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Abstract. In this paper, we study iSMS-EMOA, a recently proposed
approach that improves the well-known S metric selection Evolution-
ary Multi-Objective Algorithm (SMS-EMOA). These two indicator-based
multi-objective evolutionary algorithms rely on hypervolume contribu-
tions to select individuals. Here, we propose to define a probability of
using a randomly selected individual within the iSMS-EMOA’s selec-
tion scheme. In order to calibrate the value of such probability, we use
the EVOCA tuner. Our preliminary results indicate that we are able
to save up to 33% of computations of the contribution to hypervolume
with respect to the original iSMS-EMOA, without any significant qual-
ity degradation in the solutions obtained. In fact, in some cases, the
approach proposed here was even able to improve the quality of the
solutions obtained by the original iSMS-EMOA.


Keywords: Multi-objective Evolutionary Algorithms, Tuning, Hyper-
volume contribution


1 Introduction


Many optimization problems involve the simultaneous optimization of several ob-
jectives. They are known as multi-objective optimization problems (MOPs) and
in them, the notion of optimality refers to the best possible trade-offs among
the objectives. Consequently, there is no single optimal solution but a set of
solutions (the so-called Pareto optimal set whose image is called the Pareto
front). The use of Multi-Objective Evolutionary Algorithms (MOEAs) to solve
MOPs has become increasingly popular. In recent years, MOEAs based on the
hypervolume indicator (IH) have become relatively popular. This is due to two
main reasons: first, the use of Pareto-based selection has several limitations3.


⋆ The last author acknowledges support from project B330.261.
3 The number of non-dominated solutions grows exponentially as we increase the
number of objective functions, and this rapidly dilutes the selection pressure of
a MOEA [4].
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And, second, IH has interesting mathematical properties. For example, it is the
only unary indicator which is known to be “Pareto compliant” [10]. IH was
originally proposed by Zitzler and Thiele in [9], and it is defined as the size
of the space covered by the Pareto optimal solutions. IH rewards convergence
towards the Pareto front as well as the maximum spread of the solutions ob-
tained. Fleischer proved in [5] that, given a finite search space and a reference
point, maximizing the hypervolume indicator is equivalent to finding the Pareto
optimal set. However, IH has one important disadvantage: its high computa-
tional cost. The “S metric selection Evolutionary Multi-Objective Algorithm
(SMS-EMOA)” [3] is currently, the most popular MOEA based on IH and it
works as follows: it creates only one individual by iteration. After that, it ap-
plies Pareto ranking. If the last front has more than one individual, SMS-EMOA
deletes the individual with the worst contribution to IH . SMS-EMOA is imprac-
tical when we want to solve MOPs with many objectives because if all individuals
are non-dominated, it needs to compute the contribution to IH of all individuals
and we know that this task is computational expensive (the calculation of the
minimal contribution to IH is an NP-hard [1] problem). Recently, in [7] authors
proposed a selection scheme based on IH and its locality property giving rise
to an improved version of SMS-EMOA called iSMS-EMOA. With this scheme,
the new individual only competes with two other individuals of the population:
its nearest neighbor and a randomly selected individual. This scheme allows a
significant reduction in the running time. However, in [7], it was noted that the
use of the randomly selected individual is not necessary in all iterations and it
was left as future work to identify the cases in which it is required. In this paper,
we propose to define a probability of use of the randomly selected individual
which is automatically adjusted using the EVOCA tuner [8] with the two fol-
lowing aims: to maximize IH and to minimize the running time (reducing the
number of computations of the contribution to IH). This is clearly a MOP, but
with a clear order of preference: we aim to reduce the number of computations
of the contribution to IH without affecting the quality of the solutions. Thus, we
decided to solve it using the ǫ-constraint method. Let A be the approximation
of the Pareto optimal set obtained by the iSMS-EMOA algorithm and prsi be
the probability of use of the randomly selected individual. First, we calibrate
prsi, maximizing IH(A). After that, we calibrate prsi, minimizing the running
time required by the iSMS-EMOA algorithm in order to obtain A, having as a
constraint: IH(A) > maxIH − ǫ, where maxIH is the maximum hypervolume
found in the previous step and ǫ is a tolerance. We will show how this scheme
produces savings of up to 33% of computations of the contribution to IH (with
respect to the original iSMS-EMOA) without losing quality in the solutions ob-
tained. In fact, we will see how, in some cases, we can even improve the quality
of A with respect to IH when using our proposed approach.


