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Abstract—In this paper, we propose a new selection scheme
for Multi-Objective Evolutionary Algorithms (MOEAs) based
on the ∆p indicator. Our new selection scheme is incorporated
into a MOEA giving rise to the “∆p-MOEA.” Perhaps, one of
the most important disadvantages of MOEAs based on ∆p is
the definition of the reference set. In this work, we propose
to create a reference set at each generation using ε-dominance
and the set of nondominated solutions found so far. Our new
selection scheme uses two different techniques to select solutions
according to the modified generational distance indicator or the
modified inverted generational distance indicator. Our proposed
∆p-MOEA is validated using standard test functions taken from
the specialized literature, having three to six objective functions
and it is compared with respect to two well-known MOEAs:
MOEA/D using Penalty Boundary Intersection (PBI), which is
based on decomposition, and SMS-EMOA-HYPE (a version of
SMS-EMOA that uses a fitness assignment scheme based on
the use of an approximation of the hypervolume indicator).
Our preliminary results indicate that our ∆p-MOEA is a good
alternative to solve MOPs with low and high dimensionality (in
objective function space) since it outperforms MOEAs such as
MOEA/D and SMS-EMOA-HYPE in several problems and its
computational cost is reasonably low (it is slower than MOEA/D
but is faster than SMS-EMOA-HYPE).

I. INTRODUCTION

In a wide range of applications, conflicting objectives
arise. In such cases, we are interested not in a single
solution but rather on the best possible trade-offs among
the objectives. For this purpose, many MOEAs have been
proposed that are capable of solving these problems, and such
MOEAs work very well when dealing with two and three
objectives. However, as the number of objectives increases,
the quality of the solutions given by traditional MOEAs (i.e.,
based on Pareto ranking) tends to deteriorate [1].

Recently, there has been an increasing interest for the use
of different selection schemes, namely the use of indicators1

to determine the quality of a given solution. Such indicators
are well-suited for the problem at hand, since they are able
to assign the quality with a single real number, even with an
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1An m-ary quality indicator I is a function I : Ωm → R, which

assigns each vector (A1,A2, · · · ,Am) of m approximation sets a real
value I(A1, · · · ,Am).

increasing number of objectives. This feature makes them
attractive to attack problems with many objectives, in which
the use of Pareto dominance fails.

Here, we present a new evolutionary algorithm based
on the ∆p indicator and we compare it to some state-of-
the-art algorithms on the Walking-Fish-Group (WFG) test
problems [2]. The remainder of this paper is organized as
follows: Section II, presents the necessary background on
Multi-Objective Optimization Problems (MOPs) and the ∆p

indicator. In Section III, we discuss the key elements that
need to be considered for the selection mechanism. Next, in
Section IV, we present our proposed algorithm ∆p-MOEA.
Section V, contains our comparison with respect to state-
of-the-art algorithms using the hypervolume indicator [3]
and the ∆p indicator [4]. Finally, Section VI contains our
conclusions and some possible paths for future work.

II. BACKGROUND

A. Multi-Objective Optimization Problems (MOPs)

We are interested in the general multi-objective opti-
mization problem, which is defined as follows: Find ~x∗ =
[x∗1, x

∗
2, . . . , x

∗
n]T which optimizes
~f(~x) = [f1(~x), f2(~x), . . . , fk(~x)]T (1)

such that ~x∗ ∈ Ω, where Ω ⊂ Rn defines the feasible region
of the problem. Assuming minimization problems, we have
the following definitions.

Definition 1: We say that a vector ~u = [u1, . . . , un]T

dominates vector ~v = [v1, . . . , vn]T , denoted by ~u ≤p ~v, if
and only if fi(~u) ≤ fi(~v) for all i ∈ {1, ..., k} and there
exists an i ∈ {1, . . . , k} such that fi(~u) < fi(~v).

Definition 2: A point ~x∗ ∈ Ω is Pareto optimal if there
does not exist ~x ∈ Ω such that ~x ≤p ~x

∗.

Definition 3: A point ~x ∈ Ω is weakly Pareto optimal if
there does not exist another point ~y ∈ Ω such that fi(~y) <
fi(~x) for all i ∈ {1, ..., k}.

Definition 4: For a given MOP, ~f(~x), the Pareto optimal
set is defined as: P∗ = {~x ∈ Ω|¬∃~y ∈ Ω : ~f(~y) ≤p

~f(~x)}.

Definition 5: Let ~f(~x) be a given MOP and P∗ the
Pareto optimal set. Then, the Pareto Front is defined as:
PF∗ = {~f(~x) | ~x ∈ P∗}.



