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Abstract


Feature subset selection is an important problem in knowledge discovery, not only


for the insight gained from determining relevant modeling variables but also for the


improved understandability, scalability, and possibly, accuracy of the resulting models.


Feature selection has traditionally been studied in supervised learning situations, with


some estimate of accuracy used to evaluate candidate subsets. However, we often cannot


apply supervised learning for lack of a training signal. For these cases, we propose a new


feature selection approach based on clustering. A number of heuristic criteria can be


used to estimate the quality of clusters built on the basis of a given feature subset. Rather


than attempting to combine such criteria, we use ELSA, an evolutionary local selection


algorithm capable of maintaining a diverse population of solutions that approximate the


Pareto front in a multi-dimensional objective space. Each evolved solution represents


a feature subset and a number of clusters; a standard K-means algorithm is applied


to form the given number of clusters based on the selected features. We evaluate the


approach with two synthetic data sets, one with ad-hoc distributions of points in a low-


dimensional space and one with random distributions in a high-dimensional space. We


also apply the algorithm to real data. Our preliminary results show promise in �nding


Pareto-optimal solutions through which we can identify the signi�cant features and the


correct number of clusters.
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1 Introduction


Feature selection and clustering are active research areas in pattern recognition, machine


learning, and data mining. Feature selection is de�ned as the process of choosing a subset


of the original predictive variables by eliminating redundant features and those with little


or no predictive information. If we extract as much information as possible from a given


data set while using the smallest number of features, we can not only save a great amount


of computing time and cost, but often build a model that generalizes better to unseen


points. Further, it is often the case that �nding the correct subset of predictive features is


an important problem in its own right.


We adopt the wrapper model [16] of feature selection which requires two components:


a search algorithm that searches through the possible combinations of features, and one or


more criterion functions that evaluate the quality of each feature subset. Let D represent


the original feature dimension of a given data set. The whole search space is O(2D), making


exhaustive search impractical for data sets with even moderate dimensionality.


Most research on search algorithms has used heuristic search approaches in favor of


eÆciency rather than optimality. For instance, algorithms such as sequential search [30, 19],


branch and bound [26], nonlinear optimization [5], and simulated annealing [27] have been


applied. The formulation of feature selection as a combinatorial optimization problem has


also lead to the use of genetic algorithms [28, 31]. A recent review of these methods can be


found in [8]. Regardless of the search algorithm employed, most previous methods evaluated


potential solutions in terms of predictive accuracy. Speci�cally, the data set could be divided


into training and test sets, with the error rate on the test set used to estimate the classi�er's


true error rate. However, in many situations we don't have information about the class to


which each data point belongs, and thus we can not apply supervised learning to estimate


subset quality.


Instead, we may wish to �nd natural grouping of the examples in the feature space.


This problem of clustering or unsupervised learning is another active research area in the


knowledge discovery community. The idea is to represent groups of points by a cluster


center after determining the inherent number of clusters in the given data set. For example,
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clustering can be used very e�ectively in target marketing. Based on customer behavior


such as brand loyalty, price sensitivity, or quality sensitivity, manufacturers can use di�erent


marketing strategies. Furthermore, they can save time and expense by restricting their


concern to a group of customers who are most likely to buy their goods. One diÆculty


in clustering is to determine the number of clusters. Once a number of clusters have been


formed based on some given features, we must to evaluate how well this model represents


the complexity of the data. Clustering may be performed using iterative methods such as


K-means [17] or expectation maximization (EM) [12], probability models [7], or optimization


models [6]. Recent research has focused on scaling methods like K-means to large data sets


[4]. We take the view that an e�ective way to scale a clustering algorithm is to reduce the


dimensionality of the data by using a subset of the points to select a subset of the features.


A number of heuristic criteria can be used to estimate the quality of the clusters. Ex-


amples include the compactness of each cluster and the separation among di�erent clusters.