The remainder of this paper is organized as follows: Section 2 states the
problem of our interest and provides some basic definitions. The original iSMS-
EMOA is described in Section 3. Our proposal is discussed in Section 4 and it
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is validated in Section 5. Finally, we provide our conclusions and some possible
paths for future work in Section 6.


2 Basic Definitions and Problem Statement


We are interested in the general MOP, which is defined as follows: Find x∗ =
[x∗


1, x
∗
2, . . . , x


∗
n]


T which optimizes


f (x) = [f1(x), f2(x), . . . , fk(x)]
T (1)


such that x∗ ∈ Ω, where Ω ⊂ R
n defines the feasible region of the problem.


Assuming minimization problems, we have the following definitions.


Definition 1 We say that a vector x = [x1, . . . , xn]
T dominates vector y =


[y1, . . . , yn]
T , denoted by x ≺ y, if and only if fi(x) ≤ fi(y) for all i ∈ {1, ..., k}


and there exists an i ∈ {1, . . . , k} such that fi(x) < fi(y).


Definition 2 For a given MOP, f(x), the Pareto optimal set is defined as:
P∗ = {x ∈ Ω|¬∃y ∈ Ω : y ≺ x}.


Definition 3 Let f(x) be a given MOP and P∗ the Pareto optimal set. Then,
the Pareto Front is defined as: PF∗ = {f(x) | x ∈ P∗}.


Definition 4 If Λ denotes the Lebesgue measure, the hypervolume indicator
(IH) is defined as:


IH(A,yref ) = Λ








⋃


y∈A


{y′ | y < y′ < yref}





 (2)


where yref ∈ R
k denotes a reference point that should be dominated by all the


Pareto optimal points.


Definition 5 The contribution to IH of a solution x is defined as:


CH(x,A) = IH(A,yref )− IH(A \ x,yref ) (3)


where x ∈ A. Then, the contribution of x is the space that is only covered by x.


3 iSMS-EMOA


The Improved S Metric Selection EvolutionaryMulti-Objective Algorithm (iSMS-
EMOA) [7] works as follows: First, it creates an initial population. After that,
only one individual is created at each iteration using the operators of the NSGA-
II (crossover and mutation). Let xnew be the new individual and A be the current
population. We calculate the Euclidean distance of xnew to each solution in A
and, we choose the nearest solution xnear. These two solutions (xnew and xnear)
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compete to survive. The core idea is to move a solution within its neighborhood
with the aim of improving its contribution to IH (locality property). It is impor-
tant to consider the case in which xnew is located in an unexplored region. In
this case, it is not a good idea to remove xnew or xnear. To address this prob-
lem, the authors proposed to choose (randomly) another solution, xrand, such
that xrand ∈ A and xrand 6= xnear. This is considering that the probability of
choosing a solution in a crowded region is high and the probability of choosing
a solution in an unexplored region is low. Then, xrand, xnew and xnear) will
compete to survive. See Algorithm 1.


Algorithm 1: iSMS-EMOA


Input : Multi-objective optimization problem to solve.
Output: The approximation of the Pareto optimal set (A).


