

1 Evolving Heterogeneous Neural Agents by Local Selection

Filippo Menczer, W. Nick Street, and Melania Degeratu

Evolutionary algorithms have been applied to the synthesis of neural architec-
tures, but they normally lead to uniform populations. Homogeneous solutions,
however, are inadequate for certain applications and models. For these cases,
local selectionmay produce the desired heterogeneity in the evolving neural
networks. This chapter describes algorithms based on local selection, and dis-
cusses the main differences distinguishing them from standard evolutionary
algorithms. The use of local selection to evolve neural networks is illustrated
by surveying previous work in three domains (simulations of adaptive behav-
ior, realistic ecological models, and browsing information agents), as well as
reporting on new results in feature selection for classification.

1.1 Introduction

The synthesis of neural architectures has been among the earliest applications
of evolutionary computation [60, 1, 50, 13]. Evolutionary algorithms have been
used to adjust the weights of neural networks without supervision [51, 46], to
design neural architectures [49, 28, 20, 48], and to find learning rules [5].

Evolutionary algorithms, however, typically lead to uniform populations.
This was appropriate in the above applications, since some optimal solution
was assumed to exist. However, homogeneous solutions — neural or otherwise
— are inadequate for certain applications and models, such as those requiring
cover [14, 36] or Pareto [58, 24] optimization. Typical examples stem from
expensive or multi-criteria fitness functions; in these cases, an evolutionary
algorithm can be used to quickly find a set of alternative solutions using a
simplified fitness function. Some other method is then charged with comparing
these solutions.

Selection schemes have emerged as the aspect of evolutionary computation
that most directly affects heterogeneity in evolutionary algorithms. In fact, se-
lective pressure determines how fast the population converges to a uniform
solution. Theexploration-exploitationdilemma is commonly invoked to ex-
plain the delicate tension between an algorithm’s efficiency and its tendency to
prematurely converge to a suboptimal solution.

Parallel evolutionary algorithms often impose geographic constraints on
evolutionary search to assist in the formation of diverse subpopulations [19, 8].
The motivation is in avoiding the communication overhead imposed by stan-

MIT Press Math6X9/1999/09/30:19:43 Page 1

2 Filippo Menczer, W. Nick Street, and Melania Degeratu

dard selection schemes; different processors are allocated to subpopulations
to minimize inter-process dependencies and thus improve efficiency. The poor
match between parallel implementations and the standard notion of optimiza-
tion by convergence is noted for example by McInerney [36], who distin-
guishes betweenconvergence— all individuals converging on the best solution
— andcover— all good solutions being represented in the population — as
measures of successful termination. Parallel evolutionary algorithms are more
amenable to cover optimization than to standard convergence criteria, due to
the limited communication inherent in most parallel implementations.

The problem of ill-convergence exhibited by traditional selection schemes
is related to the issue ofniching. In a niched evolutionary algorithm, according
to Goldberg [14], stable subpopulations would ultimately form around each of
the local fitness optima. Individual solutions in such subpopulations would be
allocated in proportion to the magnitude of the fitness peaks.

Although there is a well-developed biological literature in niching [22], its
transfer to artificial evolutionary search has been limited [14]. Standard evo-
lutionary algorithms are ineffective for niching, due to high selective pressure
and premature convergence [12]. Several methods have been devised to deal
with this problem by maintaining diversity. One example for proportional se-
lection is to tune the selective pressure adaptively, by a nonlinear scaling of
the fitness function [47]. Different selection methods of course impose varying
degrees of selection pressure. For example, tournament selection is known to
converge slowly and to have niching effects [15].

The most notable selection variations explicitly aimed at niching are
crowding [9, 31] andfitness sharing[17, 23, 32]. In both of these methods,
selection is somehow altered to take into account some measure of similarity
among individuals. Shortcomings of both methods are problem-dependency
and inefficiency; ifp is the population size, selection with sharing or crowding
has time complexityO(p) rather thanO(1) per individual. The slowdown can
be important for practical cases with large populations, and computing simi-
larity imposes a large communication overhead for parallel implementations.
Moreover, even assuming that the number of nichesH is known a priori, it is
estimated that the population size required to maintain the population across
niches grows rapidly withH [33]. The role of selection for multi-criteria and
parallel optimization remains an active area of research in the evolutionary
computation community [21, 34, 24].

This chapter discusses thelocality of a selection scheme and its effects
on an evolutionary algorithm’s behavior with respect to convergence. We can

MIT Press Math6X9/1999/09/30:19:43 Page 2

Evolving Heterogeneous Neural Agents by Local Selection 3

loosely definelocal selection(LS) as a selection scheme that minimizes inter-
actions among individuals. Locality in selection schemes has been a persistent
theme in the evolutionary computation community [16, 18, 10, 34].

The chapter is organized as follows. Section 1.2 describes ELSA, an evo-
lutionary algorithm based on a local selection scheme, which lends itself nat-
urally to maintaining heterogeneous populations for cover optimization and
multi-criteria applications. We illustrate the algorithm and outline its main dis-
tinctions from other evolutionary algorithms. Sections 1.3 and 1.4 demonstrate
the problems and advantages of local selection by discussing its application in
four neural domains, for cover and Pareto optimization, respectively. We show
that although local selection is not a panacea, it may produce heterogeneous
populations of neural networks when such diverse solutions are called for. Fi-
nally, in section 1.5 we summarize our conclusions and consider directions for
further applications of local selection.

1.2 Evolution by Local Selection

Our original motivation for considering local selection in evolutionary algo-
rithms stemmed from an interest in ecological modeling [41, 40]. Local se-
lection is a more realistic reproduction scheme in an evolutionary model of
real populations of organisms. In such a model, an agent’s fitness must result
from individual interactions with the environment, which contains shared re-
sources along with other agents, rather than from global interactions across the
population.

The Algorithm

We can best characterize local selection and succinctly describe its differences
from global schemes by casting the evolutionary algorithm into an ecological
framework. The resulting algorithm, which we call ELSA (Evolutionary Local
Selection Algorithm), is illustrated at a high level of abstraction in figure 1.1.

Each agent (candidate solution) in the population is first initialized with
some random solution and an initial reservoir ofenergy. If the algorithm is
implemented sequentially, parallel execution of agents can be simulated with
randomization of call order.

In each iteration of the algorithm, an agent explores a candidate solution
(possibly including an action) similar to itself. The agent is taxed withEcost

for this action and collects�E from the environment. In the applications illus-

MIT Press Math6X9/1999/09/30:19:43 Page 3

4 Filippo Menczer, W. Nick Street, and Melania Degeratu

initialize population of p0 agents, each with energy �=2

while there are alive agents

for each agent a

a0
 perturb(a)

�E e(Fitness(a0); Eenvt)

Eenvt Eenvt ��E

Ea Ea +�E

Ea Ea � Ecost

if (Ea > �)

new(a0)

Ea0 Ea=2

Ea Ea � Ea0

else if (Ea < 0)

die(a)

end
end
Eenvt Eenvt + Ereplenish

end

Figure 1.1
ELSA pseudo-code.

trated in this chapter,Ecost for any action is a constant unless otherwise stated.
The net energy intake of an agent, expressed by the functione(), depends
both on its fitness and on the state of the environment, i.e., on the number of
other agents considering similar solutions (either in search or in criteria space,
depending on the application). This is equivalent to a sort of environment-
mediated crowding. Actions result in energetic benefits only inasmuch as the
environment has sufficient energetic resources; if these are depleted, no bene-
fits are available until the environmental resources are replenished.