Several attempts have been made to combine di�erent heuristic quality measures into some


single quantity to be optimized [9]. This is a diÆcult problem to solve in the general case,


since any given data set may have unique characteristics, and any given decision maker


will have their own mental model of the tradeo�s among criteria. In such situations we


must use multi-objective or Pareto optimization. Formally, each solution si is associated


with an evaluation vector F = (F1(si); : : : ; FC(si)) where C is the number of quality cri-


teria. One solution s1 is said to dominate another solution s2 if 8c : Fc(s1) � Fc(s2) and


9c : Fc(s1) > Fc(s2), where Fc is the c-th criterion, c 2 f1 : : : Cg. Neither solution dominates


the other if 9c1; c2 : Fc1(s1) > Fc1(s2); Fc2(s2) > Fc2(s1). We de�ne the Pareto front as the


set of nondominated solutions. The goal is to approximate as best possible the Pareto front,


presenting the decision maker with a set of high-quality solutions from which to choose.


To this point, feature selection and clustering have been studied separately. In this study,


we solve the two problems simultaneously by proposing an unsupervised algorithm to select


a subset of features. As a search algorithm, greedy methods such as sequential oating


search are suitable for small- and medium-scale problems [21]. Since we are interested in


large-scale problems, we turn to evolutionary algorithms (EAs) to intelligently search the


space of possible feature subsets. An EA is a parallel and global search algorithm that works
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with a population of solutions to simultaneously evaluate many points in the search space.


Ideally the population of an EA converges to the global optimum. However, standard


EAs often converge prematurely to local optima. Furthermore, standard EAs assume a single


�tness function to be optimized and thus cannot consider multiple �tness criteria e�ectively.


A number of multi-objective extensions of evolutionary algorithms have been proposed in


recent years [29]. Most of them employ computationally expensive selection mechanisms to


favor dominating solutions and to maintain diversity, such as Pareto domination tournaments


[15] and �tness sharing [13].


Since we wish to search the space in parallel without sacri�cing eÆciency, we use a new


evolutionary algorithm that maintains diversity over multiple objectives by employing a


local selection scheme. This Evolutionary Local Selection Algorithm (ELSA) works well for


Pareto optimization problems [24]. In this framework, each individual solution is allocated


to a local environment based on its criteria values and competes with others to consume


shared resources only if they are located in the same environment. Eventually, its chance to


reproduce is jointly a�ected by its quality and by the presence of similar solutions sharing


its local environmental resources. The more densely populated the local environment, the


more competition among individuals for resources, resulting in bias toward di�erent local


environments. In this application, the EA automatically maintains diversity among solutions


by biasing its search toward uncovered combinations of features.


In order to evaluate the quality of a subset of features, we use the standard K-means


algorithm [17] with each solution's selected subset of features. K-means requires the number


of clusters, K, as input. In our approach we do not want to commit to some estimate of


the number of clusters, nor to search exhaustively or greedily over possible values of K.


Therefore we evolve K as part of the genotypic representation of each individual solution,


along with the feature subset. If the selected features are suÆcient to explain the data, we


expect our clustering to be e�ective.


The remainder of the paper is organized as follows. In Section 2, we discuss our approach


in detail, justifying our heuristic clustering quality metrics, illustrating our evolutionary


algorithm, and describing how ELSA is combined with K-means. Section 3 presents some


experiments with synthetic and real data sets, and discusses the interpretation of the ELSA
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output to select a subset of good features. Finally, we conclude the paper by suggesting


directions for future work.


2 Feature selection algorithm


2.1 Heuristic metrics for clustering


A number of numerical measurements are available to evaluate clustering quality [14, 9].


Most of them are based on geometric distance metrics and therefore they are not directly


applicable because they are biased by the dimensionality of the space, which is variable


in feature selection problems. In our study we use four heuristic �tness criteria, described


below. Two of the criteria are inspired by statistical metrics and two by Occam's razor [3].


Each objective, after being normalized into the unit interval, is to be maximized by the EA.


Fwithin : This objective is meant to favor dense clusters by measuring cluster cohesiveness.