1 Generate a random initial population (A);
2 while Stopping criterion is not met do


3 Select randomly two individuals from A (x1 and x2);
4 Obtain an offspring (xnew) from x1 and x2, applying the operators of


NSGA-II (crossover and mutation);
5 near ← Index of the nearest neighbor to xnew in A;
6 rand← Integer random number between 1 and |A| (such that


near 6= rand);
7 Calculate the contribution to IH of xnew , xnear and xrand;
8 if CH(xnew ,A) is better than CH(xnear,A) or CH(xrand,A) then
9 if CH(xnear,A) < CH(xrand,A) then


10 Replace xnear with xnew ;
11 else


12 Replace xrand with xnew;
13 end


14 end


15 end


16 return A;


4 Our Proposed Approach


We propose here to use a probability which enables us to decide when to incor-
porate the randomly selected individual into iSMS-EMOA. The new algorithm is
called “improved S metric selection Evolutionary Multi-Objective Algorithm II
(iSMS-EMOA II)”, see Algorithm 2. The only difference between iSMS-EMOA
and iSMS-EMOA II is that now, we flip a coin to decide if we use the randomly
selected individual at each iteration, see Algorithm 2, line 6. Setting the value
of prsi is not trivial: large values will lead to a waste of computational effort for
calculating hypervolume contribution of solutions that won’t be eliminated. On
the other side, small values of prsi can decrease the diversification ability of the
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Algorithm 2: iSMS-EMOA II


Input : MOP to be solved.
Output: The approximation of the Pareto optimal set (A).


1 Generate a random initial population (A);
2 while Stopping criterion is not met do


3 Select randomly two individuals from A (x1 and x2);
4 Obtain an offspring (xnew) from x1 and x2, applying the operators of


NSGA-II (crossover and mutation);
5 near ← Index of the nearest neighbor to xnew in A;
6 if random(0, 1) < prsi then


7 rand← Integer random number between 1 and |A| (such that
near 6= rand);


8 Calculate the contribution to IH of xnew , xnear and xrand;
9 if CH(xnew ,A) is better than CH(xnear,A) or CH(xrand,A) then


10 if CH(xnear,A) < CH(xrand,A) then
11 Replace xnear with xnew;
12 else


13 Replace xrand with xnew ;
14 end


15 end


16 else


17 Compute the contribution to IH of xnew and xnear;
18 if CH(xnew ,A) > CH(xnear,A) then
19 Replace xnear with xnew ;
20 end


21 end


22 end


23 return A;


Algorithm 3: EVOCA


Input : Definition of parameters for target algorithmM
Output: Set of best performing parameter calibrations forM


1 Generate initial population (P);
2 while Stopping criterion is not met do


3 child ← wheel-crossover(P );
4 Evaluate child using R random seeds ;
5 Replace worst calibration in P by child ;
6 mutated− child ← mutation(child) ;
7 Evaluate mutated− child using R random seeds;
8 if mutated− child is better than child then


9 Replace the second worst calibration in P by mutated− child;
10 end


11 end


12 return P ;
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algorithm, reducing its capacity to generate solutions in specific zones of Pareto
front.


For calibrating prsi, we used the EVOCA [8] tuner. This is an evolutionary
algorithm that works with a population of parameter calibrations. The popula-
tion size is computed considering the number of parameters and their domain
sizes. The key idea is to include all the values allowed for each parameter, in an
independent way, on the first population. EVOCA uses two transformation oper-
ators. First, it adopts a crossover operator (wheel-crossover) that constructs one
calibration from the whole population. The child calibration generated replaces
the worst calibration on the current population. Second, it adopts a mutation
operator which is a hill climbing first improvement procedure that takes a copy
of the child generated by the crossover operator and tries to improve it by modi-
fying one of its parameter values. In case of a numerical parameter, it will try to
randomly take a new value from the parameter interval, regarding it as a contin-
uous range. The calibration generated by applying mutation replaces the second
worst calibration on the current population, when a better individual was found.
Algorithm 3 shows the EVOCA structure. We have considered two scenarios to
calibrate prsi: first, we maximize the hypervolume of the approximation of the
Pareto optimal set obtained by iSMS-EMOA II for a given MOP. And, second,
we minimize the number of computations of the contribution to IH required by
iSMS-EMOA II to obtain the approximation of the Pareto optimal set of that
MOP, avoiding to affect the value of the hypervolume obtained before.


4.1 Scenario 1: Maximizing the hypervolume indicator


In this part, we calibrate the probability prsi, solving the following problem:


max IH(A) (4)


whereA is the approximation of the Pareto optimal set obtained by iSMS-EMOA
II for a given MOP.