In the selection part of the algorithm, an agent compares its current energy
level with a threshold�. If its energy is higher than�, the agent reproduces. The
mutated clone that was just evaluated becomes part of the population, with half
of its parent’s energy. When an agent runs out of energy, it is killed.

The environment acts as a data structure that keeps track of the net effects
of the rest of the population. This way, direct communications between indi-
viduals (such as comparisons, ranking, or averaging of fitness values) become
unnecessary, and the only interactions consist in the indirect competition for
the finite environmental resources.

If we want to maintain the population average around some fixed valuep0
irrespective of problem size, we can let

Ereplenish = p0 � Ecost: (1.1)

MIT Press Math6X9/1999/09/30:19:43 Page 4

Evolving Heterogeneous Neural Agents by Local Selection 5

In fact, since energy is conserved, the average amount of energy that leaves the
system per unit time (through costs) has to be equal to the amount of energy
that enters the system per unit time (through replenishment):

hpEcosti = Ereplenish

hpiEcost = p0Ecost

hpi = p0

whereh�i indicates time average.
In an implementation based on the pseudo-code of figure 1.1, some other

details must be filled in. In particular, for neural agents, a solution can be
represented by the weight vector of the neural net. If crossover is to be used, a
candidate network can be recombined with another member of the population
before being evaluated or before being inserted into the population, in case
the parent is selected for reproduction. There has been ample discussion in
the literature about the feasibility of recombination in the evolution of neural
networks (see, e.g., [47, 46]), but such discussion is outside the scope of this
chapter. Mutation is the only genetic operator used in the domains discussed in
this chapter. The mutation operator provides evolving neural nets with a local
search step, and the details of its dynamics are discussed for each task-specific
application.

Local versus Global Selection

Selection is the central point where this algorithm differs from most other
evolutionary algorithms. Here an agent may die, reproduce, or neither (corre-
sponding to the solution being eliminated from the pool, duplicated, or main-
tained). Energy is always conserved. The selection threshold� is a constant
independent of the rest of the population — hence selection islocal. This fact
reduces communication among agent processes to a minimum and has several
positive consequences.

First, two agents compete for shared resources only if they are situated
in the same portion of the environment (i.e., of the search or criteria space,
depending on the application). It is the environment that drives this competition
and the consequent selective pressure. No centralized decision must be made
about how long an agent should live, how frequently it should reproduce, or
when it should die. The search is biased directly by the environment.

Second, LS is an implicitly niched scheme and therefore it naturally en-
forces the maintenance of population diversity. This makes the search algo-

MIT Press Math6X9/1999/09/30:19:43 Page 5

6 Filippo Menczer, W. Nick Street, and Melania Degeratu

rithm more amenable to cover and multi-modal optimization than to standard
convergence criteria. The bias is to exploit all resources in the environment,
rather than to locate the single best resource.

Third, the size of the population, rather than being determined a priori,
emerges from thecarrying capacityof the environment. This is determined by
(i) the costs incurred by any action, and (ii) the replenishment of resources.
Both of these factors are independent of the population.

Finally, the removal of selection’s centralized bottleneck makes the algo-
rithm parallelizable and therefore amenable to distributed implementations.
ELSA is therefore an ideal candidate to study the potential speedup achiev-
able by running agents on multiple remote hosts.

Local selection of course has disadvantages and limitations as well. Imag-
ine a population of agents who can execute code on remote servers in a dis-
tributed environment, but have to look up data on a central machine for every
action they perform. A typical example of such a situation would be a dis-
tributed information retrieval task in which agents share a centralized page
cache. Because of communication overhead and synchronization issues, the
parallel speedup achievable in this case would be seriously hindered. As this
scenario indicates, the feasibility of distributed implementations of evolution-
ary algorithms based on local selection requires that the environment can be
used as a data structure. Like natural organisms, agents must be able to “mark”
the environment so that local interactions can take advantage of previous ex-
perience.

Local selection algorithms cannot immediately be applied to any arbitrary
problem. First, a problem space may not lend itself to being used as a data
structure. For example, marking the environment in continuous function op-
timization with arbitrary precision might hinder discretization and thus com-
promise the feasibility of local data structures. Second, it may be difficult to
devise an isomorphism of the problem such that the environmental resource
model could be applied successfully. For example, associating environmen-
tal resources to partial solutions of a combinatorial optimization problem may
require a decomposition property that the problem is not known to possess.

In a multi-criteria or distributed task, the environment models the problem
space and the resources that are locally available to individual solutions. It is
in such cases that the distinction between local and global interactions among
individuals becomes important; the selection mechanism and environmental
resource model capture the nature of such interactions. In a standard evolu-
tionary algorithm, an individual is selected for reproduction based on how its

MIT Press Math6X9/1999/09/30:19:43 Page 6

Evolving Heterogeneous Neural Agents by Local Selection 7

Table 1.1
Schematic comparison between local and global selection schemes. r-selection and K-selection
refer to population models commonly used in ecology, which assume infinite and bounded
resources, respectively.

Feature Global selection Local selection

reproduction threshold � = f(E1; : : : ; Epop) � = const
search bias exploitation exploration

adaptive landscape single-criterion multi-criteria
convergence goal single-point cover
solution quality best (fragile) good (robust)

biological equivalent r-selection K-selection

fitness compares with the rest of the population. For example, proportional
selection can be modeled by a selection thresholdhEi, whereh�i indicates
population average, for both reproduction (in place of�) and death (in place
of 0). Likewise, binary tournament selection can be modeled by a selection
thresholdEr where the subscriptr indicates a randomly picked individual. In
local selection schemes,� is independent of the rest of the population and the
computations that determine whether an individual should die or reproduce
can be carried out without need of direct comparisons with other individuals.
Table 1.1 illustrates schematically the main features that differentiate the two
classes of selection schemes.

1.3 Heterogeneous Neural Agents for Cover Optimization

We refer to neural agents here to mean evolving agents whose genetic repre-
sentation is, or is associated with, a neural network. Many applications have
been tackled with neural systems, and when examples are not available to su-
pervise the training of the neural network, evolutionary algorithms represent
one way to train the network in an unsupervised fashion — provided an evalu-
ation function is available to compute fitness.

In this section we summarize previous work done in three different do-
mains. In each case, a local selection algorithm similar to ELSA was used to
evolve a population of neural agents for a distinct task. Each of the following
subsections describe one such domain, motivates the use of the evolutionary
local selection algorithm, and draws some observations based on the main re-
sults.

MIT Press Math6X9/1999/09/30:19:43 Page 7

8 Filippo Menczer, W. Nick Street, and Melania Degeratu

Coevolving Sensors and Behaviors in Toy Environments

The first domain we consider is an artificial life model simulating environments
constructedad-hocto study the evolution of sensory systems.