It is inspired by the total within-cluster sum of squares (TWSS) measure. Formally,


let xi; i = 1; � � � ; n, be data points and xij be the value of the j-th feature of xi. Let d


be the dimension of the selected feature set, J , and K be the number of clusters. Now,


de�ne the cluster membership variables �ik as follows:


�ik =


8><
>:


1 if xi belongs to cluster k


0 otherwise


where k = 1; � � � ; K and i = 1; � � � ; n. The centroid of the k-th cluster, k, can be


de�ned by its coordinates:


kj =


Pn
i=1 �ikxijPn
i=1 �ik


; j 2 J:


Fwithin can �nally be computed as follows:


Fwithin = 1�
1


Zwithin


1


d


KX
k=1


nX
i=1


�ik
X
j2J


(xij � kj)
2 (1)
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where the normalization by the number of selected features, d, is meant to compensate


for the dependency of the distance metric on the dimensionality of the feature subspace.


Zwithin is a normalization constant meant to achieve Fwithin values spanning the unit


interval. Its value is set empirically for each data set.


Fbetween : This objective is meant to favor well-separated clusters by measuring their distance


from the global centroid. It is inspired by the total between-cluster sum of squares


(TBSS) measure. We compute Fbetween as follows:


Fbetween =
1


Zbetween


1


d


1


k � 1


KX
k=1


nX
i=1


(1� �ik)
X
j2J


(xij � kj)
2 (2)


where, as for Fwithin, we normalize by the dimensionality of the selected feature sub-


space and by the empirically derived constant Zbetween.


Fclusters : The purpose of this objective is to compensate for the previous metrics' bias to-


wards increasing the number of clusters. For example, Fwithin = 1 in the extreme case


when we have the same number of clusters as the number of data points, with each


point allocated to its own cluster. Clearly such over�tting makes the model more com-


plex and less generalizable than can be justi�ed by the data. Therefore, other things


being equal, we want fewer clusters:


Fclusters = 1�
K �Kmin


Kmax �Kmin
(3)


whereKmax (Kmin) is the maximum (minimum) number of clusters that can be encoded


into a candidate solution's representation.


Fcomplexity : The �nal objective is aimed at �nding parsimonious solutions by minimizing the


number of selected features:


Fcomplexity = 1�
d� 1


D � 1
: (4)


Note that at least one feature must be used. Other things being equal, we expect


that lower complexity will lead to easier interpretability of solutions as well as better
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initialize population of agents, each with energy �=2
while there are alive agents and for T iterations


for each energy source c
for each v (0 .. 1)


Ec
envt


(v) 2vEc
tot


endfor


endfor


for each agent a
a0
 mutate(clone(a))


for each energy source c
v  Fitness(a0; c)
�E  min(v; Ec


envt
(v))


Ec
envt


(v) Ec
envt


(v) ��E
Ea  Ea +�E


endfor


Ea  Ea �Ecost


if (Ea > �)
insert a0 into population


Ea0  Ea=2
Ea  Ea � Ea0


else if (Ea < 0)
remove a from population


endif


endfor


endwhile


Figure 1: ELSA pseudo-code. In each iteration, the environment is replenished and then
each alive agent executes the main loop. In sequential implementations, the main loop calls
agents in random order to prevent spurious sampling e�ects. Extinction does not occur in
the experiments described in this paper, so we stop the algorithm after T iterations. The
values of this and other parameters are discussed in Section 3.


generalization.


2.2 Evolutionary local selection algorithm


ELSA springs from algorithms originally motivated by arti�cial life models of adaptive agents


in ecological environments [23]. Modeling reproduction in evolving populations of realistic


organisms requires that selection, like any other agent process, be locally mediated by the


environment in which the agents are situated. An agent's �tness must result from individ-


ual interactions with the environment, which contains other agents as well as �nite shared


resources.


We now briey describe the ELSA implementation for the feature selection problem


discussed in this paper. A more extensive discussion of the algorithm and its application


to Pareto optimization problems can be found elsewhere [24]. Figure 1 outlines the ELSA


algorithm at a high level of abstraction.


Each agent (candidate solution) in the population is �rst initialized with some random


6







solution and an initial reservoir of energy. The representation of an agent consists of D +


Kmax � 2 bits. D bits correspond to the selected features (1 if a feature is selected, 0


otherwise). The remaining bits are a unary representation of the number of clusters.1 The


motivation for this representation over a binary one stems from the desire to preserve the


regularity of the number of clusters under the mutation operator: mutating any one bit will


change K by one. Mutation is the only genetic operator (no crossover operator is used in


the experiments described here) and therefore it is the only means of exploring the search


space.