Setting EVOCA for iSMS-EMOA II in scenario 1: For applying EVOCA
in this scenario, we need to define the following criteria:


– When do we consider a parameter calibration to be better than another
one? In this case, EVOCA takes into account one criterion to evaluate each
parameter calibration for iSMS-EMOA II. One calibration c′ is considered
better than another c, in the case in which the use of c′ in iSMS-EMOA II
provides a higher hypervolume than the use of c.


– A parameter precision level for the initial population: Here, the initial pre-
cision must be defined for parameter prsi. It is important to remark that
EVOCA is able to increase this precision during the calibration process us-
ing the mutation operator, which selects values from an interval. Thus, this
precision is only considered to generate the initial EVOCA’s population.


– Which is the result of the calibration? The best calibration that belongs to
the final EVOCA’s population is the one with the best hypervolume value.
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4.2 Scenario 2: Minimizing the number of calculations of the


contribution to IH


In this part, we are interested in minimizing the number of calculations of the
contribution to IH required by iSMS-EMOA II without losing too much quality
in the solutions. For this, we calibrate prsi, solving the following problem:


min(Time required to obtain A) such that IH(A) > maxIH − ǫ (5)


whereA is the approximation of the Pareto optimal set obtained by iSMS-EMOA
II for a given MOP; maxIH is the maximum hypervolume obtained when we
solve eq. (4) and ǫ is a tolerance.


Setting EVOCA for iSMS-EMOA II in scenario 2: For applying EVOCA
in this scenario, we need to define the following criteria:


– When do we consider a parameter calibration to be better than another
one? In this case, EVOCA takes into account two criteria to evaluate each
parameter calibration for iSMS-EMOA II. One calibration c′ is considered
to be better than another one c, using two objectives: when the use of c′


allows iSMS-EMOA II to achieve both, that the hypervolume value is higher
than the tolerance level ǫ and that a lower running time than when using c
is achieved.


– A parameter precision level for the initial population: Here, the initial pre-
cision must be defined for parameter prsi.


– Which is the result of the calibration? The best calibration that belongs to
the final EVOCA’s population is the one with the best hypervolume value.


We note that the tolerance value is used to define a minimum quality of the
calibrations, in terms of hypervolume respect to the quality obtained with the
iSMS-EMOA II when solving eq. 4. For our experiments, we considered a toler-
ance of 1%.


5 Experimental Results


To measure the performance of iSMS-EMOA II, we compare it with respect to
the original iSMS-EMOA4. For our experiments, we used four problems with 3, 4
and 5 objective functions taken from the Deb-Thiele-Laumanns-Zitzler (DTLZ)
test suite [2]. We used k = 5 for DTLZ1 and k = 10 for the remaining test
problems. Also, we used two problems with 3, 4 and 5 objective functions, taken
from the WFG toolkit [6], with k factor = 2 and l factor = 10. We chose
these problems because each of them has a Pareto front with distinct features;
and also, they are scalables with respect to the number of objective functions.
For each test problem, we performed 30 independent runs. For both algorithms,


4 iSMS-EMOA is compared to the original SMS-EMOA in [7], but such comparison
was omitted here due to space limitations.







8 Adriana Menchaca-Mendez et al.


we adopted the parameters suggested by the authors of NSGA-II: pc = 0.9
(crossover probability), pm = 1/n (mutation probability), where n is the number
of decision variables. Both for the crossover and mutation operators, we adopted
ηc = 15 and ηm = 20, respectively. We performed a maximum of 50,000 fitness
function evaluations (we used a population size of 100 individuals and we iterated
for 500 generations). We adopted only IH to validate our results because it
rewards both convergence towards the Pareto front as well as the maximum
spread of the solutions obtained. Also, iSMS-EMOA and iSMS-EMOA II, have
as their aim to maximize the hypervolume and, therefore, it makes sense to use
this indicator to assess their performance. To calculate IH , we used the following
reference points: yref = [y1, · · · , yM ] such that yi = 0.7 for DTLZ1, yi = 1.1 for
DTLZ2 and DTLZ5, yM = 6.1 and yi6=M = 1.1 for DTLZ7. In the case of the
WFG test problems, we generated the reference point using the highest value
found for each objective function taking into account all the outputs of both
algorithms.