Sensors represent a crucial link between the evolutionary forces shaping a
species’ relationship with its environment, and the individual’s cognitive abil-
ities to behave and learn. We usedlatent energy environments(LEE) models
to define environments of carefully controlled complexity, which allowed us to
state bounds for random and optimal behaviors, independent of strategies for
achieving the behaviors. A description of the LEE framework is outside the
scope of this chapter, and the interested reader is referred to [41, 40].

LEE provided us with an analytic basis for constructing the environments,
a population of neural networks to represent individual behaviors, and an evo-
lutionary local selection algorithm to model an adaptive process shaping the
neural nets, in particular their input (sensory) system and their connection
weights [39]. The experiments considered different types of sensors, and dif-
ferent sets of environmental resources that such sensors would detect. The idea
was to study the conditions under whichefficient(informative) sensory systems
could be found by evolutionary synthesis.

The optimal sensory system was known by design, given the task faced
by the LEE agents. Each agent had sensors providing perceptual information
about its external (local) environment and sensors providing memory informa-
tion about its internal (“gut”) environment. The task involved navigating in a
grid world and eating appropriate combinations of resources: if the gut con-
tained adark resource element, then the agent would gain energy by eating a
light element, and vice versa. Combining two elements of the same resource
would result in a loss of energy. The situation is illustrated in figure 1.2.

Evolving the weights of neural agents with optimal sensors resulted in
behaviors corresponding to a carrying capacity approximately 3.5 times that
of populations of random walkers (agents with “blind” sensors). However,
evolving both neural network weights and sensory systems together yielded
significant subpopulations with suboptimal sensors, and high variability of
emerging behaviors caused by genetic drift. Optimal sensor configurations
were not robust in the face of mutations, because they required finely tuned
neural net weights. Conversely, many suboptimal sensory systems were robust
because they could share weights, and the corresponding behaviors would not
be necessarily disrupted by sensor mutations.

The genetic drift effect was overcome by allowing the neural nets to learn

MIT Press Math6X9/1999/09/30:19:43 Page 8

Evolving Heterogeneous Neural Agents by Local Selection 9

Figure 1.2
Two agents in similar circumstances but different sensory systems. Both agents have a light
element in their gut and one in front of them. The right move would be to veer away. Agent A has
inefficient sensors, because both of its contact sensors only detect dark elements in the cell facing
the agent. So the light element is not detected, and the agent might lose energy by going forward
and eating it. Agent B has an efficient sensory system. Its contact sensors detect the light element
in front of it, and the agent will be able to perform the right action.

via reinforcement learning during an agent’s life. The weight changes due to
learning were not inherited by offspring, however, so that learning was non-
Lamarckian. This indirect interaction between learning and evolution was an
example of the so-calledBaldwin effect[2]. This phenomenon provided the
neural agents with significantly more efficient sensory systems, as illustrated
in figure 1.3.

An important observation can be drawn from these experiments regarding
the use of evolutionary local selection algorithms with neural agents. Hetero-
geneity is not always a good thing: for this task, the selective pressure was in-
sufficient to evolve both informative sensory systems and connection weights
that could exploit the sensory information. Evolutionary local selection algo-
rithms are appropriate when we want to maintain a diverse population of local,

MIT Press Math6X9/1999/09/30:19:43 Page 9

10 Filippo Menczer, W. Nick Street, and Melania Degeratu

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

<
%

s
e
n
s
o
r
>

cycles x 100

A

C

Figure 1.3
Percentages of efficient sensors (A) versus inefficient sensors (C) evolved in simulations with
non-Lamarckian reinforcement learning during life. (Reprinted from [39] with permission.)

possibly suboptimal solutions, not when we are trying to converge to some
optimal solution.

Foraging Efficiently in Marine Environments

Our second domain is a somewhat more realistic model of ecological environ-
ment, in which we study the evolution of behaviors and compare the predic-
tions of the model with actual field data.

Tropical oceanic fishes, such as tunas, billfishes, and sharks, live together
in the same environment — the pelagic open ocean.In situ experiments have
been developed to observe horizontal and vertical movements of individuals of
different pelagic predator species, but there is a need for models that explain
the evolutionary origin of such movement behaviors, and their relationships
with these fishes’ shared biotic environment or with other constraints, e.g.,
physiological ones.

We proposed a minimal model the explore the hypothesis that movement
behaviors are driven entirely by prey distributions and dynamics, and tested the
predictive power of this model with simulations based on the LEE framework

MIT Press Math6X9/1999/09/30:19:43 Page 10

Evolving Heterogeneous Neural Agents by Local Selection 11

[6]. In these experiments, the behaviors of an evolving population of artificial
fishes adapted in a three-dimensional environment. Spatial distributions, ener-
getic values, and temporal dynamics (depth versus time of day) of two types
of prey were based on data from observations of the open ocean in French
Polynesia.

Figure 1.4
Architecture of the neural networks used to model the behaviors of tropical oceanic pelagic
predator fishes.

Individuals were represented by simple neural agents as illustrated in
figure 1.4. Agents could sense prey from the closest patch, without discerning
prey types. They also had sensors indicating the time elapsed since the last
eaten prey and the time of day. The energy spent swimming was a function of
the swimming speed.

The evolutionary local selection algorithm was used to evolve a hetero-
geneous set of agents. At reproduction, mutations would add random noise
(drawn from a uniform distribution between�1 and+1) to approximately 2%
of the weights, randomly selected. All weights were bounded to the interval
[�5;+5].

MIT Press Math6X9/1999/09/30:19:43 Page 11

12 Filippo Menczer, W. Nick Street, and Melania Degeratu

Table 1.2
Correspondence between the most frequent vertical swimming patterns as predicted by the
evolutionary model based on local selection and as observed in the most common tropical
oceanic predator species. (Data from [6].)

Model fre-
quency rank

Nighttime layer Daytime layer Species

1 surface intermediate Albacore tuna
2 surface surface Skipjack tuna, Striped marlin,

Pacific blue marlin
2 surface intermediate, sur-

face
Yellowfin tuna

4 surface intermediate, deep Blue shark
5 surface deep Bigeye tuna, Swordfish

The movement behaviors of evolved neural agents across ten simulations
were analyzed and classified into patterns, then compared with those observed
in real fishes (four species of tunas, three species of billfish, and one species
of shark), mostly by acoustic telemetry. Beyond our expectations, most of the
artificial individuals evolved vertical patterns virtually identical to those exhib-
ited by fishes in the wild. The agreement between this simple computational
model and ethological data, illustrated in table 1.2, validated the use of mini-
mal assumption models for the study of behaviors in multi-species ecosystems.

From the viewpoint of the evolutionary synthesis of these neural agents,
the main observation we draw from this work is that local selection allowed
for the concurrent evolution of many heterogeneous behaviors to model this
co-adapted multi-species system. Had a standard evolutionary algorithm been
applied to this model, the population would have likely converged to one of the
observed patterns. Given that the purpose of the experiment was not to search
for one “optimal” behavior, but rather to identify a set of behaviors that could
be compared with those of actual species, local selection was key in achieving
this goal.