In each iteration of the algorithm, an agent explores a candidate solution similar to itself.


The agent collects �E from the environment and is taxed with Ecost for this action. The


net energy intake of an agent is determined by its �tness. This is a function of how well the


candidate solution performs with respect to the criteria being optimized. But the energy


also depends on the state of the environment. The environment corresponds to the set of


possible values for each of the criteria being optimized.2 We imagine an energy source for


each criterion, divided into bins corresponding to its values. So, for criterion �tness Fc and


bin value v, the environment keeps track of the energy Ec
envt(v) corresponding to the value


Fc = v. Further, the environment keeps a count of the number of agents Pc(v) having Fc = v.


The energy corresponding to an action (alternative solution) a for criterion Fc is given by


Fitness(a; c) =
Fc(a)


Pc(Fc(a))
: (5)


Candidate solutions receive energy only inasmuch as the environment has suÆcient resources;


if these are depleted, no bene�ts are available until the environmental resources are replen-


ished. Thus an agent is rewarded with energy for its high �tness values, but also has an


interest in �nding unpopulated niches in objective space, where more energy is available.


The result is a natural bias toward diverse solutions in the population. Ecost for any action


is a constant (Ecost < �).


In the selection part of the algorithm, each agent compares its current energy level with


1The cases of zero or one cluster are meaningless in this application. Therefore we count the number of


clusters as k = �+ 2 where � is the number of ones and 2 � k � Kmax.
2Continuous objective functions are discretized.
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assign each data point to a randomly chosen cluster


calculate the centroid k of each cluster k
do


for each point i
move i to nearest cluster argmink distance(i; k)


endfor


recalculate the centroids of clusters whose data sets have changed


while at least one point changed cluster assignment


Figure 2: K-means clustering algorithm.


a threshold �. If its energy is higher than �, the agent reproduces: the mutated clone that


was just evaluated becomes part of the population, with half of its parent's energy. When an


agent runs out of energy, it is killed. The population size is independent of the reproduction


threshold; � only a�ects the energy stored by the population at steady-state.


When the environment is replenished with energy, each criterion c is allocated an equal


share of energy:


Ec
tot =


pmaxEcost


C
(6)


where C = 4 criteria in this study. This energy is apportioned in linear proportion to the


values of each �tness criterion, so as to bias the population toward more promising areas


in objective space [11]. Note that the total replenishment energy that enters the system at


each iteration is pmaxEcost, which is independent of the population size p but proportional


to the parameter pmax. This way we can maintain p below pmax on average, because in


each iteration the total energy that leaves the system, pEcost, cannot be larger than the


replenishment energy.


2.3 K-means algorithm


In order for ELSA to assign energy to a solution, it needs to evaluate the �tness criteria


corresponding to the solution's feature subset and number of clusters. Therefore it must form


the given number of clusters based on the selected features. In the experiments described


here, the clusters to be evaluated are constructed using a standard K-means algorithm [17].


K-means is one of the most often used non-hierarchical clustering methods. It iteratively


assigns each data point to the cluster whose centroid is located nearest to the given point,


and recalculates the centroids based on the new set of assignments. Some variants of K-
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means have been suggested in order to improve the eÆciency of the algorithm, avoid initial


seed value e�ects, or �nd the global optimum [20, 1]. However, in our study we use the


standard K-means algorithm as summarized in Figure 2.


Each time a new candidate solution is evaluated, the corresponding bit string is parsed


to get a feature subset J and a cluster number K. The K-means algorithm receives in input


the projection of the data set onto J and uses it to form K clusters. The four �tness criteria


Fwithin, Fbetween, Fclusters, and Fcomplexity are then computed and returned to ELSA.


3 Evaluation


By de�nition it is hard to evaluate the quality of an unsupervised clustering algorithm.


Feature selection problems present the added diÆculties that the clusters depend on the


dimensionality of the selected features and that any given feature subset may have its own


clusters, which may well be incompatible with those formed based on di�erent feature subsets.


