1) 0.002717 (1)
WFG2 (5) 0.001986 0.002113 0.002180 BTLZ4 (6) 0.579956 (0) 0.979930(0)
(0.000169) (0.000177) (0.000183) DTLZ5 (6) 0.743649 (0) 0.705924 (0)
0.032774 0.037038 0.036662
WFGS3 (5) DTLZ6 (6) 0.020603 (1) 0.002973 (1)
(0.000767) (0.000336) (0.000391) DTLZ7 (6) 0.151591 (0) 0.860223 (0)
3014.723575 3303.742068 3469.478161 : :
WFG4 (5) WFGI (3) 0.182448 (0) 0.919850 (0)
(42.408502) (26.484787) (18.564929) WFGZ (3) 0450446 (0) 0782000 (0)
20.172967 23.177534 23.174481 : :
WFGS5 (5) WFG3 (3) 0.899907 (0) 0.939843 (0)
(0.309907) (0.029596) (0.027510) : :
0.154873 0169353 0169907 WFG4 (3) 0.247205 (0) 0.801383 (0)
SECE e (0.002405) (0.001220) (0.001146) wggg g 8-2233% Egg 8-23322? Egg
14.193726 8.227708 16.538709 : :
WFGL1 (6) (0.235245) (0.451872) (0.144086) WFGI (4) 0.919850 (0) 0.840506 (0)
WEG2 (6 0.000418 0.000447 0.000444 VIEEPIE)) 0.899907 (0) 0.959871 (0)
(6) (0.000036) (0.000037) (0.000033) WFG3 (4) 0.420829 (0) 0.724703 (0)
0.004292 0.005211 0.005176 WFG4 (4) 0.290721 (0) 0.435492 (0)
GREE ) (0.000157) (0.000069) (0.000094) WFG5 (4) 0.227249 (0) 0.217713 (0)
40122.027459 33496.820458 46450.488116 WFG6 (4) 0.959873 (0) 0.919847 (0)
WFG4(®) | (718.260872) (948.442179) (278.139580) WFGL (5) 0.705924 (0) 0.880027 (0)
14.877233 17.972798 17.970919 WFG2 (5) 0.743649 (0) 0.939838 (0)
WECSL(6) (0.370266) (0.019577) (0.021764) WFG3 (5) 0.959874 (0) 0.668908 (0)
WEGE (6 0.031139 0.034996 0.035027 WFG4 (5) 0.579972 (0) 0.687322 (0)
®) (0.000644) (0.000433) (0.000475) WFG5 (5) 0.939843 (0) 7.000000 (0)
ABLE 1II. RESULTS OBTAINED IN THEWFG TEST PROBLEMS WE SHOW WFG6 (5) 0.959874 (0) 0.860223 (0)
AVERAGE VALUES OVER 30 INDEPENDENT RUNS THE VALUES IN PARENTHESES WFG1 (6) 0.579972 (0) 0.137759 (0)
CORRESPOND TO THE STANDARD DEVIATIONS WFG2 (6) 0.919843 (0) 0.919801 (0)
WFG3 (6) 0.650690 (0) 0.959874 (0)
WFG4 (6) 0.724703 (0) 0.860223 (0)
WFGS5 (6) 0.113009 (0) 0.959874 (0)
. . . WFG6 (6) 0.919850 (0) 0.860223 (0)
mechanisms based on this same performance measure N tagreTm. RESULTS OF STATISTICAL ANALYSIS APPLIED TO OUR

terms of the quality of the approximation that it generateSexreriMENTS P IS THE PROBABILITY OF OBSERVING THE GIVEN RESULT(THE
The proposed approach |S also Slgnlflcantly |ess CompquLL HYPOTHESIS IS TRUQ. SMALL VALUES OF P CAST DOUBT ON THE VALIDITY
. . . . OF THE NULL HYPOTHESIS H = O INDICATES THAT THE NULL HYPOTHESIS
t|0n_a”)’_ expensive than the_ O_ne mcorporated |_n SMS-EMOA (“MEDIANS ARE EQUAL") CANNOT BE REJECTED AT THE5% LEVEL. H = 1
as indicated by our preliminary results. It iSs also worth INDICATES THAT THE NULL HYPOTHESIS CAN BE REJECTED AT GHES% LEVEL.
emphasizing that our proposed approach is very simple, and
is based on the sole use of the hypervolume indicator (Pareto
ranking is not adopted, as happens in SMS-EMOA). Our e of our aporoach. while also decreasing the number
proposed approach is designed in such a way that it explorr h ervl(J)Iumpep com ’ut\g\lticl)ns that it erfo;mgs FinalllJ it
more regions of the Pareto front at the beginning of the searl' YP P P ' Y

and exploits the locality property of the hypervolume dgrin WOUId. also be interesting to ana_llyze the beh_aV|or of our
the entire search process. selection mechanism when adopting an approximate method

to compute the hypervolume, with the aim of producing high
As part of our future work, we intend to study otherquality approximations at a very low computational cost.
mechanisms to identify the regions in which there are
many solutions, and then use this information to improve
the success of our approach when we choose a random
individual. We also plan to incorporate into our approach :
other mechanism to identify the stage of the search at WhICH Evolutionary Algorithms for Solving Multi-Objective Pielms New

the use of a random solution is no longer required. We  vork: Springer, second ed., September 2007. ISBN 978-023254-
believe that this mechanism could improve the convergence 3.
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