Browsing Adaptively in Information Environments

The third domain in which we have applied evolutionary local selection algo-
rithms is the search for relevant information in documents across the Internet.
Distributed information retrieval is an lively area of research due to the pop-
ularity of the Web and the scalability limitations of search engine technology
[37, 30]. We tested the feasibility of local selection algorithms for distributed
information retrieval problems by building artificial graphs to model different

MIT Press Math6X9/1999/09/30:19:43 Page 12

Evolving Heterogeneous Neural Agents by Local Selection 13

aspects of Web-like search environments [42, 38].
In each experiment we constructed a large graph, where each node was

associated with some payoff. Nodes, edges, and payoffs modeled hypertext
documents, hyperlinks, and relevance, respectively. The population of agents
visited the graph as agents traversed its edges. The idea was to maximize the
collective payoff of visited nodes, given that there would be only time to visit a
fraction of the nodes in the graph. Since the modeled search graph is typically
distributed across remote servers, agents were charged costs for traversing
edges and evaluating nodes’ payoff. Each linkl was also associated with a
feature vector with componentsf l1; : : : ; f

l
Nf

2 [0; 1]. These features modeled
environmental cues, such as word frequencies, that could guide a browsing
neural agent toward relevant nodes.

Each agent’s genotype comprised a single-layer neural net or perceptron,
i.e., a weight vector with componentsw1; : : : ; wNf+1 2 R. Link feature
vectors were used as inputs by these neural agents. Node payoffs and link
feature vectors were constructed in such a way as to guarantee the existence
of a set of weights that, if used by a neural agent, would yield an “accurate”
prediction of the payoff of the node pointed to by the input link. The prediction
accuracy of such optimal weight vector was a user-defined parameter.

The agent’s representation also specified the node on which the agent was
currently situated. Therefore an action consisted, first of all, of evaluating each
outlink from the current node. The outputs of the neural net would represent
the agent’s predictions of the payoffs of the nodes reachable from the current
node. The agent then followed a link picked by a stochastic selector. As for
the other applications, some fraction of the weights were mutated by additive
uniform noise at reproduction.

The energetic benefit of an action was the payoff of the newly visited
node, provided it had not been previously visited by any agent. Nodes were
therefore “marked” to keep track of used resources (no replenishment). A
constant energy cost was charged for any node visited. The goal was to evolve
agents with optimal genotypes, enabling them to follow the best links and thus
achieve maximum payoff intake.

To gauge the performance of ELSA in the graph search problem, we
compared local selection with a traditional evolutionary algorithm. To this end
we replaced local selection by binary tournament selection because the latter
scheme was “traditional” (i.e., global) and yet it did not require operations
such as averaging, and thus it fit naturally within the steady-state framework of
ELSA. Basically the same algorithm of figure 1.1 was used, with the difference

MIT Press Math6X9/1999/09/30:19:43 Page 13

14 Filippo Menczer, W. Nick Street, and Melania Degeratu

that the energy level of a randomly chosen member of the population was used
in place of both� for reproduction and 0 for death.

We ran a set of experiments on random graphs with 1000 nodes, an
average fanout of 5 links, and 16 features per link. Nodes with payoff above
some threshold were considered “good.” The algorithm was stopped when
50% of all the nodes had been visited. Then the fraction of good nodes
found by the population up to that point (recall) was recorded. The random
graphs were generated according to several distinct parameterizations. Across
all such parameterizations, ELSA significantly and consistently outperformed
tournament selection. Local selection populations continued to discover a
constant rate of good nodes, while tournament populations tended to converge
prematurely. The improvement depended on the graph parameters, but was
generally between two- and ten-fold.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8

fr
ac

tio
n

of
 g

oo
d

no
de

s
vi

si
te

d

H

ELSA
tournament

Figure 1.5
Performance of ELSA and tournament selection on graph search problems with various values of
H. (Data from [42].)

An example of this performance is shown in figure 1.5. Here, the algo-
rithms were tested on graphs with various values ofH , the number of “good
clusters.” Good nodes were clustered in the sense that they had a higher prob-

MIT Press Math6X9/1999/09/30:19:43 Page 14

Evolving Heterogeneous Neural Agents by Local Selection 15

ability to be linked to other nodes in the same cluster than to nodes in other
clusters or to “bad” nodes. IncreasingH made the problem multi-modal, and
therefore tournament selection degraded in performance due to premature con-
vergence.

kj

λl

term kj

link l

ρ

Figure 1.6
How anInfoSpiderestimates each link from the current document. An agent genotype comprises
both a neural net and a vector of terms, one per input. For each link in the document, each input
of the neural net is computed by counting the document words matching the keyword
corresponding to that input, with weights that decay with distance from the link. (Reprinted from
[43] with permission.)

A more sophisticated representation of neural agents, calledInfoSpiders, is
shown in figure 1.6. These agents adapt to user preferences and to local context
through both reinforcement learning and an evolutionary local selection algo-
rithm. Evolution is used also to select word features, which determine the in-
puts of the neural net. Reinforcement learning is used to adjust the connection
weights and improve link estimation during an agent’s life.InfoSpidershave
been used to search through actual Web data with very promising preliminary
results [45, 43]. For example, figure 1.7 shows the result of a comparison in
performance betweenInfoSpidersand best-first-search, on a hypertext collec-

MIT Press Math6X9/1999/09/30:19:43 Page 15

16 Filippo Menczer, W. Nick Street, and Melania Degeratu

tion from Encyclopaedia Britannica Online [38].InfoSpidershad a significant
advantage when the relevant set was not too many links away from the start-
ing page. These results point to the need for hybrid systems that use search
engines to provide good starting points andInfoSpidersto search for recent
information.

80

84

88

92

96

100

3 4 5 6 7

Query Depth

%
 C

om
pl

et
ed

0

100

200

300

400

500

M
ea

n
S

ea
rc

h
Le

ng
th

BestFS InfoSpiders BestFS InfoSpiders

Figure 1.7
Performance ofInfoSpidersversus best-first-search. Completed queries (bars) were those for
which the search algorithms could locate 10% of the relevant documents before running out of
time. For these queries we recordedsearch length(lines), the number of non relevant pages
visited, averaged over queries whose relevant sets were at the same distance (depth) from the
starting page. (Data from [38].)

The same algorithmic observation made for the ecological modeling do-
main applies to applications in the information search domain. Here, cover
optimization is necessary because we want the agents to locate as many rele-
vant documents as possible, rather than one “most relevant” document. Local
selection algorithms make this objective evolutionarily achievable.

1.4 Heterogeneous Neural Agents for Pareto Optimization

In these experiments we consider the problem of feature subset selection in
inductive or similarity-based machine learning. Given two disjoint setsA1 and
A2 of feature vectors in somen-dimensional space, the problem is to construct

MIT Press Math6X9/1999/09/30:19:43 Page 16

Evolving Heterogeneous Neural Agents by Local Selection 17

a separating surface that allows future examples to be correctly classified
as being members of eitherA1 or A2. Here we use neural networks as the
classification method, and limit ourselves to two-class problems.

In order to construct classifiers that generalize well to unseen points, it is
important to control the complexity of the model. In many domains, biasing
the learning system toward simpler models results in better accuracy, as well
as more interpretable models. One way to control complexity is through the
selection of an appropriate subset of the predictive features for model building.
There is a trade-off between training accuracy and model complexity; it is
difficult to determine, for a given problem, the relative importance of these
two competing objectives.