For these reasons we take a gradual approach to evaluate the proposed approach. First,


we use a small-dimensional synthetic data set, in which the points have been generated


carefully with well-de�ned distributions and clusters along each feature dimension. This


data set allows us to validate our algorithm by determining whether any given solution


evolved by ELSA represents a sensible compromise between the conicting heuristic quality


objectives.


Second, we use a high-dimensional synthetic data set, in which the distributions of the


points and the signi�cant features are known, while the appropriate clusters in any given


feature subspace are not known. This data set allows us to estimate the performance of


the algorithm by observing which portions of the signi�cant features are identi�ed by the


evolved solutions.


Finally, we use a real data set for which we have knowledge about the clusters and the


relevant features. In this case, we can evaluate the solutions both by examining the selected


features and by judging the semantics of the resulting clusters.


Another way to evaluate our approach is by comparison with an alternative algorithm.


For this purpose we have implemented a greedy heuristic algorithm known as two-way se-
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quential selection [18]. Our implementation of this algorithm for clustering requires a set


value of K and uses Fwithin as the only optimization criterion. The algorithm begins by �nd-


ing the single dimension along which the objective is optimized. This dimension constitutes


the initial feature set. At each successive step, the algorithm adds the feature that, when


combined with the current set, forms the best clusters. It then checks to see if the least


signi�cant feature in the current set can be eliminated to form a new set with superior per-


formance. This iteration is continued until all the features have been added. For comparison


purposes, we repeated the algorithm for the same values of K considered by ELSA.


3.1 Experiment 1


The �rst synthetic data set has n = 300 points and D = 6 features. It is constructed as


follows. One cluster is formed along feature 1 and two clusters are formed randomly along


feature 2. Therefore if we plot the data projected onto dimensions 1 and 2 we obtain two


clearly separated clusters. Along feature 3, we randomly reassign the points to two indepen-


dent clusters. We repeat the process for feature 4. Finally, for features 5 and 6, the points


are distributed uniformly. All the clusters along each dimension are formed by generating


points from a pseudo-Gaussian distribution obtained by averaging the coordinates of some


number of uniformly distributed points.3 Figure 3 illustrates this data set by projecting the


points onto some of the feature subspaces with d = 2.


The motivation for this data set is to have an understanding of the relationships between


the di�erent features, and at the same time a realistic mixture of signi�cant, less signi�cant,


and insigni�cant features. If we consider the subsets of dimensionality d = 2, feature 1 taken


in conjunction with feature 2, or 3, or 4 creates two correlated clusters. However, if we pick


any two of features 2, 3, or 4, the clusters in each dimensions are not correlated and thus


there are four clusters. If we considered d = 3 and we picked features 2, 3, and 4, we would


�nd 23 = 8 clusters. The last two features are white noise and thus of no signi�cance.


The individuals are represented by strings with 12 bits, 6 for the features and 6 for the


number of clusters, so that Kmax = 8. There are 7 energy bins for Fclusters, 6 for Fcomplexity,


3The standard deviation of these pseudo-Gaussian distributions is � � 0:06.
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Figure 3: The data set of Experiment 1, plotted in some of the possible 2-dimensional subsets
of the features space.


Parameter Value
Pr(mutation) 0.1
Pr(crossover) 0


pmax 100
Ecost 0.2
� 0.3
T 400


Table 1: ELSA parameters values. The probability of mutation refers to a per-bit mutation
rate.
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and 10 each for Fwithin and Fbetween. The values used for the various ELSA parameters are


shown in Table 1.


The best solution with four clusters in more than one dimension included features 2 and


3. The best solution with K = 2 and more than one dimension included features 1 and


4. As depicted in Figure 3, both of these solutions describe the data very well. The �nal


population was dominated by solutions with one feature, which typically look extremely


good along two criteria: complexity, and either Fwithin (many centers inside one true cluster)


or Fbetween (well-separated centers along a random dimension).


As expected, the greedy search method performed very well on this simple data set. With


K = 2, features were added in the order 1, 3, 2, 4, 5, 6; with K = 4, the order was 1, 3,


4, 2, 5, 6. As it happens, the two-dimensional clusters along features 1 and 3 are somewhat


better (in terms of Fwithin than those along features 1 and 2.