5.1 Results in scenario 1:


In Table 1(a), we can observe that if the randomly generated individual is always
selected (original iSMS-EMOA), we get better results in most cases. In fact, in
most problems, EVOCA calibrates prsi with high values, e.g., it sets prsi = 1.0 for
DTLZ1 with three objective functions and DTLZ1, DTLZ2, DTLZ5 and WFG1
with four objective functions. This means that in these problems EVOCA sug-
gests to use all the time the randomly selected individual, as in the original
iSMS-EMOA, to maximize IH . For this reason, in these problems, iSMS-EMOA
II does not save computations of the contribution to IH . However, an interesting
aspect is that in some problems this randomly selected individual is not neces-
sary. In such cases, iSMS-EMOA results can be improved by selecting the ran-
domly generated individual with a low probability. For example, in DTLZ7 and
WFG4 with three objective functions, a probability prsi = 0.127 and prsi = 0.1,
were calibrated respectively, which allowed us to save up to 30% of computations
of the contribution to IH . In the case of DTLZ7, we can note that iSMS-EMOA II
significantly outperformed iSMS-EMOA, because it obtained better results, and
the null hypothesis “medians are equal” in the statistical analysis (see column
P (H)) can be rejected. In the remaining problems, the “null hypothesis” cannot
be rejected, and then, both algorithms have a similar behavior. However, it is
important to note that iSMS-EMOA II saved computations of the contribution
to IH in many problems without losing quality in their solutions.


5.2 Results in scenario 2:


In Table 1(b), we can observe that iSMS-EMOA II was able to save from 20%
to 33% of computations of the contribution to IH in all test problems and as
the number of objective functions increases, a bigger impact in the running time
can be observed (e.g., in DTLZ1 with five objective functions iSMS-EMOA-
II decreases the running time in 9.9 minutes). Regarding the quality of the
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solutions, we can note that in five test problems both algorithms have a similar
behavior because the null hypothesis “medians are equal” cannot be rejected. In
one test problem, iSMS-EMOA II outperformed the original iSMS-EMOA and
it saved 30% of computations of the contribution to IH . In twelve cases, the
original iSMS-EMOA outperformed iSMS-EMOA II. However, in this scenario
the main objective is to minimize the computations of the contribution to IH
without losing more than an epsilon (ǫ) of quality in the solutions regarding IH .


6 Conclusions and Future Work


We have proposed to define a probability of use for the randomly selected in-
dividual adopted by iSMS-EMOA, with the aim of saving calculations of the
contribution to IH . To set this probability, we used the ǫ-constraint method and
the EVOCA tuner. Our preliminary results show that savings of up to 33% of
computations of the contribution to IH can be obtained. From the point of view
of the tuner algorithm, it was able to successfully deal with two different objec-
tives in the process of selecting good performing calibrations. This indicates the
suitability of this tuner for calibrating an indicator-based multi-objective evo-
lutionary algorithm and motivates the incorporation of this approach on other
MOEAs that use indicator-based selection or decomposition schemes.
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f prsi


DTLZ1(3) 1.0


DTLZ2(3) 0.7


DTLZ5(3) 0.8


DTLZ7(3) 0.127


DTLZ1(4) 1.0


DTLZ2(4) 1.0


DTLZ5(4) 1.0


DTLZ7(4) 0.3


DTLZ1(5) 0.8


DTLZ2(5) 0.8


DTLZ5(5) 0.8


DTLZ7(5) 0.4


WFG1(3) 0.8


WFG4(3) 0.1


WFG1(4) 1.0


WFG4(4) 0.7


WFG1(5) 0.8


WFG4(5) 0.529


isms-emoa
IH


isms-emoa-ii
IH


0.316985
(0.000066)


0.316998
(0.000046)


0.757890
(0.000100)