The feature selection problem is an example of multi-criteria or Pareto op-
timization, in which more than one objective is optimized at the same time
[55, 58]. In the general case, when faced with a multi-criteria problem, the de-
cision maker does not know how the various objectives should be combined.
Therefore, the goal of the solver is to find the set of solutions that represents
the best compromises between conflicting criteria. This set is called thePareto
front. The ELSA framework is particularly well-suited for Pareto optimiza-
tion because it maintains populations of heterogeneous solutions. By mapping
different criteria to different environmental resources, we can create the condi-
tions for agents exploiting different regions of the Pareto space to coexist [44].
Competition occurs along the shared resources, i.e., orthogonally to the Pareto
front.

Feature Selection

From a data mining perspective, the problem of determining which predictive
features contribute the most to the accuracy of the model is often an impor-
tant goal in its own right. This is particularly true in medical domains, where
a particular feature may be the result of a diagnostic test that can be time-
consuming, costly, or dangerous. We examine one such domain in our experi-
ments.

The combinatorial feature selection problem has been studied extensively
in the machine learning and statistics literature. Heuristic search methods
such as forward selection and backward elimination have long been used in
contexts such as regression [11]. Exact solutions may be found using integer
programming [53] if one assumes that the error metric is monotonic, which
is not the case when estimating out-of-sample error. John [26] makes the
distinction betweenwrapper models, which choose feature subsets in the

MIT Press Math6X9/1999/09/30:19:43 Page 17

18 Filippo Menczer, W. Nick Street, and Melania Degeratu

context of the classification algorithm, andfilter models, such as Relief [27],
which choose a subset before applying the classification method. Bradleyet
al. [4] build feature minimization directly into the classification objective, and
solve using parametric optimization.

The method described here uses the evolutionary algorithm to search
through the space of possible subsets, estimating generalization accuracy for
each examined subset. A similar approach, along with a thorough overview
of the field, can be found in [62]. Feature selection in neural networks can be
seen as a more specific instance of the architecture selection problem; see for
instance [54]. Other recent surveys of the feature selection problem may be
found in [29] and [7].

Algorithmic Details

In order to isolate the effect of feature selection, the architecture of each
neural network is set in such a way to keep the complexity of the networks
approximately constant. We use the heuristic that the number of weights in the
network should be no more than some small fraction of the number of training
cases [52]. For example, for a training set with 500 instances, a network with
5 input features would require 3 hidden units, while a network with 10 input
features would have only 2 hidden units.

Training of the individual neural networks is performed using standard
backpropagation [56]. Note that this is in contrast to the applications of sec-
tion 1.3, in which evolution was used to adjust the weights and biases in the
networks. Here, the evolutionary algorithm is used solely to search through the
space of possible feature subsets.

�E e(Fitness(a0); Eenvt)

Eenvt Eenvt ��E

Ea Ea +�E

for each energy source k

�E min(Fitness(a0; k); Ek
envt)

Ek
envt Ek

envt ��E

Ea Ea + �E

end

Figure 1.8
Original ELSA pseudo-code (left, cf. figure 1.1) and the version adapted for multi-criteria
optimization (right).

The ELSA algorithm in figure 1.1 was slightly modified to account for
the multiple environmental resources corresponding to the fitness criteria [44].
The change is illustrated in figure 1.8. The environment corresponds to the

MIT Press Math6X9/1999/09/30:19:43 Page 18

Evolving Heterogeneous Neural Agents by Local Selection 19

set of possible values (or intervals) for each of the criteria being optimized. We
imagine an energy source for each criterion, divided into bins corresponding to
its values. So, for criterionFk and valuev, the environment keeps track of the
energyEk

envt(v) corresponding to the valueFk = v. Further, the environment
keeps a count of the number of agentsPk(v) havingFk = v. The energy
corresponding to an action (alternative solution)a for criterionFk is given by

Fitness(a; k) =
Fk(a)

Pk(Fk(a))
: (1.2)

Ereplenish Ebin �B

for each energy source k

for each bin v

ÆE min(Ereplenish; Ebin � Ek
envt(v))

Ereplenish Ereplenish � ÆE

Ek
envt(v) Ek

envt(v) + ÆE

end
end

Figure 1.9
ELSA energy replenishment pseudo-code for multi-criteria optimization.

Figure 1.9 shows how the environment is replenished at each time step.
The quantityEbin is typically a constant (cf.Ereplenish in equation 1.1). The
idea is to fill each bin toEbin. B is the total number of values taken by all
criteria, or bins into which the values of continuous criteria are discretized.
Thus the total amount of replenishment energy could depend on the size of the
problem. However, in order to maintain the population average around some
fixed value irrespective of the problem size, we can set

Ebin =
Ereplenish

B
=

p0 � Ecost

B
: (1.3)

In this application the genotype of a neural agent is a bit strings with
length equal to the dimensionality of the feature space,N . Each bit is set to 1
if the feature is to be used, and 0 otherwise. We thus measure the complexity
of the classifier as simply the fraction of features being used. Each time an
agent is evaluated, 2/3 of the examples in the data set are randomly chosen as
a training set for a newly constructed neural net (using the features selected by
the genotype as inputs). Online backpropagation is applied until the training
error converges. Then the remaining 1/3 of the examples is used as a test set

MIT Press Math6X9/1999/09/30:19:43 Page 19

20 Filippo Menczer, W. Nick Street, and Melania Degeratu

Table 1.3
Parameter values used with ELSA in the feature selection problem. Note that mutation consists of
flipping one random bit.

Parameter Value

Ecost 0.3
� 0.2
p0 100
B (N + 1) + 20

Pr(mutation) 1

and the generalization error is used to compute the prediction accuracy of the
trained neural agent. Our criteria to be maximized are therefore

Fcomplexity(s) =
number of zeros ins

N
(1.4)

Faccuracy(s) = generalization accuracy using feature vectors: (1.5)

The application of ELSA to this problem is a straightforward implemen-
tation of the algorithm in figure 1.1, with the change of figure 1.8 and equa-
tion 1.2, and the two criteria of equations 1.4 and 1.5. Bins are created in corre-
spondence to each of the possible values of the criteria. WhileFcomplexity has
N +1 discrete values (between 0 and 1),Faccuracy takes continues values and
thus must be discretized into bins. We use 20 bins for the accuracy criterion.
The values of the various algorithm parameters are shown in table 1.3. Some
of the parameters are preliminarily tuned. Replenishment takes place as shown
in figure 1.9, withEbin determined according to Equation 1.3.1

For these experiments we compare the performance of ELSA with a well-
known multi-criteria evolutionary algorithm, the Niched Pareto Genetic Algo-
rithm (NPGA) [25, 24]. In NPGA, Pareto domination tournament selection is
used in conjunction with fitness sharing. Pareto domination tournaments are
binary tournaments in which the domination of each candidate is assessed
with respect to a randomly chosen sample of the population. If a candidate
dominates the whole sample and the other candidate does not, then the dom-
inant candidate wins the tournament. If both or neither candidates dominate
the whole sample, then the tournament is won by the candidate with the lower
niche count. The latter is, roughly, a weighted count of individuals within dis-

1 In this experiment only about half of the available energy is used by the ELSA population, so
that the actual population size oscillates aroundp0=2.

MIT Press Math6X9/1999/09/30:19:43 Page 20

Evolving Heterogeneous Neural Agents by Local Selection 21

Table 1.4
Parameter values used with NPGA in the feature selection problem. As for ELSA, mutation
consists of flipping one random bit.