3.2 Experiment 2


With the second data set we intend to test the algorithm on a problem with higher dimen-


sionality, while retaining the \realistic" avor of the smaller data set. In other words we


have some \signi�cant" features (in which points belong to correlated normal clusters), some


\Gaussian noise" features (in which values are drawn from single or bimodal normal distribu-


tions along each dimension, but the distributions along di�erent features are uncorrelated),


and some \white noise" features (in which points are drawn from uniform distributions).


The data set has n = 500 points and D = 30 features. It is constructed so that the


�rst 10 features are signi�cant, with 5 \true" clusters consistent across these features. The


next 10 features are Gaussian noise, with points randomly and independently assigned to 2


normal clusters along each of these dimensions. The remaining 10 features are white noise.


The standard deviation of the normal distributions is � � 0:06 and the means are themselves


drawn from uniform distributions in the unit interval, so that the clusters may overlap |


the actual number of clusters may be smaller than constructed, along each dimension.


Individuals are represented by 38 bits, 30 for the features and 8 forK (Kmax = 10). There


are 9 bins for Fclusters and 10 each for Fcomplexity, Fwithin, and Fbetween. The parameters for


ELSA are the same as those used in Experiment 1 (see Table 1), except that T = 8000
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Figure 4: ROC curve showing sensitivity and speci�city of the individuals in the �nal gen-
eration for data set 2, along with the solutions generated by the greedy algorithm.


iterations.


Another way to evaluate the performance of our algorithm is by looking at the sensitivity


and speci�city of each evolved solution. These measures are de�ned as follows:


Sensitivity =
TP


TP + FN
(7)


Specificity =
TN


TN + FP
(8)


where TP (true positive) is the number of selected signi�cant features, FP (false positive)


is the number of selected noise features, TN (true negative) is number of discarded noise


features, and FN (false negative) is the number of discarded signi�cant features. Ideally, both


measurements would be close to 1, as only signi�cant features would be selected. However,


as we increase a solution's complexity (decrease Fcomplexity), more features are selected and


as a result sensitivity goes up while speci�city goes down. Therefore, if we plot sensitivity


versus speci�city (an ROC curve) for the solutions in the �nal population, we can estimate


the algorithm's e�ectiveness at discriminating between signi�cant and noise features.


Figure 4 shows such an ROC curve for our large synthetic data, along with the values
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for the solutions generated by the greedy algorithm for K = 2; � � � ; 10 clusters. ELSA can


successfully discard noise features, as shown by speci�city values up to 95%. The range of


the sensitivity among the evolved solutions is smaller, with a peak of 70%. This is consistent


with the data set, since the clusters along the 10 signi�cant dimensions are correlated and


therefore not all those features are necessary. The trend displayed by the intermediate ELSA


solutions attests to the trade-o� between sensitivity and speci�city in this diÆcult problem.


The greedy algorithm �nds a few solutions with both high sensitivity (up to 80%) and


high speci�city (up to 90%), but it has additional knowledge about the problem | it uses


a complexity of 10 features, corresponding to the number of signi�cant dimensions in the


data.


3.3 Experiment 3


In addition to the arti�cial data sets discussed above, we also test our algorithm on a real


data set, the Wisconsin Prognostic Breast Cancer (WPBC) data [22, 2]. This data set


records 30 numeric features quantifying the nuclear grade of breast cancer patients at the


University of Wisconsin Hospital. It also contains traditional prognostic variables tumor size


and number of positive lymph nodes, along with a binary variable indicating whether lymph


status was recorded. This results in a total of 33 features for each of 227 cases.


Individuals are represented by 37 bits, 33 for the features and 4 for K (Kmax = 6),


therefore there are 5 bins for Fclusters. Other ELSA parameters are the same as those used


in Experiment 2 (see Table 1), except that T = 10,000.


We analyze clustering performance on this data set by looking for clinical relevance in


the resulting clusters. Speci�cally, we can observe the actual outcome (time to recurrence, or


known disease-free time) of the cases in the various clusters. Figure 5 shows a Kaplan-Meier


estimate of the true disease-free survival times for patients in the clusters represented in one


solution from our �nal population. This solution contained three clusters in 7 dimensions.