B. ∆p Indicator

The ∆p indicator was proposed in [4]. The authors
based this indicator on slight modifications of the well-
known IGD [5] and IIGD [6] indicators. Further, the authors
used the indicator to assess performance of state-of-the-art
algorithms showing its capability to evaluate the quality of
the solutions produced by a MOEA. ∆p can be seen as
an “averaged Hausdorff distance” between the image of A,
where A is an approximation of the Pareto optimal set, and
the true Pareto front. Next, we present the formal definition of
this indicator. Given a candidate set A = {a1, . . . , aj} and
a discretization of the Pareto front F (Ps) = {y1, . . . , yz},
then:

IGDp
(A, F (Ps)) :=

(
1

j

j∑
i=1

dpi

)1/p

(2)

where di denotes the minimal Euclidean Distance from ai ∈
A to F (Ps). IGDp

(A, F (Ps)) is the averaged semi-distance
from the image of A to the discretization of the Pareto front
and

IIGDp
(A, F (Ps)) :=

(
1

z

z∑
i=1

d̃pi

)1/p

(3)

where d̃i denotes the minimal Euclidean Distance from yi ∈
F (Ps) to A. IIGDp

(A, F (Ps)) is the averaged semi-distance
of the yi’s to the image of A. Finally, we define ∆p as:

∆p := max(IGDp
(A, F (Ps)), IIGDp

(A, F (Ps))) (4)

As we know, to compute IGD and IIGD, it is necesary
to know the Pareto optimal front. Thus, MOEAs based on
∆p need to define a reference set which must contain well-
distributed solutions. If we are not capable of producing
a good reference set, it is possible to lose diversity in the
population which might lead to an incomplete Pareto front,
or a poor distribution of the solutions. This can be seen as
the major drawback in MOEAs based on ∆p.

C. Related Work

Now, we briefly review the MOEAs that have adopted
∆p. In [7], an algorithm based on GDE3 was proposed that
uses a selection scheme based on ∆p. In this case, a pref-
erence relation is introduced by: computing the contribution
to IGD, computing the distance to the closest element in
the approximation of the Pareto front and to IIGD assigning
the distance from a reference point to a solution if it is the
closest or assigning −1 if the solution is not the closest
to any point in the reference. If the same individual is the
closest for several reference points, then it takes the p-norm
of the distances. This is done for each individual and then
the algorithm selects the best individuals according to these
contributions. In this case, the algorithm gives a preference
to the IIGD contributions over IGD.

A different approach to use ∆p can be found in [8] where
the authors proposed an archive-based plug-in method that
builds an evenly spaced approximation, using the averaged
Hausdorff measure between the archive and a reference front.
In this case, the approach is used to solve problems having

three objectives and the reference font is constructed from a
triangulated approximation of the Pareto front obtained from
a previous experiment (offline), although a construction from
the best known solutions (online) can be used, too. In this
case any MOEA can be adopted and the archive will keep
the solutions that are better according to the ∆p indicator.
In [9], the authors proposed to use an archive similar to the
one adopted with SMS-EMOA. In this case, the Part and
Selection Algorithm (PSA) is used to construct the reference
front and both the offline and the online versions are adopted.

In further work, a different kind of multi-objective opti-
mizer was proposed [10]. In this case, the aim was to steer the
search towards an aspiration set (the reference set is given by
the aspiration set). In this work, the selection is performed
by the ∆p indicator and, in order to do it, the algorithm
generates one offspring at a time. Then, the contribution
to the ∆p indicator is computed in a similar way as done
in SMS-EMOA and then, the individual with the minimum
contribution to the indicator is deleted. A similar approach
is used in [11]. However, in this case, the algorithm is able
to generate its own reference set by using a family of curves
that can be either convex, linear or concave.

Note that except for the approaches reported in [7],
[8], all the other MOEAs based on ∆p only generate one
offspring at a time. In such approaches, if one would like
to generate more offspring (for instance to benefit from
different search engines), then selection would become com-
putationally expensive. Regarding [8], the approach is not
specifically designed around ∆p, and the search mechanism
is not affected by the indicator, which might leave regions of
the search space that are good for ∆p without being correctly
explored. In this paper, we generalize the selection mecha-
nism used in the previously indicated works and simplify the
one used in [7].

III. A NEW SELECTION MECHANISM
BASED ON THE ∆p INDICATOR

As we mentioned before, the definition of the reference
set is one of the most important aspects to consider when
we intend to use the ∆p indicator as a selection mechanism.
In this work, we propose to build the reference set at each
generation using the set of nondominated solutions found so
far, combined with the definition of ε-dominance. We know
that the ∆p indicator is based on IGD and IIGD. However,
these indicators have some disadvantages when they are used
to select individuals, e.g., if we use IGD, we know that this
indicator only measures convergence and, therefore, its use
can cause a quick loss of diversity. If we use IIGD, it is
possible that we cannot assign fitness to some individuals
in the population. For this reason, we propose to use two
different selection mechanisms which address these possible
disadvantages. Our selection mechanism based on the ∆p

indicator works as follows: First, we define the reference
set. After that, we calculate the ∆p indicator and we decide
if we select using a selection mechanism based on IGD or
if we select using a selection mechanism based on IIGD.
Algorithm 1 shows a general description of our proposed
selection mechanism, called “∆p-selection”.



Algorithm 1: ∆p-Selection
Input : P (population), N (number of individuals to

choose N < ‖P‖).
Output: S (selected individuals).