Parameter Value

�share 14.0
tdom 16
p 100

Pr(mutation) 1

tance�share in criteria space. The size of the sample,tdom, is used to regulate
the selective pressure. NPGA has proven very successful in Pareto optimiza-
tion over a range of problems. The various parameters used for NPGA are
shown in table 1.4. Several of the parameter values are the result of preliminary
parameter tuning. For example, the performance of NPGA was deteriorated by
the use of crossover in this setting, and therefore the recombination operator
was eliminated.

Data Sets

Experiments were performed on two data sets, both of which are available at
the UC-Irvine Machine Learning Repository [3].

Wisconsin Prognostic Breast Cancer (WPBC) data: The predictive prob-
lem in the WPBC [35] data is to determine whether a particular breast cancer
patient can be expected to have a recurrence of the disease within 5 years after
surgery. The examples in the each containN = 33 predictive features. They
include morphometry information on the individual cell nuclei taken from a
cytology slide, along with traditional prognostic factors such as tumor size and
metastatic status of local lymph nodes. There are 62 positive examples and 166
negative examples.

Ionosphere data: The task in the Ionosphere data [57] is to discriminate
“good” (structured) vs. “bad” (unstructured) antenna returns from free elec-
trons in the ionosphere. The examples consist ofN = 34 continuous attributes.
There are 351 examples, divided between 225 good and 126 bad returns.

MIT Press Math6X9/1999/09/30:19:43 Page 21

22 Filippo Menczer, W. Nick Street, and Melania Degeratu

Experimental Results

In the feature subset selection problem, the evaluation of the criteria appears
as a black box to the evolutionary algorithms. The accuracy computation is
expensive and completely dominates the time complexities of the algorithms.
Therefore the only operations that contribute to the measured time complexity
of the algorithms are the accuracy criterion computations, and time is measured
in number ofFaccuracy evaluations.

We ran the two algorithms for 100,000 function evaluations. Each run, on
a dedicated 400 MHz P2 Linux workstation, took approximately 5 minutes for
the WPBC data set and 47 minutes for the Ionosphere data set.

0

0.2

0.4

0.6

0.8

1

00.20.40.60.81

ac
cu

ra
cy

complexity

sample solutions up to 0,000 function evaluations

0

0.2

0.4

0.6

0.8

1

00.20.40.60.81

ac
cu

ra
cy

complexity

sample solutions up to 5,000 function evaluations

0

0.2

0.4

0.6

0.8

1

00.20.40.60.81

ac
cu

ra
cy

complexity

sample solutions up to 10,000 function evaluations

0

0.2

0.4

0.6

0.8

1

00.20.40.60.81

ac
cu

ra
cy

complexity

sample solutions up to 99,000 function evaluations

Figure 1.10
Cumulative ELSA populations in Pareto phase-space for the WPBC data set. The x-axis labels
indicate the fraction of features used. The snapshots plot samples of the neural agents up to 0, 5,
10, and 99 thousand function evaluations. The convex hull of the sampled populations up to
99,000 evaluations is also shown; the actual Pareto front is unknown.

Figure 1.10 pictures the population dynamics of the ELSA algorithm for
the WPBC data set in Pareto phase-space, i.e., the space where the criteria
values are used as coordinates. The Pareto front is unknown, so we can only

MIT Press Math6X9/1999/09/30:19:43 Page 22

Evolving Heterogeneous Neural Agents by Local Selection 23

observe the populations and qualitatively assess their progress relative to one
another. Since we want to maximize accuracy and minimize complexity, we
know that a solution represented as a point in Pareto phase-space is dominated
by solutions above it (more accurate) or to its right-hand side (less complex).

The estimated Pareto front in figure 1.10 is nearly flat, reflecting the fact
that the complexity of the neural networks was held nearly constant. Still, we
see that using only one or two features is insufficient to learn the concept,
and using nearly all of them leads to overfitting. The apparent best agent used
five input features, reflecting a mix of nuclear size (area, radius) and nuclear
shape (symmetry, concavity) features. Interestingly, it did not use lymph node
status, a traditional prognostic factor. Removal of these lymph nodes is an extra
surgical procedure, performed purely for prognosis, that leaves the patient
vulnerable to infection and lymphedema, a painful swelling of the arm. This
result supports previous evidence that detailed nuclear morphometry is equal
or superior to lymph status as a prognostic measure [59, 61].

ELSA is able to cover the entire range of feature vector complexities. A
quantitative measure of coverage can be obtained by measuring the “area” of
Pareto space covered by the population of algorithmX at timet:

SX(t) =
1X

c=0

max
a2PX (t)

(Faccuracy(a)jFcomplexity(a) = c)

wherePX (t) is the population of algorithmX at timet. Figure 1.11 plots the
areasSELSA andSNPGA versus time, for each data set. NPGA eventually
converges to a subpopulation with inferior coverage of the Pareto front, and
ELSA achieves significantly better performance.

1.5 Conclusion

This chapter discussed a particular type of evolutionary algorithms, those using
local selection, and their use in the synthesis of neural architectures. We have
shown that local selection can be feasible, efficient, and effective in evolving
populations of heterogeneous neural agents. This is necessary whencoveror
Paretooptimization are more desirable than convergence to a single (global or
local) optimum.

As demonstrated in section 1.3, there are certainly many cases when a
strong selective pressure is necessary, and local selection is inappropriate.
We have found this to be the case when we applied ELSA to NP-complete

MIT Press Math6X9/1999/09/30:19:43 Page 23

24 Filippo Menczer, W. Nick Street, and Melania Degeratu

6

8

10

12

14

16

18

20

22

24

0 10 20 30 40 50 60 70 80 90 100

ac
cu

ra
cy

-c
om

pl
ex

ity
 a

re
a

time (10^3 fitness evaluations)

ELSA
NPGA

6

8

10

12

14

16

18

20

22

24

26

28

0 10 20 30 40 50 60 70 80 90 100

ac
cu

ra
cy

-c
om

pl
ex

ity
 a

re
a

time (10^3 fitness evaluations)

ELSA
NPGA

Figure 1.11
Plots of the areas covered in Pareto phase-space by the ELSA and NPGA populations over time,
for the WPBC (top) and Ionosphere (bottom) data sets.

combinatorial optimization problems such as SAT and TSP [42]. The only
selective pressure that ELSA can apply comes from the sharing of resources.
Therefore the way in which environmental resources are coupled with the
problem space in a particular application of ELSA is crucial to its success.
One limitation of ELSA is in the fact that the appropriate mapping of a problem
onto an environmental model may be hard to determine.

However, there are many applications where we need to maintain a diverse
population of alternative solutions. Section 1.3 illustrated two such examples
from the domains of ecological modeling and autonomous information agents.

MIT Press Math6X9/1999/09/30:19:43 Page 24

Evolving Heterogeneous Neural Agents by Local Selection 25

Furthermore, heterogeneous neural architectures are required for multi-criteria
problems in which the goal is to maintain a population that approximates the
Pareto front. Section 1.4 discussed two examples of real-world classification
tasks, where the evolutionary local selection algorithm was used to select im-
portant features, allowing neural networks to be trained as both parsimonious
and accurate predictors.