0.757863
(0.000075)


0.439350
(0.000017)


0.439342
(0.000020)


1.908824
(0.200002)


2.019564
(0.000926)


0.234451
(0.000018)


0.234446
(0.000019)


1.044211
(0.000159)


1.044281
(0.000159)


0.437073
(0.000308)


0.437056
(0.000318)


0.678273
(0.198672)


0.797852
(0.001903)


0.166731
(0.000011)


0.166733
(0.000008)


1.295672
(0.000166)


1.295508
(0.000201)


0.446086
(0.000612)


0.445896
(0.000756)


0.158271
(0.058981)


0.187287
(0.031902)


21.205641
(0.177134)


21.174222
(0.358121)


29.346993
(0.095911)


29.328283
(0.081647)


88.573606
(0.541177)


88.502834
(0.505897)


301.253225
(1.155539)


301.415556
(1.056422)


114.187823
(0.723549)


114.290414
(0.646247)


3465.333620
(17.840209)


3466.819998
(13.297479)


isms-emoa
Eval CH Savings time


isms-emoa-ii
Eval CH Savings time


150000 -0.00% ≈ 7s
(0.00)


150000 -0.00% ≈ 7s
(0.00)


150000 -0.00% ≈ 7s
(0.00)


135022 -9.99% ≈6s
(95.82)


150000 -0.00% ≈ 8s
(0.00)


140009 -6.66% ≈7s
(96.04)


150000 -0.00% ≈ 7s
(0.00)


106353 -29.10%≈5s
(68.35)


150000 -0.00% ≈ 76s
(0.00)


150000 -0.00% ≈ 76s
(0.00)


150000 -0.00% ≈ 80s
(0.00)


150000 -0.00% ≈ 80s
(0.00)


150000 -0.00% ≈ 70s
(0.00)


150000 -0.00% ≈ 70s
(0.00)


150000 -0.00% ≈ 49s
(0.00)


114974 -23.35%≈39s
(86.30)


150000 -0.00% ≈ 1254s
(0.00)


139258 -7.16% ≈1110s
(1773.08)


150000 -0.00% ≈ 1413s
(0.00)


133891 -10.74%≈1167s
(6474.89)


150000 -0.00% ≈ 1411s
(0.00)


139122 -7.25% ≈1258s
(3351.63)


150000 -0.00% ≈ 518s
(0.00)


120001 -20.00%≈363s
(125.76)


150000 -0.00% ≈ 8s
(0.00)


140003 -6.66% ≈7s
(88.75)


150000 -0.00% ≈ 8s
(0.00)


104995 -30.00%≈6s
(74.26)


150000 -0.00% ≈ 95s
(0.00)


150000 -0.00% ≈ 95s
(0.00)


150000 -0.00% ≈ 79s
(0.00)


135003 -10.00%≈71s
(94.41)


150000 -0.00% ≈ 1411s
(0.00)


119253 -20.50%≈1268s
(7811.77)


150000 -0.00% ≈ 1305s
(0.00)


126362 -15.76%≈1164s
(431.92)


P (H)


0.450(0)


0.251(0)


0.062(0)


0.002(1)


0.314(0)


0.183(0)


0.801(0)


0.379(0)


0.378(0)


0.004(1)


0.355(0)


0.325(0)


0.773(0)


0.363(0)


0.652(0)


0.695(0)


0.970(0)


0.784(0)


(a)


f prsi


DTLZ1(3) 0.222


DTLZ2(3) 0.193


DTLZ5(3) 0.148


DTLZ7(3) 0.1


DTLZ1(4) 0.144


DTLZ2(4) 0.075


DTLZ5(4) 0.184


DTLZ7(4) 0.107


DTLZ1(5) 0.24


DTLZ2(5) 0.088


DTLZ5(5) 0.088


DTLZ7(5) 0.1


WFG1(3) 0.4


WFG4(3) 0.1


WFG1(4) 0.149


WFG4(4) 0


WFG1(5) 0.124


WFG4(5) 0.127


isms-emoa
IH


isms-emoa-ii
IH


0.316985
(0.000066)