1 Obtain the set of nondominated solutions from P and
call it A;

2 Generate the reference set RS using A and
ε-dominance as we explain in Section III-A;

3 Calculate IGD(P) and IIGD(P) using RS;
4 if IGD(P) > IIGD(P) then
5 Select the N solutions using IGD as we explain in

Section III-B and put the selected individuals in S;
6 else
7 Select the N solutions using IIGD as we explain

in Section III-C and put the selected individuals in
S;

8 end
9 return S;
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Figure 1. ε-dominance. The area (ABCDA) is ε-dominated by ~x. Using
Pareto dominance; ~x dominates any solution in the area EFCGE.

A. Reference Set

We define a reference set from the nondominated solu-
tions and adopting ε-dominance as described next. In order
to determine the ε-dominance between two solutions, it is
necessary to calculate an identification array ~bi for each
solution ~xi. Each component of ~bi is defined as follows:

bi,j = b(fj(~xi)− fmin
j )/εjc (5)

where fmin
j is the minimum value of the j-th objective and

εj is a tolerance in the j-th objective. The identification
arrays divide the whole objective space into hypercubes, each
having εj size in the j-th objective. Figure 1 illustrates the
concept of ε-dominance. It is important to note that all points
in the same hypercube have the same identification array.

Our proposal is to define an ε vector, ~ε = [ε1, · · · , εk],

such that each nondominated solution is placed in a different
hypercube. Then, the reference set will consist of the points
at the bottom left corners of each hypercube which contains
a nondominated solution. If more than one nondominated
solution is placed in the same hypercube, the size of the
reference set will be smaller than the size of the set of
nondominated solutions. Let A = {~x1, · · · , ~xn} be the set of
nondominated solutions and let ~ε = [ε1, · · · , εk] be a vector
of the allowable tolerance in each objective function. We thus
propose to build a reference set, RS = {~r1, · · · , ~rm}, from
the identification arrays ~b, as follows: First, we normalize the
nondominated solutions. After that, we calculate the identi-
fication arrays for each nondominated solution, and finally,
we obtain the bottom left corners of each hypercube that has
a nondominated solution using the following equation:

ri,j = εj ∗ bij . (6)

It is important to check weak dominance between solutions in
the reference set: If two points are equal in k−1 components,
where k is the number of objective functions, then we only
select the individual which is closest to the origin. Figure 2
shows one example. An important question that we must ask
ourselves is how we can define ~ε and this task is not easy.
This is, indeed, an important disadvantage of MOEAs based
on ε-dominance. Recently, a new MOEA based on IGD and
ε-dominance was proposed in [12]. An interesting aspect of
this work is that the authors proposed a method to set ε at
each generation. Here, we propose to set ε in the same way
as in this previous work, and then, we do the following: First,
we divide each objective function in two equal parts:

εj = (fmax
j − fmin

j )/2 (7)

where fmax
j and fmin

j are the maximun and the minimum
values for the objective function j, considering only the
nondominated solutions. Since we normalize according to
the nondominated solutions (in this case εj = 0.5), then, we
proceed to build the reference set as we explained above.
If the size of the reference set is less than the size of the
nondominated set (|RF| < |A|), we divide each objective
function in three equal parts:

εj = (fmax
j − fmin

j )/3 (8)

We repeat this process (increasing the number of hypercubes
in which the search space is divided) aiming that the ref-
erence set contains the same number of elements as the
nondominated set: |RF| = |A|. However, if we increase the
number of hypercubes three consecutive times and we can
not increase the size of the reference set, we stopped. We
adopted three consecutive times as our second stop condition
in an arbitrary way.

B. Selection using IGD

We use the selection mechanism proposed in [13]. This
is due to the following: If we select optimizing IGD, we
can lose diversity in the population and it is possible that the
MOEA cannot generate the complete Pareto front, or even, it
is possible that the MOEA cannot find the true Pareto front.
The selection mechanism proposed in [13] works as follows:
Let RS be the reference set, P be the current population and
N be the number of solutions that we want to select. Then,
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Figure 2. Let A = [~x1, · · · , ~x10] be a set of nondominated solutions and
~ε = [0.1, 0.1]. Then, the reference set, RS, is composed by ~r1 = [0, 0.9],
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reference set is less than the size of A because in two hypercubes there are
two nondominated solutions and the reference point in gray is not selected
because is equal to ~r5 in k − 1 components and ~r5 is closer to the origin.

we calculate the distance di from each solution in P to its
nearest neighbor in RS . Also, it is necessary to save its
neighboring reference point. After that, we sort P according
to di and create the set S = ∅. Finally, for each ~xi ∈ P ,
we check if its nearest neighbor in RS is the same to other
solution in S. If not and |S| < N , we include ~xi in S. If
all solutions in P are considered and |S| < N , we repeat
the process but now we will allow that only one solution
in S has the same neighbor that the solution that we want
to select. We have to iterate this process until we obtain N
solutions. Figure 3 shows an example of this procedure.