LS algorithms can be used whenever the fitness function is evaluated by
an external environment, in the sense that the environment provides appropri-
ate data structures for maintaining the shared resources associated with fitness.
Consider, for example, evaluating a robot in a physical environment: the envi-
ronment itself holds information about its state. The robot prompts for some
of this information through its sensors, and storing such information may be
less efficient than simply prompting for the same information again as needed.
It may be impossible to storeall relevant observations about a distributed, dy-
namic environment. The environment therefore takes the role of a data struc-
ture, to be queried inexpensively for current environmental state.

At a minimum, in order for LS to be feasible, an environment must allow
for “marking” so that resources may be shared and in finite quantities. In
the graph search domain, we have seen that visited nodes are marked so
that the same node does not yield payoff multiple times. If InfoSpiders were
implemented with mobile agents, this would create a problem of distributed
caching. If marking is allowed and performed in constant time, LS also has
constant time complexity per individual. This is a big win over the selection
schemes of alternative niched evolutionary algorithms, such as fitness sharing
and Pareto domination tournaments, whose complexity scales linearly with the
population size [24].

Evolutionary local selection algorithms can be extended and applied in
many ways. One extension that we have not discussed is the use of recombi-
nation operators in ELSA. As stated in section 1.2, crossover is not used in
evolving any of the neural agents described in this chapter. Actually, we ran
the experiments described in section 1.4 using crossover as well. For ELSA,
the mate was a randomly chosen agent. Since we did not expect any corre-
lation across features in these classification tasks, uniform crossover was ap-
plied: each bit for whose value the parents disagreed was set to 0 or 1 with
equal probability. As it turned out, the performance with crossover was infe-
rior. These results and, more in general, the interactions between local selec-
tion and recombination, in particular with local rather than panmictic mating,
deserve further analysis in the future.

MIT Press Math6X9/1999/09/30:19:43 Page 25

26 Filippo Menczer, W. Nick Street, and Melania Degeratu

The application to inductive learning discussed in this chapter can be
extended to perform wrapper-model feature subset selection. Local selection
can be applied as in the experiments described in section 1.4 to identify
promising feature subsets of various sizes. The best of these can then be
subjected to a more thorough and costly analysis such as cross-validation
to obtain a more reliable estimate of generalization accuracy. This approach
would be particularly attractive in an “any-time learning” context, in which
little overhead would be required to maintain a record of the best individual
encountered so far. Note that the measure of complexity can easily be adapted
to other predictive models such as decision trees or linear classifiers [44]. We
are also using ELSA for Pareto optimization in clustering problems, where the
number of clusters can be used as a third fitness criterion.

Local selection can also serve as a framework for experiments with ensem-
ble classifiers. By extending the environmental model to associate resources
with features, in addition to criteria values, we can encourage individual clas-
sifiers to specialize in particular regions of the feature space. The predictions of
these “orthogonal” classifiers can then be combined (say, by voting) to produce
a single classification system that is more accurate than any of the individuals
working alone.

Finally, distributed robotics is another application area for which evolu-
tionary local selection algorithms may prove feasible. For example, popula-
tions of robots may be faced with unknown, heterogeneous environments in
which it is important to pay attention to many sensory cues and maintain a
wide range of behaviors to be deployed depending on local conditions.

Acknowledgements

The authors are most grateful to Rik Belew, Laurent Dagorn, and Alvaro
Monge, who collaborated on the research reported in section 1.3. The work
described in this chapter was supported in part by a travel grant from the
University of Iowa, Apple Computers, Encyclopaedia Britannica, University
of Iowa CIFRE grant 50254180, NSF grant IIS 99-96044, and the University
of Iowa College of Business Summer Grant Program.

References

[1]RF Albrecht, CR Reeves, and NC Steele, editors.Proc. International Conference on Artificial
Neural Networks and Genetic Algorithms. Springer-Verlag, 1993.

MIT Press Math6X9/1999/09/30:19:43 Page 26

Evolving Heterogeneous Neural Agents by Local Selection 27

[2]RK Belew and M Mitchell, editors.Adaptive Individuals in Evolving Populations: Models
and Algorithms. Santa Fe Institute Studies in the Sciences of Complexity. Addison Wesley,
Reading, MA, 1996.

[3]C. L. Blake and C. J. Merz. UCI repository of machine learning databases
[http://www.ics.uci.edu/˜mlearn/MLRepository.html], 1998. University of California, Irvine,
Department of Information and Computer Sciences.

[4]P. S. Bradley, O. L. Mangasarian, and W. N. Street. Feature selection via mathematical
programming.INFORMS Journal on Computing, 10(2):209–217, 1998.

[5]DJ Chalmers. The evolution of learning: an experiment in genetic connectionism. InProc.
1990 Connectionist Models Summer School, 1990.

[6]L Dagorn, F Menczer, P Bach, and RJ Olson. Co-evolution of movement behaviors by
tropical pelagic predatory fishes in response to prey environment: A simulation model.
Submitted to Ecological Modeling.

[7]M. Dash and H. Liu. Feature selectin for classification.Intelligent Data Analysis,
1(3):131–156, 1997.

[8]Y Davidor. A naturally occurring niche and species phenomenon: The model and first results.
In RK Belew and LB Booker, editors,Proceedings of the 4th International Conference on
Genetic Algorithms, 1991.

[9]KA De Jong. An analysis of the behavior of a class of genetic adaptive systems. PhD thesis,
University of Michigan, 1975.

[10]KA De Jong and J Sarma. On decentralizing selection algorithms. InProc. 6th ICGA, 1995.

[11]N. R. Draper.Applied Regression Analysis. John Wiley and Sons, New York, 3rd edition,
1998.

[12]LJ Eshelman and JD Schaffer. Crossover’s niche. InProceedings of the 5th International
Conference on Genetic Algorithms, 1993.

[13]DB Fogel. Evolutionary Computation: The fossil record, chapter 17, pages 481–484. IEEE
Press, 1989.

[14]DE Goldberg.Genetic Algorithms in Search, Optimization, and Machine Learning, pages
185–197. Addison-Wesley, Reading, MA, 1989.

[15]DE Goldberg. A note on Boltzmann tournament selection for genetic algorithms and
population-oriented simulated annealing.Complex Sustems, 4:445–460, 1990.

[16]DE Goldberg and K Deb. A comparative analysis of selection schemes used in genetic
algorithms. In G Rawlings, editor,Foundations of Genetic Algorithms. Morgan Kaufmann, 1991.

[17]DE Goldberg and J Richardson. Genetic algorithms with sharing for multimodal function
optimization. InProceedings of the 2nd International Conference on Genetic Algorithms, 1987.

[18]VS Gordon and D Whitley. Serial and parallel genetic algorithms as function optimizers. In
Proceedings of the 5th International Conference on Genetic Algorithms, 1993.

[19]PB Grosso.Computer Simulation of Genetic Adaptation: Parallel Subcomponent Interaction
in a Multilocus Model. PhD thesis, University of Michigan, 1985.

[20]F Gruau. Genetic synthesis of boolean neural networks with a cell rewriting developmental
process. InCOGANN-92: International Workshop on Combinations of Genetic Algorithms and
Neural Networks, 1992.