It was chosen by picking the best individual (in terms of Fbetween and Fwithin) with three


clusters from the �nal population.


The �gure clearly shows that the clustering solution found three groups with well-


separated survival characteristics. The best prognostic group (represented by the top curve)
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Figure 5: Estimated survival curves for the groups found by the ELSA-based clustering
method. Choosing best solution with three clusters created groups corresponding to good,
intermediate, and poor prognosis.


was relatively small, containing 22 cases, with only three recurrences. Because of its small


size, it was not statistically signi�cantly di�erent from the intermediate group (p = .075).


The intermediate group was well-di�erentiated from the poor group (p < 0.01).


The chosen dimensions included a mix of nuclear morphometric features such as sym-


metry, concavity and texture, along with lymph status and tumor size. We note that the


inclusion of lymph status requires dissection of the ancillary nodes for staging purposes,


leaving the patient at risk for painful complications. While we would prefer to make treat-


ment decisions without this feature, the clustering results consistently indicated that it was


relevant to the forming of prognostic groups.


4 Conclusions


We presented a novel approach for large-scale feature selection problems using unsupervised


learning. ELSA, an evolutionary local selection algorithm, was used successfully in previous


work in conjunction with supervised learning [24, 25]. In this paper we used ELSA to


search for possible combination of features and numbers of clusters, with the guidance of the
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K-means algorithm. While the search biases of ELSA and K-means may not be ideal for


this application, the combination of a multi-objective search algorithm with unsupervised


learning provides a promising framework for feature selection. We summarize our �ndings


as follows.


� ELSA covers a large space of possible feature combinations well while simultaneously


optimizing the multiple criteria.


� The standard K-means algorithm can be used to guide ELSA by evaluating the quality


of a subset of features.


� A number of possibly conicting heuristic metrics can be plugged into the algorithm,


while remaining agnostic about their relative worth or their relationships.


� Most importantly, in the proposed framework we can select signi�cant feature subsets


without training examples, while at the same time identifying the inherent numbers of


clusters.


In future work we would like to compare the performance of ELSA on the unsupervised


feature selection task with other multi-objective EAs [10], using each in conjunction with the


standard K-means algorithm. We will also consider the use of di�erent clustering algorithms


that may be more appropriate in speci�c situations, such as problems with nominal features


or clusters with di�erent shapes.


Another interesting direction is the further analysis of the interactions among our various


optimization criteria. For instance, increasing the number of features dramatically a�ects


both of our cluster quality metrics. While we corrected for much of this e�ect with normaliza-


tion terms, further study is needed to decorrelate the e�ects of the various criteria. Further,


the Fbetween measure does not necessarily correlate directly with one's intuition about cluster


quality. Well-separated, but nearby, clusters are judged harshly by the traditional TBSS


measure on which Fbetween is based. We will explore other objectives that implement the


idea of forming well-separated clusters.


Although in theory the best thing that an algorithm can do in multi-objective optimiza-


tion is to approximate the Pareto front, it would be desirable from the standpoint of a
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non-expert user to identify one single solution, out of the �nal population, representing a


\best compromise." Once the algorithm has identi�ed a manageable set of candidate solu-


tions (the Pareto front approximation in the �nal population), we might be able to apply


some more expensive statistical or geometric method. For example, we might look along


the approximate Pareto front for a point of maximal curvature, by considering tangential


hyperplanes in Pareto space.


From a knowledge discovery perspective, our algorithm o�ers several advantages. Cer-


tainly the simplicity bias of Occam's Razor is well-established as a means for improving


generalization on real-world data sets. Further, it is often the case that the user can gain


insight into the problem domain by �nding the set of relevant features; consider, for example,


the signi�cant literature on prognostic factors in breast cancer, or the target marketing prob-


lem described in Section 1. Finally, a key problem in data mining is the scaling of predictive


methods to large data sets. Our algorithm can easily be used as a preprocessing step to


determine an appropriate set of features (and number of clusters), allowing the application


of iterative algorithms like K-means on much larger problems.
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