C. Selection using IIGD

When we select individuals using IIGD, we must con-
sider that we cannot assign fitness to each solution in the
population in a direct way (as in IGD) because we need
to calculate the minimum distance from each point in the
reference set to its nearest neighbor in the population. For
this reason, we propose the following selection mechanism
based on IIGD: LetRS be the reference set, P be the current
population and N the number of solutions that we want to
select. First, we create the set S = ∅ and obtain the nearest
neighbor from each reference point to the population. If one
solution in the population is the nearest neighbor of two or
more reference points, then it is only associated to its nearest
reference point. Then, it is necessary to find the nearest
neighbor of the reference points which don’t have an asso-
ciated solution, i.e., all reference points must have assigned
a different solution from the population. If |S|+ |RS| ≤ N ,
then we select all solutions associated with the reference
points. Otherwise, we choose the solutions which are closer

to its reference point. If after this process, we have not
selected all the N solutions, then, we repeat the process but
this time, we do not consider the solutions already selected.
Figure 4 shows an example of this procedure.

IV. ∆p-MOEA: A NEW MOEA BASED ON THE ∆p

INDICATOR

∆p-MOEA is a MOEA that uses the operators of NSGA-
II [14] (crossover and mutation) to create new individuals
and it works as follows: First, it creates an initial population
of size P . After that, it creates P new individuals and it
combines the population of parents and offspring (we obtain
a population of 2P individuals), and finally, it uses the
selection mechanism proposed in Section III to select the
P individuals that will take part of the next generation. It
repeats this process during a pre-defined number of genera-
tions.

V. EXPERIMENTAL RESULTS

We validated our ∆p-MOEA comparing it with respect
to MOEA/D using Penalty Boundary Intersection (PBI)2 and
with respect to a version of SMS-EMOA that uses a fitness
assignment scheme based on the use of an approximation
of the hypervolume indicator. We called this version SMS-
EMOA-HYPE3. In the case of SMS-EMOA-HYPE, we used
the source code of HyPE available in the public domain [15]
adopting 104 as our number of samples to assign fitness.
In the case of MOEA/D, we generated the convex weights
using the technique proposed in [16] and then, we applied
clustering (k-means) to obtain a specific number of weights 4.

For our experiments, we used seven problems taken from
the WFG toolkit [2], with k factor = 2 and l factor =
10. For each test problem, we performed 30 independent
runs. For all three algorithms, we adopted the parameters
suggested by the authors of NSGA-II: pc = 0.9 (crossover
probability), pm = 1/n (mutation probability), where n is
the number of decision variables. We also used ηc = 15
and ηm = 20.5 We performed a maximum of 30,000 fitness
function evaluations (in this case, we used a population size
of 100 individuals and we iterated for 300 generations).

A. Performance Indicators

We used the hypervolume indicator (IH ) to compare
performance because it is “Pareto compliant” and it rewards
both convergence towards the Pareto front as well as the

2We made the experiments using both versions: (i) MOEA/D using
Penalty Boundary Intersection and (ii) MOEA/D using the Tchebycheff
function. However, the first version obtained better results than the second
version. For this reason, we decided to include only the comparison with
respect to the first version.

3We designed SMS-EMOA-HYPE because our aim was to validate the
effect of our selection mechanism. Therefore, we required that all the
MOEAs being compared, created the individuals in the same way in order
to allow for a fair comparison.

4The source code of the three algorithms (MOEA/D, SMS-EMOA-HYPE
and ∆p-MOEA) can be provided by the first author upon request. For
MOEA/D, we used the source code available in the MOEA/D webpage.

5Our aim was to compare the selection mechanism used by each MOEA.
Therefore, we wanted to know the behavior of each MOEA given the same
configuration of parameters.
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maximum spread of the solutions obtained. If Λ denotes the
Lebesgue measure, IH is defined as:

IH(A, ~yref ) = Λ

⋃
~y∈A

{~x | ~y ≺ ~x ≺ ~yref}

 (9)

where A is the approximation of the Pareto optimal set
and ~yref ∈ Rk denotes a reference point which should
be dominated by all possible points. To calculate IH , we
normalized the approximations of the Pareto optimal set,
generated by the MOEAs, and we used yref = [y1, · · · , yk]
such that yi = 1.1, as our reference point. The normalization
was performed considering all approximations generated by
the different MOEAs (i.e., we put, in one set, all the non-
dominated solutions found and from this set we calculated
the maximum and minimum for each objective function).

Also, we decided to use ∆p to assess performance,
because this indicator also measures both convergence to the
true Pareto optimal set and distribution of the solutions along
the Pareto front. The definition of this indicator is shown in
eq. 4. It is important to keep in mind that the results of
this indicator depend strongly on the reference set that is
adopted. If we use reference sets with a considerable number
of non-dominated solutions and these solutions are uniformly
distributed, the results are reliable. In this case, we generated
10,000 random solutions using the WFG test suite.