[21]G Harik. Finding multimodal solutions using restricted tournament selection. In
Proceedings of the 6th International Conference on Genetic Algorithms, 1995.

[22]D Hartl and A Clarke.Principles of Population Genetics. Sinauer Associates, 1989.

[23]J Horn. Finite markov chain analysis of genetic algorithms with niching. InProc. 5th ICGA,
1993.

[24]J Horn. Multicriteria decision making and evolutionary computation. InHandbook of
Evolutionary Computation. Institute of Physics Publishing, 1997.

MIT Press Math6X9/1999/09/30:19:43 Page 27

28 Filippo Menczer, W. Nick Street, and Melania Degeratu

[25]J Horn, N Nafpliotis, and DE Goldberg. A niched pareto genetic algorithm for
multiobjective optimization. InProc. 1st IEEE Conf. on Evolutionary Computation, 1994.

[26]G. H. John, R. Kohavi, and K. Pfleger. Irrelevant features and the subset selection problem.
In Proceedings of the 11th International Conference on Machine Learning, San Mateo, CA,
1994. Morgan Kaufmann.

[27]K. Kira and L. Rendell. The feature selection problem: Traditional methods and a new
algorithm. InProceedings of the Tenth National Conference on Artificial Intelligence, pages
129–134, San Mateo, CA, 1992. Morgan Kaufmann.

[28]H Kitano. Designing neural networks using genetic algorithms with graph generation
system.Complex Systems, 4:461–476, 1990.

[29]P. Langley. Selection of relevant features in machine learning. InProceedings of theAAAI
Fall Symposium on Relevance, pages 1–5. AAAI Press, 1994.

[30]SR Lawrence and CL Giles. Searching the world wide web.Science, 280:98–100, 1998.

[31]SW Mahfoud. Crowding and preselection revisited. InParallel Problem Solving from
Nature 2, 1992.

[32]SW Mahfoud. Simple analytical models of genetic algorithms for multimodal function
optimization. InProc. 5th ICGA, 1993.

[33]SW Mahfoud. Population sizing for sharing methods. InFoundations of Genetic Algorithms
3, 1994.

[34]SW Mahfoud. A comparison of parallel and sequential niching methods. InProc. 6th ICGA,
1995.

[35]O. L. Mangasarian, W. N. Street, and W. H. Wolberg. Breast cancer diagnosis and prognosis
via linear programming.Operations Research, 43(4):570–577, July-August 1995.

[36]J McInerney.Biologically Influenced Algorithms and Parallelism in Non-Linear
Optimization. PhD thesis, University of California, San Diego, 1992.

[37]F Menczer. ARACHNID: Adaptive retrieval agents choosing heuristic neighborhoods for
information discovery. InProc. 14th Intl. Conf. on Machine Learning, 1997.

[38]F Menczer.Life-like agents: Internalizing local cues for reinforcement learning and
evolution. PhD thesis, University of California, San Diego, 1998.

[39]F Menczer and RK Belew. Evolving sensors in environments of controlled complexity. In
R Brooks and P Maes, editors,Artificial Life IV, Cambridge, MA, 1994. MIT Press.

[40]F Menczer and RK Belew. From complex environments to complex behaviors.Adaptive
Behavior, 4:317–363, 1996.

[41]F Menczer and RK Belew. Latent energy environments. InAdaptive Individuals in Evolving
Populations: Models and Algorithms. Addison Wesley, 1996.

[42]F Menczer and RK Belew. Local selection. InProc. 7th Annual Conference on Evolutionary
Programming, San Diego, CA, 1998.

[43]F Menczer and RK Belew. Adaptive retrieval agents: Internalizing local context and scaling
up to the web.Machine Learning, 1999. Forthcoming.

[44]F Menczer, M Degeratu, and WN Street. Efficient and scalable pareto optimization by
evolutionary local selection algorithms. Submitted to Evolutionary Computation Journal.

[45]F Menczer and AE Monge. Scalable web search by adaptive online agents: An InfoSpiders
case study. In M Klusch, editor,Intelligent Information Agents: Agent-Based Information
Discovery and Management on the Internet. Springer, 1999.

[46]F Menczer and D Parisi. Evidence of hyperplanes in the genetic learning of neural networks.
Biological Cybernetics, 66:283–289, 1992.
[47]F Menczer and D Parisi. Recombination and unsupervised learning: Effects of crossover in
the genetic optimization of neural networks.Network, 3:423–442, 1992.

[48]O Miglino, S Nolfi, and D Parisi. Discontinuity in evolution: How different levels of

MIT Press Math6X9/1999/09/30:19:43 Page 28

Evolving Heterogeneous Neural Agents by Local Selection 29

organization imply preadaptation. InAdaptive Individuals in Evolving Populations: Models and
Algorithms. Addison Wesley, 1996.
[49]GF Miller, PM Todd, and SU Hedge. Designing neural networks using genetic algorithms.
In Proc. 3rd International Conf. on Genetic Algorithms, 1989.
[50]M Mitchell. An introduction to genetic algorithms. MIT Press, 1996.
[51]DJ Montana and LD Davis. Training feedforward networks using genetic algorithms. In
Proc. Internationsl Joint Conf. on Artificial Intelligence, 1989.
[52]JE Moody. The effective number of parameters: An analysis of generalization and
regularization in nonlinear learning systems. InAdvances in Neural Information Processing
Systems 4, 1992.
[53]P. M. Narendra and K. Fukunaga. A branch and bound algorithm for feature subset selection.
IEEE Transactions on Computers, C-26(9):917–922, September 1977.
[54]D. W. Opitz and J. W. Shavlik. Connectionist theory refinement: Genetically searching the
space of network topologies.Journal of Artificial Intelligence Research, 6(1):177–209, 1997.
[55]V. Pareto.Manual of political economy. Kelley, New York, 1971.
[56]D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error
propagation. In D. E. Rumelhart and J. L. McClelland, editors,Parallel Distributed Processing,
volume 1, chapter 8. MIT Press, Cambridge, MA, 1986.
[57]V. G. Sigillito, S. P. Wing, L. V. Hutton, and K. B. Baker. Classification of radar returns from
the ionosphere using neural networks.Johns Hopkins APL Technical Digest, 10:262–266, 1989.
[58]R. E. Steuer.Multiple Criteria Optimization: Theory, Computation, and Application. John
Wiley and Sons, 1986.
[59]W. N. Street. A neural network model for prognostic prediction. In J. Shavlik, editor,
Machine Learning: Proceedings of the Fifteenth International Conference, pages 540–546, San
Francisco, CA, 1998. Morgan Kaufmann.
[60]LD Whitley and JD Schaffer, editors.COGANN-92: International Workshop on
Combinations of Genetic Algorithms and Neural Networks. IEEE Computer Society Press, 1992.
[61]W. H. Wolberg, W. N. Street, and O. L. Mangasarian. A comparison of computer-based
nuclear analysis versus lymph node status for staging breast cancer.Clinical Cancer Research,
1999. Forthcoming.
[62]J Yang and V Honavar. Feature subset selection using a genetic algorithm. In H Motoda and
H Liu, editors,Feature Extraction, Construction, and Subset Selection: A Data Mining
Perspective. Kluwer, New York, NY, 1998.

MIT Press Math6X9/1999/09/30:19:43 Page 29