0.296946
(0.053188)


0.757890
(0.000100)


0.757819
(0.000099)


0.439350
(0.000017)


0.439266
(0.000029)


1.908824
(0.200002)


2.019672
(0.000753)


0.234451
(0.000018)


0.229403
(0.015504)


1.044211
(0.000159)


1.043808
(0.000237)


0.437073
(0.000308)


0.436148
(0.000376)


0.678273
(0.198672)


0.797284
(0.002003)


0.166731
(0.000011)


0.166415
(0.000599)


1.295672
(0.000166)


1.294868
(0.000348)


0.446086
(0.000612)


0.441584
(0.001664)


0.158271
(0.058981)


0.188343
(0.025764)


21.205641
(0.177134)


20.718664
(0.794370)


29.346993
(0.095911)


29.332057
(0.085921)


88.573606
(0.541177)


87.677943
(1.065401)


301.253225
(1.155539)


300.667942
(1.016813)


114.187823
(0.723549)


114.272000
(0.955455)


3465.333620
(17.840209)


3457.761494
(14.631125)


isms-emoa
Eval CH Savings time


isms-emoa-ii
Eval CH Savings time


150000 -0.00% ≈ 7s
(0.00)


111095 -25.94%≈6s
(85.53)


150000 -0.00% ≈ 7s
(0.00)


109632 -26.91%≈6s
(99.38)


150000 -0.00% ≈ 8s
(0.00)


107403 -28.40%≈5s
(96.41)


150000 -0.00% ≈ 7s
(0.00)


104981 -30.01%≈5s
(49.98)


150000 -0.00% ≈ 76s
(0.00)


107183 -28.54%≈37s
(97.41)


150000 -0.00% ≈ 80s
(0.00)


103732 -30.85%≈51s
(53.76)


150000 -0.00% ≈ 70s
(0.00)


109197 -27.20%≈51s
(79.72)


150000 -0.00% ≈ 49s
(0.00)


105345 -29.77%≈35s
(75.00)


150000 -0.00% ≈ 1254s
(0.00)


112014 -25.32%≈657s
(110.94)


150000 -0.00% ≈ 1413s
(0.00)


104408 -30.39%≈947s
(66.34)


150000 -0.00% ≈ 1411s
(0.00)


104400 -30.40%≈941s
(55.24)


150000 -0.00% ≈ 518s
(0.00)


104995 -30.00%≈324s
(84.41)


150000 -0.00% ≈ 8s
(0.00)


120003 -20.00%≈7s
(123.57)


150000 -0.00% ≈ 8s
(0.00)


109207 -27.20%≈6s
(79.77)


150000 -0.00% ≈ 95s
(0.00)


107450 -28.37%≈73s
(66.60)


150000 -0.00% ≈ 79s
(0.00)


99999 -33.33%≈48s
(0.00)


150000 -0.00% ≈ 1411s
(0.00)


106165 -29.22%≈935s
(156.71)


150000 -0.00% ≈ 1305s
(0.00)


106336 -29.11%≈898s
(87.78)


P (H)


0.000(1)


0.011(1)


0.000(1)


0.000(1)


0.000(1)


0.000(1)


0.000(1)


0.830(0)


0.000(1)


0.000(1)


0.000(1)


0.059(0)


0.005(1)


0.684(0)


0.000(1)


0.013(1)


0.290(0)


0.185(0)


(b)


Table 1. We show average values over 30 independent runs. Values in parentheses correspond to
the standard deviations. P (H) shows the results of statistical analysis applied to our experiments
using Wilcoxons rank sum considering IH . P is the probability of observing the given result (the
null hypothesis is true). Small values of P cast doubt on the validity of the null hypothesis. H = 1
indicates that the null hypothesis can be rejected at the 5% level. Both iSMS-EMOA and iSMS-
EMOA II were compiled using the GNU C compiler and they were executed on a computer with
a 2.66GHz processor and 4GB in RAM. (a) shows the results for scenario 1 and in (b) shows the
results for scenario 2