B. Discussion of Results

In Table I, we compare ∆p-MOEA with respect to
MOEA/D using IH and ∆p. Also, we present the results
of the statistical analysis using Wilcoxon’s rank sum. In



(a), we can see that with respect to IH , ∆p-MOEA is
better than MOEA/D in twenty-four cases because in these
problems ∆p-MOEA obtained a better result and the null
hypothesis “medians are equal” can be rejected. And, in four
cases (WFG1 with 3, 4, 5 and 6 objective functions) ∆p-
MOEA is outperformed by MOEA/D. Regarding ∆p, see
(b), ∆p-MOEA outperforms MOEA/D in twenty-two cases,
it is outperformed in five cases (WFG5 with 3, 4, 5 and 6
objective functions and WFG3 with 3 objective functions)
and only in one case both MOEAs have a similar behavior
(the null hypothesis cannot be rejected). Table III shows the
time required by these two MOEAs to obtain the approx-
imation of the Pareto set. In this case, MOEA/D is faster
than ∆p-MOEA. In the worst case, MOEA/D requires two
seconds while ∆p-MOEA requires ten seconds (MOEA/D is
five times faster than our ∆p-MOEA). However, we should
consider that ∆p-MOEA outperforms MOEA/D in most
cases.

In Table II, we compare ∆p-MOEA with respect to
SMS-EMOA-HYPE using IH and ∆p. Also, we present
the results of the statistical analysis using Wilcoxon’s rank
sum. In (a), we can see that with respect to IH , ∆p-MOEA
outperforms SMS-EMOA-HYPE in twenty-one cases, it is
outperformed by SMS-EMOA-HYPE only in four cases
and in three cases both MOEAs have a similar behavior.
In (b), we can see the results regarding ∆p and, in this
case, ∆p-MOEA outperforms SMS-EMOA-HYPE in thirteen
cases, it is outperformed in eleven cases and in four cases
both MOEAs have a similar behavior. Table III shows that
our ∆p-MOEA is faster than SMS-EMOA-HYPE. In the
worst case, our ∆p-MOEA requires ten seconds to find the
approximation of the Pareto optimal set while SMS-EMOA-
HYPE requires forty-eight seconds in the worst case (our
∆p-MOEA is 4.8 times faster than SMS-EMOA-HYPE).

Therefore, we can conclude that our ∆p-MOEA is a good
option to solve MOPs with either low or high dimensionality
(in objective function space), if we consider both quality of
the solutions and time required to solve the problems. This is
because our proposed ∆p-MOEA obtains better results than
MOEA/D in most cases, although it is slower than MOEA/D.
Also, our ∆p-MOEA performed better than SMS-EMOA-
HYPE in most cases while also having a lower computational
cost.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed a new selection mechanism based on
the ∆p indicator. This selection mechanism has two special
features: first, it creates the reference set using ε-dominace
and second, it uses two different selection schemes (one
based on GD and another based on IGD). Although these
two selection schemes have as their main aim to optimize
their respective indicators, they also consider other aspects
such as the diversity in the population. Thus, they select
solutions seeking a balance between the indicator value and
the diversity in the population. It is important to emphasize
that our selection mechanism does not require any extra
information to generate the reference set: it builds it from
the nondominated set known at each generation and it has
a technique to automatically set the value of ε. Our selec-
tion mechanism was incorporated into a MOEA that uses

the operators of NSGA-II to create individuals (crossover
and mutation) giving rise to a new MOEA called “∆p -
Multi-Objective Evolutionary Algorithm (∆p-MOEA)”. Our
preliminary results indicate that our ∆p-MOEA is a good
alternative to solve MOPs with low and high dimensionality
(in objective function space) since it outperforms MOEAs
such as MOEA/D and SMS-EMOA-HYPE in several prob-
lems and its computational cost is reasonably low (it is slower
than MOEA/D but is faster than SMS-EMOA-HYPE). It is
important to mention that we used two different indicators to
measure the performance of the three MOEAs: IH and ∆p.
And, with respect to these two indicators, our ∆p-MOEA
obtained better results than the other two MOEAs in most
cases. In fact, our proposed approach turned out to be better
than SMS-EMOA-HYPE with respect to IH , in spite of the
fact that the latter is based on such performance indicator.

As part of our future work, we want to study in detail why
our ∆p-MOEA has difficulties in problems in which many
weakly dominated solutions are generated during the search
process. Also, we want to analyze alternative techniques to
set the value of ε because the adopted technique has two
important disadvantages:

• With this technique at each generation of the evo-
lutionary process we must start the process to set
ε, i.e., we start by dividing the search space into
two equal parts for each objective function, then
in three parts, and then in four parts and so on
until finding the value of ε that allows us to have,
at most, one nondominated solution per hypercube.
Therefore, this process can be very expensive.

• In this technique, we use the same value of ε for
each objective function. However, this may not be
the optimal configuration: Depending on the shape of
the true Pareto front, it can happen that one objective
function requires small values of ε, while another
objective function requires bigger values of ε.

Finally, we want to study techniques to set optimal values
for all parameters used by ∆p-MOEA, e.g., we can use self-
adaptive schemes (the value of each parameter is adjusted
during the search process).
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moead-pbi

IH

dp-moea
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P (H)
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WFG4 (5) 0.6986 (0.025) 1.0901 (0.028) 0.000 (1)
WFG5 (5) 0.2459 (0.015) 0.5885 (0.015) 0.000 (1)
WFG6 (5) 0.2476 (0.015) 0.5409 (0.021) 0.000 (1)
WFG7 (5) 0.3198 (0.023) 0.8453 (0.035) 0.000 (1)
WFG1 (6) 1.1043 (0.013) 0.9914 (0.032) 0.000 (1)
WFG2 (6) 0.0056 (0.026) 0.6061 (0.285) 0.000 (1)
WFG3 (6) 0.1244 (0.053) 0.5313 (0.057) 0.000 (1)
WFG4 (6) 0.6232 (0.029) 1.1847 (0.035) 0.000 (1)
WFG5 (6) 0.1548 (0.018) 0.6130 (0.015) 0.000 (1)
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WFG7 (6) 0.2884 (0.022) 0.8203 (0.049) 0.000 (1)

~f
moead-pbi

∆p

dp-moea
∆p

P (H)

WFG1 (3) 2.0151 (0.041) 2.0126 (0.148) 0.750 (0)
WFG2 (3) 1.6571 (0.051) 1.4322 (0.133) 0.000 (1)
WFG3 (3) 1.9938 (0.008) 2.0050 (0.020) 0.048 (1)
WFG4 (3) 0.5331 (0.010) 0.2805 (0.023) 0.000 (1)
WFG5 (3) 0.7405 (0.003) 0.8021 (0.016) 0.000 (1)
WFG6 (3) 1.9609 (0.009) 1.9388 (0.015) 0.000 (1)
WFG7 (3) 1.5097 (0.083) 1.4060 (0.006) 0.000 (1)
WFG1 (4) 2.9841 (0.083) 2.9337 (0.085) 0.009 (1)
WFG2 (4) 2.1579 (0.005) 1.7896 (0.148) 0.000 (1)
WFG3 (4) 2.5695 (0.050) 2.4824 (0.016) 0.000 (1)
WFG4 (4) 1.3731 (0.021) 0.9016 (0.057) 0.000 (1)
WFG5 (4) 1.2136 (0.005) 1.3505 (0.016) 0.000 (1)
WFG6 (4) 2.7726 (0.031) 2.6656 (0.014) 0.000 (1)
WFG7 (4) 3.7478 (0.266) 1.7887 (0.033) 0.000 (1)
WFG1 (5) 4.2674 (0.129) 3.6219 (0.065) 0.000 (1)
WFG2 (5) 2.6711 (0.111) 2.3936 (0.257) 0.000 (1)
WFG3 (5) 3.1010 (0.065) 3.0203 (0.023) 0.000 (1)
WFG4 (5) 3.4391 (0.621) 1.6450 (0.091) 0.000 (1)
WFG5 (5) 1.6984 (0.011) 1.7792 (0.033) 0.000 (1)
WFG6 (5) 3.7233 (0.050) 3.5480 (0.017) 0.000 (1)
WFG7 (5) 6.1148 (0.132) 2.3596 (0.107) 0.000 (1)
WFG1 (6) 5.4592 (0.195) 4.3805 (0.085) 0.000 (1)
WFG2 (6) 3.1833 (0.134) 2.7790 (0.314) 0.000 (1)
WFG3 (6) 3.7707 (0.082) 3.5661 (0.052) 0.000 (1)
WFG4 (6) 6.0918 (0.519) 2.7645 (0.146) 0.000 (1)
WFG5 (6) 2.2548 (0.012) 2.3420 (0.065) 0.000 (1)
WFG6 (6) 5.0138 (0.212) 4.5607 (0.031) 0.000 (1)
WFG7 (6) 7.7530 (0.113) 3.0803 (0.172) 0.000 (1)

(a) (b)
Table I. RESULTS OBTAINED IN THE WFG TEST PROBLEMS. WE COMPARE OUR ∆p-MOEA WITH RESPECT TO MOEA/D, USING THE

HYPERVOLUME INDICATOR (IH ) AND THE ∆p INDICATOR. WE SHOW AVERAGE VALUES OVER 30 INDEPENDENT RUNS. THE VALUES IN PARENTHESES
CORRESPOND TO THE STANDARD DEVIATIONS. THE THIRD COLUMN OF EACH TABLE SHOWS THE RESULTS OF THE STATISTICAL ANALYSIS APPLIED

TO OUR EXPERIMENTS USING WILCOXON’S RANK SUM. P IS THE PROBABILITY OF OBSERVING THE GIVEN RESULT (THE NULL HYPOTHESIS IS
TRUE). SMALL VALUES OF P CAST DOUBT ON THE VALIDITY OF THE NULL HYPOTHESIS. H = 0 INDICATES THAT THE NULL HYPOTHESIS (“MEDIANS

ARE EQUAL”) CANNOT BE REJECTED AT THE 5% LEVEL. H = 1 INDICATES THAT THE NULL HYPOTHESIS CAN BE REJECTED AT THE 5% LEVEL.

~f
sms-emoa-hype

IH

dp-moea
IH

P (H)

WFG1 (3) 0.8200 (0.036) 0.8756 (0.026) 0.000 (1)
WFG2 (3) 0.6334 (0.070) 0.8018 (0.058) 0.000 (1)
WFG3 (3) 0.5994 (0.007) 0.6154 (0.007) 0.000 (1)
WFG4 (3) 0.7115 (0.007) 0.7205 (0.007) 0.000 (1)
WFG5 (3) 0.5397 (0.002) 0.5351 (0.004) 0.000 (1)
WFG6 (3) 0.5514 (0.004) 0.5568 (0.002) 0.000 (1)
WFG7 (3) 0.5350 (0.034) 0.6888 (0.012) 0.000 (1)
WFG1 (4) 0.8828 (0.040) 0.9017 (0.028) 0.176 (0)
WFG2 (4) 0.3189 (0.215) 0.6594 (0.188) 0.000 (1)
WFG3 (4) 0.5270 (0.015) 0.5734 (0.013) 0.000 (1)
WFG4 (4) 0.9285 (0.014) 0.9408 (0.017) 0.004 (1)
WFG5 (4) 0.5535 (0.007) 0.5672 (0.006) 0.000 (1)
WFG6 (4) 0.5630 (0.011) 0.5559 (0.010) 0.009 (1)
WFG7 (4) 0.4332 (0.031) 0.7663 (0.027) 0.000 (1)
WFG1 (5) 0.9836 (0.045) 0.9496 (0.032) 0.001 (1)
WFG2 (5) 0.4739 (0.238) 0.6864 (0.156) 0.000 (1)
WFG3 (5) 0.4291 (0.031) 0.5090 (0.039) 0.000 (1)
WFG4 (5) 1.0968 (0.025) 1.0901 (0.028) 0.411 (0)
WFG5 (5) 0.5728 (0.010) 0.5885 (0.015) 0.000 (1)
WFG6 (5) 0.4995 (0.036) 0.5409 (0.021) 0.000 (1)
WFG7 (5) 0.3933 (0.023) 0.8453 (0.035) 0.000 (1)
WFG1 (6) 1.0185 (0.045) 0.9914 (0.032) 0.007 (1)
WFG2 (6) 0.3177 (0.222) 0.6061 (0.285) 0.000 (1)
WFG3 (6) 0.4053 (0.053) 0.5313 (0.057) 0.000 (1)
WFG4 (6) 1.1670 (0.038) 1.1847 (0.035) 0.233 (0)
WFG5 (6) 0.5286 (0.016) 0.6130 (0.015) 0.000 (1)
WFG6 (6) 0.4590 (0.046) 0.5352 (0.039) 0.000 (1)
WFG7 (6) 0.3909 (0.018) 0.8203 (0.049) 0.000 (1)

~f
sms-emoa-hype

∆p

dp-moea
∆p

P (H)

WFG1 (3) 2.2917 (0.060) 2.0126 (0.148) 0.000 (1)
WFG2 (3) 1.4653 (0.150) 1.4322 (0.133) 0.009 (1)
WFG3 (3) 1.9659 (0.004) 2.0050 (0.020) 0.000 (1)
WFG4 (3) 0.3429 (0.029) 0.2805 (0.023) 0.000 (1)
WFG5 (3) 0.7441 (0.003) 0.8021 (0.016) 0.000 (1)
WFG6 (3) 1.9277 (0.016) 1.9388 (0.015) 0.006 (1)
WFG7 (3) 1.5494 (0.109) 1.4060 (0.006) 0.000 (1)
WFG1 (4) 3.1491 (0.161) 2.9337 (0.085) 0.000 (1)
WFG2 (4) 1.8674 (0.195) 1.7896 (0.148) 0.641 (0)
WFG3 (4) 2.4514 (0.004) 2.4824 (0.016) 0.000 (1)
WFG4 (4) 1.0911 (0.066) 0.9016 (0.057) 0.000 (1)
WFG5 (4) 1.2411 (0.009) 1.3505 (0.016) 0.000 (1)
WFG6 (4) 2.6539 (0.018) 2.6656 (0.014) 0.001 (1)
WFG7 (4) 2.7103 (0.293) 1.7887 (0.033) 0.000 (1)
WFG1 (5) 3.9967 (0.256) 3.6219 (0.065) 0.000 (1)
WFG2 (5) 2.4102 (0.259) 2.3936 (0.257) 0.529 (0)
WFG3 (5) 2.9663 (0.003) 3.0203 (0.023) 0.000 (1)
WFG4 (5) 2.0859 (0.115) 1.6450 (0.091) 0.000 (1)
WFG5 (5) 1.7061 (0.014) 1.7792 (0.033) 0.000 (1)
WFG6 (5) 3.5462 (0.022) 3.5480 (0.017) 0.270 (0)
WFG7 (5) 4.2434 (0.315) 2.3596 (0.107) 0.000 (1)
WFG1 (6) 4.9748 (0.364) 4.3805 (0.085) 0.000 (1)
WFG2 (6) 2.7995 (0.317) 2.7790 (0.314) 0.501 (0)
WFG3 (6) 3.4659 (0.006) 3.5661 (0.052) 0.000 (1)
WFG4 (6) 3.6893 (0.360) 2.7645 (0.146) 0.000 (1)
WFG5 (6) 2.2448 (0.022) 2.3420 (0.065) 0.000 (1)
WFG6 (6) 4.5361 (0.030) 4.5607 (0.031) 0.001 (1)
WFG7 (6) 5.4801 (0.316) 3.0803 (0.172) 0.000 (1)

Table II. RESULTS OBTAINED IN THE WFG TEST PROBLEMS. WE COMPARE OUR ∆p-MOEA WITH RESPECT TO SMS-EMOA-HYPE, USING THE
HYPERVOLUME INDICATOR (IH ) AND THE ∆p INDICATOR. WE SHOW AVERAGE VALUES OVER 30 INDEPENDENT RUNS. THE VALUES IN PARENTHESES

CORRESPOND TO THE STANDARD DEVIATIONS. THE THIRD COLUMN OF EACH TABLE SHOWS THE RESULTS OF THE STATISTICAL ANALYSIS APPLIED
TO OUR EXPERIMENTS USING WILCOXON’S RANK SUM. P IS THE PROBABILITY OF OBSERVING THE GIVEN RESULT (THE NULL HYPOTHESIS IS

TRUE). SMALL VALUES OF P CAST DOUBT ON THE VALIDITY OF THE NULL HYPOTHESIS. H = 0 INDICATES THAT THE NULL HYPOTHESIS (“MEDIANS
ARE EQUAL”) CANNOT BE REJECTED AT THE 5% LEVEL. H = 1 INDICATES THAT THE NULL HYPOTHESIS CAN BE REJECTED AT THE 5% LEVEL.
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moead-pbi

time
sms-emoa-hype

time
dp-moea

time

WFG1 (3) 1.5000 (0.500) 29.3180 (3.150) 6.7983 (1.310)
WFG2 (3) 1.1667 (0.373) 21.6913 (2.086) 6.6697 (1.212)
WFG3 (3) 1.2333 (0.423) 29.4300 (3.409) 9.0743 (0.582)
WFG4 (3) 1.3000 (0.458) 25.2457 (2.644) 5.4883 (0.859)
WFG5 (3) 1.2667 (0.442) 31.2997 (3.408) 8.9833 (0.569)
WFG6 (3) 1.2000 (0.400) 32.2827 (4.233) 8.7317 (0.695)
WFG7 (3) 1.6333 (0.482) 30.7810 (3.713) 5.7933 (0.699)
WFG1 (4) 1.5333 (0.499) 32.7003 (1.907) 7.3240 (1.346)
WFG2 (4) 1.2667 (0.442) 24.6957 (2.153) 7.4783 (1.460)
WFG3 (4) 1.3333 (0.471) 33.0970 (2.243) 4.0230 (0.848)
WFG4 (4) 1.3667 (0.482) 28.3970 (2.213) 6.3813 (1.316)
WFG5 (4) 1.3000 (0.458) 38.7537 (2.166) 8.9097 (2.072)
WFG6 (4) 1.2667 (0.442) 38.7110 (2.052) 6.2967 (1.159)
WFG7 (4) 1.7000 (0.458) 36.4420 (2.422) 7.6110 (1.447)
WFG1 (5) 1.6333 (0.482) 38.8440 (2.147) 7.0817 (1.857)
WFG2 (5) 1.3000 (0.458) 30.6240 (1.637) 6.1977 (1.457)
WFG3 (5) 1.3667 (0.482) 40.2863 (2.344) 4.7840 (0.429)
WFG4 (5) 1.4667 (0.499) 35.3357 (1.935) 6.9950 (1.916)
WFG5 (5) 1.4333 (0.496) 47.2197 (2.837) 6.3120 (0.546)
WFG6 (5) 1.3000 (0.458) 46.6780 (3.141) 6.7110 (1.434)
WFG7 (5) 1.9667 (0.180) 43.8047 (2.095) 8.0043 (2.185)
WFG1 (6) 1.7333 (0.442) 38.1870 (4.864) 5.6143 (0.557)
WFG2 (6) 1.3667 (0.482) 36.7027 (2.644) 4.7930 (0.738)
WFG3 (6) 1.4333 (0.496) 39.4787 (6.629) 5.3673 (0.709)
WFG4 (6) 1.5667 (0.496) 41.1373 (3.706) 5.6143 (0.512)
WFG5 (6) 1.5000 (0.500) 38.2700 (7.106) 5.4603 (0.617)
WFG6 (6) 1.3333 (0.471) 37.7870 (6.954) 5.2073 (0.685)
WFG7 (6) 2.1667 (0.373) 37.2300 (6.830) 5.8410 (0.762)

Table III. TIME REQUIRED (IN SECONDS) BY MOEA/D, SMS-EMOA-HYPE AND OUR PROPOSED ∆p-MOEA FOR THE TEST PROBLEMS
ADOPTED. ALL ALGORITHMS WERE COMPILED USING THE GNU C COMPILER AND THEY WERE EXECUTED ON A COMPUTER WITH A 2.66GHZ

PROCESSOR AND 4GB IN RAM.
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